
Lecture notes to the course

Numerical Methods I

Clemens Kirisits

February 10, 2017

ii

Preface

These lecture notes are intended as a written companion to the course “Numer-
ical Methods I” taught in October and November 2016 at the University of Vi-
enna. The course is part of an interdisciplinary masters programme called Com-
putational Science. As such it targets an audience with diverse backgrounds.
The course is supposed to acquaint the students with a basic knowledge of
numerical analysis and scientific computing.

For the creation of these notes the following references have proven extremely
helpful. They are highly recommended for further reading.

• Matrix Computations, Gene H. Golub and Charles F. Van Loan

• Grundlagen der Numerischen Mathematik und des Wissenschaftlichen Rech-
nens by Martin Hanke-Bourgeois

• Accuracy and Stability of Numerical Algorithms, Nicholas Higham

• Princeton Companion to Applied Mathematics, Nicholas Higham (ed.)

• Introduction to Scientific Computing, Charles F. Van Loan

• Numerical Linear Algebra, Lloyd N. Trefethen and David Bau, III

In addition I have used the lecture notes to the course Numerische Mathematik
held by Winfried Auzinger in winter term 2005/06 at TU Wien.

Clemens Kirisits

iii

iv PREFACE

Contents

Preface iii

1 Basic Concepts of Numerical Analysis 1
1.1 Floating Point Arithmetic . 2
1.2 Cancellation . 6
1.3 Condition of a Problem . 7
1.4 Condition Number of a Matrix 9
1.5 Stability of an Algorithm . 11

2 Numerical Linear Algebra 17
2.1 Triangular Systems . 18

2.1.1 Forward Substitution . 18
2.1.2 Back Substitution . 21

2.2 LU Factorization . 22
2.2.1 Gaussian Elimination . 22
2.2.2 Pivoting . 28

2.3 Cholesky Factorization . 33
2.3.1 SPD Matrices . 34
2.3.2 Symmetric Gaussian Elimination 34
2.3.3 Algorithm . 37

2.4 QR Factorization . 38
2.4.1 Gram-Schmidt . 39
2.4.2 Modified Gram-Schmidt 42
2.4.3 Householder’s Method . 43
2.4.4 Comparison of Algorithms for Solving Ax = b 47

2.5 Linear Least Squares Problems 48
2.5.1 Numerical Solution . 49

3 Interpolation 51
3.1 Polynomial Interpolation . 51

3.1.1 The General Problem . 52
3.1.2 Error Estimates . 55

3.2 Spline Interpolation . 57
3.2.1 Linear Splines . 58
3.2.2 Cubic Splines . 60

v

vi CONTENTS

3.3 Trigonometric Interpolation . 63
3.3.1 Fast Fourier Transform 65

4 Numerical Integration 69
4.1 Newton-Cotes Formulas . 70

4.1.1 Error estimates . 72
4.2 Composite Rules . 73
4.3 Gauss Quadrature . 74

Appendix on Linear Algebra 77

Chapter 1

Basic Concepts of Numerical Analysis

Numerical analysis is the study of algorithms for solving problems of mathemat-
ical analysis. Its importance and usefulness are best understood by regarding
it as a subdiscipline of applied mathematics. In the words of mathematician
Garrett Birkhoff “mathematics becomes applied when it is used to solve real-
world problems.” Frequently, solving a problem in applied mathematics includes
(some of) the following steps.

Modelling. A real-world problem is translated into a mathematical one. For
example, the distribution of heat in a certain material can be modelled by
a partial differential equation called heat equation.

Analysis. The mathematical problem is analysed. This step often involves the
question of well-posedness: Does the problem have a unique solution that
depends continuously on the data?

Approximation. Very often, solutions to mathematical problems cannot be
computed directly. The problem must be approximated by a simpler one.
Discretization, i.e. replacing continuous objects by discrete counterparts,
is an important example of an approximation process.

Algorithm. The reduced problem is broken down into an algorithm: a se-
quence of simple steps that can be followed through mechanically.

Software. Software must be written so that the algorithm can be executed on
a computer.

Validation. If it is possible to make measurements of the real-world phe-
nomenon, then these measurements can be used to validate the mathe-
matical model by comparing them to the computer output.

Prediction. Finally, the model can be used to gain new insights about the
original problem that would be too costly or even impossible to obtain
otherwise.

1

2 CHAPTER 1. BASIC CONCEPTS OF NUMERICAL ANALYSIS

Numerical analysis mainly occupies the steps Approximation and Algorithm,1

thereby bridging the gap between mathematical problems and computers. In
summary, numerical methods address the questions (i) how mathematical prob-
lems can be turned into a form solvable by a computer, and (ii) how numerical
solutions can be computed efficiently and accurately.

Suppose, while validating your model for a particular problem, you realize
that your computer output is significantly wrong. For the sake of the argu-
ment assume that your mathematical model is accurate, that your algorithm
is mathematically correct and your software is a faithful implementation of the
algorithm. In this case the observed errors might have the following sources.

Data uncertainty. Many algorithms are fed on data produced by real-world
measurements or by previous computations. In both cases the data can
only be accurate to a certain degree.

Discretization. Since discretization is a kind of approximation, it typically
introduces errors. These errors are sometimes called truncation errors.

Roundoff. On computers real numbers are replaced by floating point numbers.
Therefore, both data input and internal computations lead to roundoff
errors.

While awareness of data uncertainty is always necessary, the focus of numerical
analysis usually is on controlling truncation and roundoff errors.

1.1 Floating Point Arithmetic

In the following we will often want to assess the quality of an approximation
x̃ = x + ∆x = x(1 + δx) to a real number x. Two very common measures are
the absolute error of x̃

|x− x̃| = |∆x|

and the relative error of x̃

|x− x̃|
|x|

=
|∆x|
|x|

= |δx|.

Designing and analysing good algorithms requires knowledge of how com-
puters handle numbers. The following example is borrowed from Matrix Com-
putations by Gene H. Golub and Charles F. Van Loan.

Example 1.1 (3-digit calculator). Suppose you have a very simple calculator

1However, writing software is an important aspect of numerical analysis as well, since
it allows you, for instance, to compare the theoretical properties of an algorithm with its
practical behaviour.

1.1. FLOATING POINT ARITHMETIC 3

which represents numbers in the following way:

x = ±0.d1d2d3 × 10e, where


d1 ∈ {1, . . . , 9}
d2 ∈ {0, . . . , 9}
d3 ∈ {0, . . . , 9}
e ∈ {−9, . . . , 9}.

A few observations are in order:

• The first digit d1 does not take the value 0 for reasons of uniqueness. If
we allowed d1 = 0, then we could write certain numbers in more than one
way, e.g. 74 = 0.74× 102 = 0.074× 103.

• Clearly, zero must be representable. However, since d1 6= 0, we need an
exception to do so, for example 0.00× 100.

• Our calculator can only represent finitely many numbers: 2×9×10×10×
19 + 1 = 34201.

• In particular, there is a largest number (0.999×109) and a smallest positive
number (0.100 × 10−9). Notice that with the convention d1 6= 0 we have
“lost” the even smaller numbers of the form 0.0d2d3 × 10−9.

• The calculator’s precision depends on the number of digits, which in our
case is three. In order to represent the number 123456, for example, the
toy calculator cannot do better than 0.123 × 106. The resulting relative
error is of order 10−3.

• Similarly, results of calculations generally will have to be rounded in order
to fit the 3-digit format. For instance, (0.123 × 102) ∗ (0.456 × 103) =
5608.8 ≈ 0.561× 104.

• The set of representable numbers is not equispaced. Instead, the spacing
increases by a power of 10 at every power of 10. Between 0.100 × 10e+1

and 0.100× 10e+2 the spacing is 10e−1.

In the example above we have seen a particular instance of a normalized
floating point number system. A general floating point number system is a
subset F of R whose nonzero elements have the form

x = ±
(d1
β1

+ · · ·+ dt
βt

)
× βe. (1.1)

Here, β ∈ {2, 3, . . .} is the base and t ∈ N the precision of F. In contrast to β
and t, the exponent e is not fixed but can take any integer value in the exponent
range emin ≤ e ≤ emax. Similarly, each digit di can vary in the set {0, . . . , β−1}.
If the number system is normalized, then d1 6= 0. The number zero does not
have a normalized representation. The gap between 1 and the next largest
floating point number is called machine epsilon εM = β1−t. The unit roundoff

4 CHAPTER 1. BASIC CONCEPTS OF NUMERICAL ANALYSIS

u = 1
2εM gives a worst case bound on the relative error when approximating real

numbers by floating point numbers. The following theorem summarizes some
of the properties of a normalized floating point number system.

Theorem 1.1. For F = F(β, t, emin, emax) the following statements are true.

1. Every x ∈ F \ {0} has a unique representation (1.1).

2. The largest and smallest positive elements of F, respectively, are given by

xmax = βemax(1− β−t),
xmin = βemin−1.

3. The spacing between adjacent floating point numbers in the range [βe−1, βe]
is εMβ

e−1.

4. Every real number x satisfying |x| ∈ [xmin, xmax] can be approximated by
a y ∈ F such that the relative error stays below the unit roundoff. That is,

min
y∈F

|x− y|
|x|

≤ u.

Proof. Exercise.

For every floating point number system F we define a rounding function
fl : R→ F in the following way. It maps zero to zero and every other real number
to its best respective representation (1.1) without restriction on the exponent.
If the number to be rounded is the exact midpoint of two adjacent floating point
numbers, then we need a rule telling us which one to choose. Of course, we are
mainly interested in the cases when fl(x) ∈ F. When |fl(x)| < xmin, we say
that fl(x) underflows. When |fl(x)| > xmax, then it overflows. The following
statement is an immediate consequence of item 4 in Thm. 1.1.

Corollary 1.1. For every x ∈ [−xmax,−xmin] ∪ {0} ∪ [xmin, xmax] there is a
δ ∈ [−u, u] such that

fl(x) = (1 + δ)x. (1.2)

Note that δ is just the relative error of fl(x). Assuming that the rounding
function is correctly implemented on our computer, equation (1.2) basically tells
us what happens to a real number when we feed it into our computer (as long
as there is no over- or underflow). This is the first step towards analysing the
effects of rounding errors in numerical algorithms. The next step is to quantify
the error committed during an arithmetic operation with floating point numbers.
How large the error of a floating point operation, a flop, is depends on the way
it is implemented on your computer. A good design principle is formulated in
the following assumption.

1.1. FLOATING POINT ARITHMETIC 5

Assumption 1.1. Let ◦ stand for any of the four basic arithmetic operations
(+,−,×, /) and denote by } its floating point analogue. For all x, y ∈ F satis-
fying

x ◦ y ∈ [−xmax,−xmin] ∪ {0} ∪ [xmin, xmax]

we have
x} y = fl(x ◦ y). (1.3)

This assumption is essentially a mathematical definition of the basic floating
point operations. It states that the result of any such operation (that does not
lead to over- or underflow) should be the same as the rounded result of the
exact operation. On a machine that satisfies both (1.2) and (1.3) floating point
operations are exact up to a relative error of size at most u.

Normalized systems F can be extended by subnormal numbers, also called
denormalized numbers. These numbers are characterized by having minimal
exponent e = emin and d1 = 0. The extended floating point number system
F̂ = F̂(β, t, emin, emax) is thus given by

F̂ = F ∪
{
±
(d2
β2

+ · · ·+ dt
βt

)
× βemin : 0 ≤ di ≤ β − 1

}
.

The smallest positive subnormal number is βemin−t, which usually is much
smaller than xmin. Note that in contrast to normalized numbers, subnormal
numbers are equidistant. Because of this, they do not satisfy equation (1.2).
Instead the relative approximation error of fl(x) grows larger the smaller |x|
becomes.

Example 1.2 (IEEE standard). Nowadays, on most computers floating point
arithmetic is in conformance with the so-called IEEE 754 standard which sup-
ports two standard floating number systems: the single format

F̂(2, 24,−125, 128)

and the double format
F̂(2, 53,−1021, 1024).

This standard also satisfies Assumption 1.1 with rounding to even, i.e. dt = 0.

Example 1.3 (Non-associativity of floating point arithmetic). We return to
our toy calculator. In accordance with Assumption 1.1 we have

((1000⊕ 4)⊕ 4) = fl(fl(1000 + 4) + 4) = fl(1000 + 4) = 1000.

If we change the order of addition, then

(1000⊕ (4⊕ 4)) = fl(1000 + fl(4 + 4)) = fl(1000 + 8) = 1010.

Similar examples can be constructed for the other three operations. From this
simple observation we can already conclude the following fundamental fact:
Mathematically equivalent algorithms in general do not lead to the same results!

6 CHAPTER 1. BASIC CONCEPTS OF NUMERICAL ANALYSIS

1.2 Cancellation

Cancellation is maybe the most common reason for numerical instability. It
happens when we compute the difference between two almost equal floating
point numbers. Leading digits are cancelled out, while trailing digits, which are
more likely to be erroneous, become significant.

Example 1.4. Consider the following computation

(236 + 2340)− 2560 = 2576− 2560 = 16.

Performing the same computation on the 3-digit calculator we get

(236⊕ 2340)	 2560 = 2580	 2560 = 20,

which has a relative error of 25%. It is very important to realize that the reason
for this is not poor accuracy of floating point subtraction. On the contrary,
the subtraction is done exactly! But it brings into prominence the error of the
previous addition, which was not exact. Recalling Example 1.3 we can avoid
the error amplification by changing the order of addition and subtraction

(236⊕ (2340	 2560) = 236⊕ (−220) = 16.

Let us look at cancellation in a more general way. Let x̃ = x(1 + δx) be
a contaminated version of x and ỹ = y(1 + δy) a contaminated version of y.
We would like to compute z = x − y. The relative error of the approximation
z̃ = x̃− ỹ can be bounded in the following way

|z̃ − z|
|z|

=
|xδx− yδy|
|x− y|

≤ max(|δx|, |δy|) |x|+ |y|
|x− y|

. (1.4)

This inequality is sharp, that is, there are real numbers x, y, δx, δy with x 6= y
such that the inequality is an equality. Thus, in the worst case the relative error
of z̃ is basically a large multiple of the original relative errors δx, δy. Note that
the fraction on the right hand side is large, if |x− y| � |x|+ |y|, i.e. if x and y
are very close in a relative sense, which is exactly when cancellation occurs.

The reasoning above also shows that cancellation is unproblematic, if we
can be sure that the numbers are error-free (δx = δy = 0). Cancellation (with
erroneous data) can also be neglected, if it does not really influence the final
result of a computation. We illustrate this point with an example.

Example 1.5. We extend the previous example by an addition with a large
number:

((236 + 2340)− 2560) + 108 = (2576− 2560) + 108 = 16 + 108.

With 3-digit precision we get

((236⊕ 2340)	 2560)⊕ 108 = (2580	 2560)⊕ 108 = 108,

and the relative error is negligible.

1.3. CONDITION OF A PROBLEM 7

Example 1.6 (Roots of quadratic polynomials). Consider the problem of com-
puting the roots of the quadratic polynomial x2 +px+ q. The standard formula

x1,2 = −p/2±
√
p2/4− q

contains two possible sources of cancellation. First, if q ≈ 0, then one of the
two solutions (depending on the sign of p) is affected. This problem can be
eliminated by first computing the other solution, i.e. the one which is larger
in absolute value, and then using Vieta’s formula x1x2 = q to compute the
smaller one. Second, cancellation can occur when q ≈ p2/4. This happens for
polynomials with almost identical roots. This case is more severe, as there is no
mathematical trick to overcome the loss of accuracy.

Unavoidable cancellations often indicate an ill-conditioned problem. Condi-
tioning is the topic of Section 1.3.

1.3 Condition of a Problem

The condition of a problem describes its behaviour under perturbations. A
problem is ill-conditioned, if small perturbations of the input can lead to drastic
changes of the output. On the other hand, if all small perturbations of the input
lead only to small changes in the output, the problem is well-conditioned.

Abstractly, we can view a problem as a function f : X → Y, which must
be evaluated at x ∈ X. Here, X is the space of inputs and Y the space of
outputs, both of which are assumed to be normed vector spaces. Using this
notation we say the problem of evaluating f at x is ill-conditioned with respect
to the absolute error, if there is a small perturbation x̃ ∈ X of x, for example
x̃ = fl(x), such that

‖f(x̃)− f(x)‖ � ‖x̃− x‖. (1.5)

The relation� stands for “much larger than.” Frequently, relative errors are
more appropriate than absolute ones.2 We call a problem ill-conditioned with
respect to the relative error, if instead

‖f(x̃)− f(x)‖
‖f(x)‖

� ‖x̃− x‖
‖x‖

. (1.6)

Clearly, words like “small” and “large” are not mathematically precise and
depend very much on the context. However, a left-hand side several orders of
magnitude larger than the right-hand side very often indicates an ill-conditioned
problem.

For differentiable functions an obvious measure of sensitivity with respect to
a change in the argument is the derivative f ′. We therefore define the absolute
and relative condition numbers of the problem x 7→ f(x) as

κabs(x) = ‖f ′(x)‖ (1.7)

2Recall that the function fl introduces relative errors!

8 CHAPTER 1. BASIC CONCEPTS OF NUMERICAL ANALYSIS

and

κrel(x) =
‖f ′(x)‖‖x‖
‖f(x)‖

, (1.8)

respectively. A problem is well-conditioned, if its condition number is small.
For the relative condition number this can mean that it is of order 102 or below.

Note that we have not defined the expression ‖f ′(x)‖ or what differentiability
means for a function between general normed spaces X and Y . This shall not
concern us any further. It will suffice to know that for f : Rn → Rm we replace
‖f ′(x)‖ in (1.7) and (1.8) with ‖J(x)‖, where

J =

(
∂fi
∂xj

)
ij

∈ Rm×n

is the Jacobian matrix of f , and the norm in this case is the induced matrix
norm.

Example 1.7 (Division by two). We consider the problem of dividing a number
by two. Thus, f(x) = x/2 and f ′(x) = 1/2 for all x ∈ R. The relative condition
number is given by

κrel(x) =
1
2 |x|
|x2 |

= 1,

which indicates a well-conditioned problem.

Example 1.8 (Cancellation). Consider the function f : R2 → R, (x, y) 7→ x−y.
The Jacobian is given by (1,−1). Endowing R2 with the 1-norm, the induced
norm of J equals 1. Hence

κrel(x, y) =
‖J(x, y)‖‖(x, y)‖1

|f(x)|
=
|x|+ |y|
|x− y|

,

which is large for x ≈ y. We conclude that the subtraction of nearly equal
numbers is ill-conditioned with respect to the relative error. Revisiting our
brief analysis from (1.4) we see that the behaviour observed there is captured
well by the concept of conditioning. The amplifying factor turns out to be the
relative condition number.

Example 1.9 (Quadratic polynomials revisited). Examples 1.6 and 1.8 strongly
suggest that computing the roots of a polynomial with p2/4 ≈ q is an ill-
conditioned problem. We avoid the tedious computation of κrel in this case.
Instead we only consider the polynomial x2 − 2x+ 1 = (x− 1)2 and show that
a large change in the roots can be caused by much smaller perturbation of the
coefficients.

Replacing the double root x1,2 = 1 of the original polynomial by x1,2 =
1±∆x we calculate

(x− 1 + ∆x)(x− 1−∆x) = x2 − 2x+ 1− (∆x)2.

1.4. CONDITION NUMBER OF A MATRIX 9

Reading this equation backwards, we see that a perturbation of q by (∆x)2

changes the roots by ∆x. However, if (∆x)2 � 1 then |∆x| � (∆x)2 and both
(1.5) and (1.6) are satisfied. Note that absolute and relative conditioning are
basically equivalent for this problem, because input (p, q) = (−2, 1) and output
(x1, x2) = (1, 1) are of the same order.

1.4 Condition Number of a Matrix

Consider the problem of multiplying x ∈ Rn with a matrix A ∈ Rm×n. The
Jacobian of the map f : x 7→ Ax is A itself. Thus

κrel(x) =
‖A‖‖x‖
‖Ax‖

.

Now assume that m = n and that A is invertible. Using the definition of induced
matrix norm for the inverse A−1 we can obtain a sharp upper bound for κrel(x)
which is independent of x

‖A‖‖x‖
‖Ax‖

≤ ‖A‖ sup
x∈Rn

‖x‖
‖Ax‖

= ‖A‖ sup
y∈Rn

‖A−1y‖
‖y‖

= ‖A‖‖A−1‖ =: κ.

The number κ = κ(A) is called the condition number of A.
Now consider the problem of solving the linear system Ax = b for given

b ∈ Rn. Mathematically this is equivalent to computing f : b 7→ A−1b. As
before

κrel(b) =
‖A−1‖‖b‖
‖A−1b‖

≤ ‖A−1‖‖A‖ = κ.

Thus, the condition number of A not only controls how perturbations in x affect
b = Ax, but also how perturbations in the right hand side b affect the solution
x of the linear system Ax = b.

Finally, we want to find out how changes in A affect the solution x. So we
consider the problem f : A 7→ A−1b. Let ∆A be an infinitesimal perturbation
of A. Then there must be an infinitesimal ∆x such that

(A+ ∆A)(x+ ∆x) = b.

Expanding the left hand side, using Ax = b and neglecting the product ∆A∆x
we get

A∆x+ ∆Ax = 0

or equivalently

∆x = −A−1∆Ax.

Now we take norms on both sides and multiply with ‖A‖. This yields

‖∆x‖‖A‖ = ‖A−1∆Ax‖‖A‖ ≤ ‖A−1‖‖∆A‖‖x‖‖A‖

10 CHAPTER 1. BASIC CONCEPTS OF NUMERICAL ANALYSIS

and upon division by ‖∆A‖‖x‖
‖∆x‖‖A‖
‖∆A‖‖x‖

≤ κ.

Since ‖∆x‖/‖∆A‖ is essentially ‖f ′(A)‖, the left-hand side is nothing but the
relative condition number. Again it can be shown that the inequality is sharp. In
summary, the condition number of A controls the sensitivity of three problems:
x 7→ b, b 7→ x and A 7→ x. Hence its central role in numerical linear algebra.

Using the properties of the induced matrix norm (see the appendix), the
condition number of A equals

κ(A) =
max‖x‖=1 ‖Ax‖
min‖x‖=1 ‖Ax‖

≥ 1

Geometrically, it measures how much A distorts the unit circle, and by the
linearity of A, the whole space.

Example 1.10 (Condition number for the spectral norm.). Since every induced
matrix norm depends on the chosen vector norms, so does the corresponding
condition number. For the spectral norm (cf. the appendix) we get the ratio of
largest to smallest singular value

κ2(A) = ‖A‖2‖A−1‖2 =
σmax(A)

σmin(A)
.

If A is a self-adjoint matrix, then this fraction in fact equals the ratio of eigen-
values

κ2(A) =
λmax(A)

λmin(A)
.

If Q is an orthogonal or unitary matrix, then all its singular values equal one
and κ2(Q) = 1. Therefore, orthogonal and unitary matrices are the “best-
conditioned” types of matrices. Also, multiplication of a matrix with an or-
thogonal or unitary matrix from the left or right does not change its condition
number, cf. (14):

κ2(UAV) = ‖UAV ‖2‖V ∗A−1U∗‖2 = ‖A‖2‖A−1‖2.

Example 1.11. Consider the system Ax = b with matrix A = diag (1, ε) and
right hand side b = (1, ε)> for some 0 < ε � 1. The solution is given by
x = (1, 1)>. The matrix A is self-adjoint and therefore κ2 = 1/ε � 1, which
indicates a very ill-conditioned problem.

Indeed, a perturbation of the right-hand side with ∆b = (0, ε) leads to a
solution x̃ = A−1(b + ∆b) = (1, 2)> with relative error of about 70 percent,
while the relative error of b is only ε. Similarly, a very small perturbation of A
with ∆A = diag (0, ε) leads to a solution x̃ = (A + ∆A)−1b = (1, 0.5)> having
a large relative error.

Note that the oversensitive behaviour of solutions is not caused by the fact
that detA = ε ≈ 0. The matrix A = diag (1, 1/ε) with detA� 0 would lead to
comparably bad results. This argumentation also shows that, at least for our
purposes, the determinant is not a useful measure of closeness to singularity.

1.5. STABILITY OF AN ALGORITHM 11

1.5 Stability of an Algorithm

Let ỹ be an approximation to the solution y = f(x) of the problem x 7→ f(x).
The relative and absolute errors of ỹ are called forward errors of ỹ. Forward
errors of reasonable magnitude can be hard to obtain sometimes. There is, how-
ever, another way to measure the quality of ỹ. Suppose there is a perturbation
of x, for which ỹ is the exact solution, i.e. ỹ = f(x+ ∆x). Then ‖∆x‖ is called
the absolute backward error. If there is more than one such ∆x, then we choose
the one which is smallest in norm. As usual the relative backward error is the
absolute one divided by ‖x‖.

The condition number of f controls the relationship between forward and
backward errors. For simplicity let f : R→ R be a twice continuously differen-
tiable function. As above denote by ∆x the backward error of ỹ. By Taylor’s
theorem there is a number ξ between x and x+ ∆x such that

ỹ − y = f(x+ ∆x)− f(x) = f ′(x)∆x+
f ′′(ξ)

2
(∆x)2.

Dropping the quadratic term in ∆x and taking absolute values we obtain

|ỹ − y| ≈ κabs(x)|∆x|.

Division by |y| gives the corresponding relation for the relative errors

|ỹ − y|
|y|

≈ κrel(x)
|∆x|
|x|

. (1.9)

We have the following rule of thumb:

• If a problem is ill-conditioned, then computed solutions ỹ can have a large
forward error even though the backward error is small.

• On the other hand, computed solutions of an extremely well-conditioned
problem (κrel(x) � 1) can have small forward but very large backward
errors.

• Finally, forward and backward errors of computed solutions to a well-
conditioned problem are often comparable.

Examples 1.14, 1.15 and 1.16 below illustrate these three cases.

Example 1.12 (Cancellation). Compare (1.9) to what we have shown in equa-
tion (1.4) and Example 1.8 for subtracting nearly equal numbers. In the worst
case the forward error equalled the backward error max(|δx|, |δy|) times the
relative condition number.

It is convenient to denote methods or algorithms for solving a problem f by
f̃ , where f̃ acts between the same spaces as f . If, for every x, f̃ produces results
with a small backward error, it is called backward stable. Put differently, for

12 CHAPTER 1. BASIC CONCEPTS OF NUMERICAL ANALYSIS

every x, there is a small ∆x such that f(x+ ∆x) = f̃(x). One way to interpret
this definition is this: A backward stable algorithm produces the right result for
almost the right problem.

A weaker notion of stability is the following. An algorithm f̃ is called stable,
if for every x there are small ∆x, ∆y such that f(x+ ∆x) = f̃(x) + ∆y. Again
this can be read in a catchy way: A stable algorithm produces almost the right
result to almost the right problem. Stability is weaker than backward stability
in the sense that every backward stable algorithm is also stable.

As usual, the meaning of words like “small” depends on the context. How-
ever, a reasonable bound for the backward error of a backward stable algorithm
is

‖∆x‖
‖x‖

≤ Cu, (1.10)

where C > 0 is a moderate constant and u is the unit roundoff. Since in
general the input to algorithms must be assumed to be erroneous, a relative
input error much smaller than u can hardly be expected. With essentially the
same argumentation that led to (1.9), we can obtain a bound on the forward
error of a backward stable algorithm

‖f̃(x)− f(x)‖
‖f(x)‖

=
‖f(x+ ∆x)− f(x)‖

‖f(x)‖
≈ κrel(x)

‖∆x‖
‖x‖

. Cuκrel(x). (1.11)

Since (1.11) measures the accuracy of the algorithm f̃ , estimates of this type
are sometimes called accuracy estimates.

When analysing errors of a given algorithm x 7→ f̃(x) one typically replaces
every floating point operation with an exact operation times a (1 + δ) term,
where |δ| ≤ u. This is in accordance with Assumption 1.1. First order Taylor
approximations can then be used to linearize nonlinear expressions:

g(δ) ≈ g(0) + g′(0)δ.

For g(δ) = 1/(1− δ) we would get

1

1− δ
≈ 1 + δ.

Example 1.13 (Backward stability of basic floating point operations). Con-
sider the problem f : (x1, x2) 7→ x1 + x2 for two real numbers x1, x2. Our
“algorithm” in this case is f̃(x1, x2) = fl(x1) ⊕ fl(x2). Invoking (1.2) and (1.3)
we compute

f̃(x1, x2) = fl(x1)⊕ fl(x2)

= x1(1 + δ1)⊕ x2(1 + δ2)

= [x1(1 + δ1) + x2(1 + δ2)](1 + δ3)

= x1(1 + δ1 + δ3 + δ1δ3)︸ ︷︷ ︸
x̃1

+x2(1 + δ2 + δ3 + δ2δ3)︸ ︷︷ ︸
x̃2

= f(x̃1, x̃2)

1.5. STABILITY OF AN ALGORITHM 13

where all δi are smaller than the unit roundoff in absolute value. Thus the
algorithm gives the right answer for a perturbed input with relative error

|δi + δj + δiδj | ≤ 2u+ u2 ≈ 2u,

which is reasonably small. Therefore floating point addition is backward stable.
However, in spite of backward stability, if x1 ≈ −x2, the forward errors might
still be large!

Backward stability of 	,⊗,� can be shown analogously.

Example 1.14 (An extremely well-conditioned problem). Consider f : x 7→
1 + x for x ≈ 0. Since it does not change the outcome, we neglect rounding of
the input, i.e. we assume x ∈ F:

f̃(x) = 1⊕ x = (1 + x)(1 + δ) = 1 + x(1 + δ + δ/x),

where |δ| ≤ u. Notice that for very small x the fraction δ/x will be much larger
than δ. Therefore the relative backward error δ + δ/x cannot be considered
small. We conclude that f̃ : x 7→ 1⊕ x is not backward stable. However, since

f̃(x) = 1 + x+ δ + xδ = f(x(1 + δ)) + δ,

it is stable. The forward errors are small as well

f̃(x)− f(x)

f(x)
=
δ + xδ

1 + x
=

δ

1 + x
+ δ

x

1 + x
≈ δ.

This situation can be explained by the fact that f : x 7→ 1 + x is an extremely
well-conditioned problem for x very close to zero: κrel(x) = |x|/|1 + x| � 1.
Relative errors in x are dampened heavily and thus have almost no effect on
f(x). This example shows that backward stability is not always a reasonable
goal.

Example 1.15 (A well-conditioned problem). Consider the problem f : x 7→
log(1 + x) for x ≈ 0 which has condition number

κrel(x) =
x

(1 + x) log(1 + x)
≈ 1

1 + x
≈ 1,

since log(1 + x) ≈ x for x close to zero. We assume x ∈ F and that we have an
exact implementation of the logarithm. Recalling that log(ab) = log a+log b we
get

f̃(x) = log(1⊕ x)

= log[(1 + δ)(1 + x)]

= log(1 + δ) + log(1 + x)

= log(1 + x)(1 + δ/ log(1 + x))

14 CHAPTER 1. BASIC CONCEPTS OF NUMERICAL ANALYSIS

for some |δ| ≤ u. We have a relative forward error of δ/ log(1 + x) which is
very large for x ≈ 0. For estimating the relative backward error ε we make the
ansatz f̃(x) = f(x(1 + ε)), that is,

log[(1 + δ)(1 + x)]) = log[1 + x(1 + ε)].

Cancelling the logarithms and solving for ε yields ε = δ + δ/x which shows a
lack of backward stability.

As we have pointed out in discussing (1.9) well-conditioned problems often
lead to computed solutions with similar forward and backward errors. This is
also the case for this problem. The issue with x 7→ log(1 ⊕ x) is very similar
to cancellation. The rounding error introduced by the addition is magnified by
the logarithm, even though it is evaluated exactly. Notice that the problem
y 7→ log y is ill-conditioned for y ≈ 1.

There is, however, a mathematically equivalent rewriting

log(1 + x) = 2 artanh (x/(x+ 2)),

which avoids numerical instabilities. There are many other examples where an
algebraically equivalent rewriting leads to stable algorithms.

Example 1.16 (An ill-conditioned problem). Consider f : x 7→ 1 − x2 for
|x| ≈ 1. In this case the relative condition number κrel(x) = 2x2/|1−x2| is very
large, which indicates an ill-conditioned problem. For the sake of simplicity
assume that our algorithm performs the subtraction exactly. Then

f̃(x) = 1− x⊗ x = 1− x2(1 + δ)

for δ ≤ u and the relative forward error explodes

f̃(x)− f(x)

f(x)
=
−x2δ
1− x2

≈ −δ
1− x2

.

For estimating the backward error we again equate f̃(x) with f(x(1+ε)) leading
to

1− x2(1 + δ) = 1− (x(1 + ε))2.

Solving for ε gives ε =
√

1 + δ − 1 which has a first order approximation of
δ/2. Thus, the relative backward error satisfies |ε| . u/2 from which we deduce
backward stability of f̃ .

This situation is similar to the one encountered in Example 1.4. A round-
ing error introduced in an otherwise unproblematic computation is elevated by
subsequent subtraction even if this subtraction is performed exactly.

We conclude this chapter with general advice for designing stable algorithms.
Nicholas Higham, in his standard reference Accuracy and Stability of Numerical
Algorithms, lists the following guidelines (among others):

1.5. STABILITY OF AN ALGORITHM 15

1. Avoid subtraction of quantities contaminated by error. Also, try to mini-
mize the size of intermediate results relative to the size of the final result.
If intermediate quantities are very large, then the final result might be
affected by cancellation.

2. Look for mathematically equivalent reformulations of your problem.

3. Avoid overflow and underflow.

16 CHAPTER 1. BASIC CONCEPTS OF NUMERICAL ANALYSIS

Chapter 2

Numerical Linear Algebra

This chapter’s focus is on direct methods for systems of linear equations Ax = b
where A ∈ Kn×n is regular. A direct method is an algorithm that produces a
solution in a finite number of steps. In contrast, iterative methods in principle
take infinitely many steps and have to be terminated at some point. The latter
will be dealt with in the follow-up course Numerical Methods II.

Our main tool in constructing direct methods for the problem Ax = b are
matrix factorizations or decompositions. Their basic idea is the following:

1. Find “simple” matrices B,C ∈ Kn×n such that A = BC.

2. Solve By = b for y.

3. Solve Cx = y for x.

Then, the vector x solves Ax = b, because Ax = BCx = By = b.

When using a matrix factorization approach to solve Ax = b, in the worst
case a relative error in b will be amplified by a factor of κ(B) to produce a new
error in y. Similarly, the relative error in y can be magnified by κ(C). In total,
a relative error in b propagates to the final result x with an amplifying factor of
κ(B)κ(C). Thus, solving Ax = b via the factorization A = BC is only a good
idea, if the product of condition numbers κ(B)κ(C) is not much larger than
κ(A).

A general rule in numerical analysis says that one should avoid explicit com-
putation of A−1. First, it is superfluous, if only x = A−1b is needed. Another
important reason is that computation of A−1 is slower and less stable than
Gaussian elimination, for instance. In addition, many matrices arising in prac-
tice are very large but sparse, meaning that most of their entries are zero. The
inverse of a sparse matrix, however, is not sparse in general and would require
a large amount of space to store.

The structure and presentation of the topics covered in this chapter follows,
more or less closely, the corresponding lectures in Numerical Linear Algebra by
Trefethen and Bau.

17

18 CHAPTER 2. NUMERICAL LINEAR ALGEBRA

2.1 Triangular Systems

2.1.1 Forward Substitution

Let L = (`ij) ∈ Kn×n be a regular lower triangular matrix, that is, `ij = 0
for i < j. For a given right hand side b ∈ Kn we consider the linear system of
equations Lx = b, which takes the form

`11x1 = b1
`21x1 + `22x2 = b2

...
...

. . .
...

...
`n1x1 + · · · + `nnxn = bn.

There is an obvious procedure for solving such a system in n steps. We start
by solving the first equation for x1 yielding x1 = b1/`11. Next, we plug this
solution into the second equation and obtain x2. More generally, in the k-th
step we plug the k− 1 previously obtained unknowns x1, . . . , xk−1 into the k-th
equation an solve for xk. In fact, xk can be expressed explicitly in terms of
x1, . . . , xk−1 in a simple way

xk =
(
bk −

k−1∑
j=1

`kjxj

)
/`kk. (2.1)

The procedure of calculating x according to (2.1) is called forward substitution:1

Algorithm 2.1: Forward Substitution

1 x(1) = b(1)/L(1,1);

2 for j = 2:n

3 x(j) = (b(j) - L(j,1:j-1)*x(1:j-1))/L(j,j);

4 end

Theorem 2.1. If L ∈ Kn×n is a regular lower triangular matrix, then for every
b ∈ Kn forward substitution computes the unique solution of Lx = b.

Proof. The procedure outlined above could only break down, if `kk = 0 for
some k. However, a triangular matrix is regular, if and only if all its diagonal
entries are nonzero. Recall that for every (upper or lower) triangular matrix
the determinant equals the product of its diagonal entries. Therefore, if L is
invertible, forward substitution cannot fail.

Theorem 2.2. Forward substitution requires n2 flops.

1Assuming a basic familiarity with Matlab, in these lecture notes we will always write
algorithms using Matlab syntax.

2.1. TRIANGULAR SYSTEMS 19

Proof. According to (2.1) the k-th step of forward substitution consists of one
division, k−1 multiplications and k−1 subtractions, in total 1+2(k−1) = 2k−1
operations. Thus, the number of flops involved in the whole procedure equals

n∑
k=1

(2k − 1) = 2
n(n+ 1)

2
− n = n2.

In the summation above we used the fact that
∑n
k=1 k = n(n+ 1)/2.

Is forward substitution backward stable? That is, can we assert that an
algorithm implementing (2.1) produces results x̃ solving a system L̃x̃ = b̃ which
is an only slightly perturbed version of the exact problem Lx = b? The following
theorem gives a positive answer.

Theorem 2.3. Forward substitution is backward stable. That is, for all regular
upper triangular matrices L ∈ Fn×n and b ∈ Fn forward substitution imple-
mented on a machine satisfying (1.2) and (1.3) will produce a result x̃ ∈ Fn
which solves a perturbed system L̃x̃ = b with componentwise errors

|`ij − ˜̀
ij |

|`ij |
≤ nu+ h.o.t., (2.2)

if `ij 6= 0. If `ij = 0, then also ˜̀
ij = 0.

A few remarks are in order before we prove this statement. First, the u in
the estimate above is the unit roundoff as introduced in the previous chapter
and h.o.t. stands for higher order terms in u. Second, note that x̃ is asserted to
solve a system with exact right hand side b.

Proof. We give a detailed proof only for the case n = 3. This should convince
the reader of the theorem’s validity for arbitrary n ∈ N.

The first component of x̃ is given by

x̃1 = b1 � `11 =
b1
`11

(1 + ε),

where ε is a number which, according to Assumption 1.1, satisfies |ε| ≤ u.
The way the theorem is stated we want to interpret all appearing errors as
perturbations in L. (b is exact!) In the case of x̃1 this means that we have to
move the error term 1+ ε to the denominator. If we define ε′ = −ε/(1+ ε), then
1 + ε′ = 1/(1 + ε) and we get

x̃1 =
b1

`11(1 + ε′)
.

Taylor expansion of ε′ (as a function of ε) around zero shows that ε′ = −ε plus
higher order terms. Therefore |ε′| ≤ u + h.o.t. Note how this ε′-trick allows us
to shift error terms from numerator and denominator and vice versa.

20 CHAPTER 2. NUMERICAL LINEAR ALGEBRA

For the second unknown we get

x̃2 = (b2 	 `21 ⊗ x̃1)� `22 =
[b1 − `21x̃1(1 + ε1)] (1 + ε2)

`22
(1 + ε3),

where again |εi| ≤ u for i = 1, 2, 3. Defining ε′2 and ε′3 as above, we can interpret
all three error terms as perturbations in matrix coefficients

x̃2 =
b1 − `21x̃1(1 + ε1)

`22(1 + ε′2)(1 + ε′3)
.

The third component is slightly more involved. If we subtract from left to
right (recall that order matters), we have

x̃3 = ((b3 	 `31 ⊗ x̃1)	 `32 ⊗ x̃2)� `33

=
[(b3 − `31x̃1(1 + ε4)) (1 + ε5)− `32x̃2(1 + ε6)] (1 + ε7)

`33
(1 + ε8).

The errors ε4 and ε6 can already be interpreted as perturbations in `31 and `32,
respectively. Employing the ε′-trick we can move the terms 1 + ε7 and 1 + ε8
into the denominator yielding

x̃3 =
(b3 − `31x̃1(1 + ε4)) (1 + ε5)− `32x̃2(1 + ε6)

`33(1 + ε′7)(1 + ε′8)
.

It only remains to take care of ε5. We divide numerator and denominator by
1 + ε5 and switch to 1 + ε′5 twice:

x̃3 =
(b3 − `31x̃1(1 + ε4))− `32x̃2(1 + ε′5)(1 + ε6)

`33(1 + ε′5)(1 + ε′7)(1 + ε′8)
.

If we make the following definitions

˜̀
11 = `11(1 + ε′),

˜̀
21 = `21(1 + ε1),

˜̀
22 = `22(1 + ε′2)(1 + ε′3),

˜̀
31 = `31(1 + ε4),

˜̀
32 = `32(1 + ε′5)(1 + ε6),

˜̀
33 = `33(1 + ε′5)(1 + ε′7)(1 + ε′8),

what we have shown so far is that L̃x̃ = b, where L̃ is the lower triangular matrix
with entries ˜̀

ij . In other words, the computed solution x̃ solves a system with
exact right hand side b and perturbed matrix.

It remains to estimate the backward errors. Let δ`ij = (`ij − ˜̀
ij)/`ij denote

the relative componentwise errors of the perturbed matrix. From the definitions
of the ˜̀

ij above it follows directly that|δ`11||δ`21| |δ`22|
|δ`31| |δ`32| |δ`33|

 ≤ u
1

1 2
1 2 3

+ h.o.t.

2.1. TRIANGULAR SYSTEMS 21

Since the largest error occurs for `33, we have shown that

|δ`ij | ≤ |δ`33| ≤ 3u+ h.o.t,

which proves the theorem because n = 3.

Remark 2.1. Note that Theorem 2.3 assumes the entries of L and b to be
floating point numbers. It can be adapted to the more general case when L ∈
Kn×n and b ∈ Kn.

Remark 2.2. Theorem 2.3 gives us a componentwise bound on the backward
error. From such a bound we can derive a normwise one in the following way.
We can pick, for instance, the induced 1-norm and use equation (12) from the
appendix to get

‖L− L̃‖1 = max
1≤j≤n

n∑
i=1

|`ij − ˜̀
ij | . max

1≤j≤n

n∑
i=1

nu|`ij | = nu‖L‖1.

Here, the relation . signifies that we omitted the higher order terms from (2.2).
Thus we get the normwise bound

‖L̃− L‖1
‖L‖1

. nu. (2.3)

Note that the same bound holds for the induced ∞-norm. Now we can use the
fact that all matrix norms are equivalent to obtain a similar result for any other
matrix norm: Let ‖·‖ be an arbitrary matrix norm. Then there are two positive
numbers C1 and C2 such that

C1‖A‖ ≤ ‖A‖1 ≤ C2‖A‖

for all A ∈ Kn×n (compare eq. (9) in the appendix). Combining this with the
first estimate above yields

C1‖L− L̃‖ ≤ ‖L− L̃‖1 . nu‖L‖1 ≤ nuC2‖L‖

and therefore
‖L̃− L‖
‖L‖

. nu
C2

C1
.

2.1.2 Back Substitution

For an upper triangular matrix U ∈ Kn×n, uij = 0 for i > j, the associated
system of linear equations takes the form

u11x1 + · · · + · · · + u1nxn = b1
u22x2 + · · · + u2nxn = b2

. . .
...

...
...

unnxn = bn.

22 CHAPTER 2. NUMERICAL LINEAR ALGEBRA

There is a procedure for solving such systems which is completely analogous to
forward substitution. The only difference is that you now start with the last
equation and iterate through all equations from bottom to top. Accordingly, it
is called back substitution. Theorems 2.1, 2.2 and 2.3 have obvious analogues
for back substitution.

2.2 LU Factorization

Given a regular matrix A the aim of LU factorization is to find a lower triangular
matrix L and an upper triangular matrix U such that A = LU . Having found
such a decomposition, the system Ax = b can be solved in two simple steps: first
forward substitution for Ly = b and then backward substitution for Ux = y.

2.2.1 Gaussian Elimination

LU factorizations can be found using a well-known algorithm from linear algebra:
Gaussian elimination. To see how this works, let us go through an example.2

Example 2.1. Consider the following matrix

A =


2 1 1 0
4 3 3 1
8 7 9 5
6 7 9 8

 .
For a 4 × 4 matrix Gaussian elimination consists of three steps. In the k-th
step (k = 1, 2, 3) one uses row operations to introduce zeros in the k-th column
below the main diagonal. After the last step A has been transformed into an
upper triangular matrix.

First, we subtract two times the first row from the second, four times the
first row from the third, and three times the first row from the fourth. These
row operations can be realized by multiplying A from the left with the matrix

L1 =


1
−2 1
−4 1
−3 1

 .
Thus the resulting matrix is given by

L1A =


2 1 1 0

1 1 1
3 5 5
4 6 8

 .
2This example is borrowed from Numerical Linear Algebra by Trefethen and Bau.

2.2. LU FACTORIZATION 23

We proceed to the second column and subtract three times the second row
from the third and four times the second row from the fourth. Using matrix
multiplications we can write the result as

L2L1A =


1

1
−3 1
−4 1

L1A =


2 1 1 0

1 1 1
2 2
2 4

 .
Now, after subtracting the third column from the fourth we obtain an upper

triangular matrix U .

L3L2L1A =


1

1
1
−1 1

L2L1A =


2 1 1 0

1 1 1
2 2

2

 = U.

By inverting the matrices Lk we can write A as

A = (L3L2L1)−1U = L−11 L−12 L−13 U.

If the product L−11 L−12 L−13 happens to be lower triangular, then we have found
an LU factorization of A. The inverses are given by

L−11 =


1
2 1
4 1
3 1

 , L−12 =


1

1
3 1
4 1

 , L−13 =


1

1
1
1 1

 .
And their product is indeed lower triangular

L = L−11 L−12 L−13 =


1
2 1
4 3 1
3 4 1 1

 .
Summarizing, we have found the following factorization of A

2 1 1 0
4 3 3 1
8 7 9 5
6 7 9 8


A

=


1
2 1
4 3 1
3 4 1 1


L


2 1 1 0

1 1 1
2 2

2

 .
U

General Formulas

A few observations are in order concerning the previous example. First, the
inverses L−1k differ from Lk only in the signs of their subdiagonal entries. Second,
the product L−11 L−12 L−13 has a very simple structure as well: It collects the

24 CHAPTER 2. NUMERICAL LINEAR ALGEBRA

subdiagonal entries of all the L−1k into one identity matrix. For these two
reasons the product L−11 L−12 L−13 turns out to be lower triangular and an LU
factorization has been obtained. That this is not a coincidence is shown below.

Let A ∈ Kn×n be a regular matrix and denote by A(k) be the system matrix
at the beginning of step k of Gaussian elimination. That is, A(1) = A. Define
the numbers

`jk =
a
(k)
jk

a
(k)
kk

for j = k + 1, . . . , n. Then, the row operation matrix Lk is given by

Lk =



1
. . .

1
−`k+1,k 1

...
. . .

−`n,k 1


.

If we define the vector

`k = (0, . . . , 0, `k+1,k, . . . , `n,k)> ∈ Kn,

we can write the matrix as

Lk = I − `ke∗k, (2.4)

where ek is the k-th canonical basis vector. With these definitions at hand we
can prove in full generality the two observations made in the previous paragraph.

Lemma 2.1. The inverse of Lk is given by

L−1k = I + `ke
∗
k.

Proof. We have to show that Lk(I + `ke
∗
k) = (I + `ke

∗
k)Lk = I. Using (2.4) we

compute

(I − `ke∗k)(I + `ke
∗
k) = (I + `ke

∗
k)(I − `ke∗k) = I − `ke∗k`ke∗k.

But e∗k`k = 0, since the k-th entry of `k is zero, and therefore `ke
∗
k`ke

∗
k = 0.

Lemma 2.2. The product L−1k L−1k+1 equals I + `ke
∗
k + `k+1e

∗
k+1.

Proof. We use the previous lemma and calculate

L−1k L−1k+1 = (I + `ke
∗
k)(I + `k+1e

∗
k+1) = I + `ke

∗
k + `k+1e

∗
k+1 + `ke

∗
k`k+1e

∗
k+1.

As before, the last term vanishes, because e∗k`k+1 = 0.

2.2. LU FACTORIZATION 25

For the product of all n− 1 matrices we get with essentially the same argu-
mentation

L−11 · · ·L
−1
n−1 = I +

n−1∑
k=1

(`ke
∗
k) =


1
`21 1
...

. . .
. . .

`n1 · · · `n,n−1 1

 = L.

Finally, recall that U is just the result of successive row operations, which can
be written as

U = Ln−1 · · ·L1A.

Algorithm

Having found general formulas for L and U we can write down an algorithm
that, for a given matrix A, computes these factors. The algorithm’s title will
become clear in section 2.2.2.

Algorithm 2.2: Gaussian Elimination without Pivoting

1 L = eye(n);

2 U = A;

3 for k = 1:n-1

4 for j = k+1:n

5 L(j,k) = U(j,k)/U(k,k);

6 U(j,k:n) = U(j,k:n) - L(j,k)*U(k,k:n);

7 end

8 end

Note how the matrices Lk are never formed explicitly. The row operations
can be performed without them and the values `jk are written directly into
an identity matrix. (The Matlab command eye(n) creates an n × n identity
matrix.) Actually, not even explicit forming of L and U is necessary, as their
entries could be stored into A.

How many flops does Algorithm 2.2 require? There are three for-loops: two
obvious ones plus a hidden one in line 6 where two vectors are subtracted.
Therefore, we should expect a figure which is cubic in n. The following theorem
supports this claim. Instead of giving the exact number of operations required,
it only gives an asymptotic count as n→∞. This means that lower order terms
are discarded, since for large n only the highest order terms are significant.

Theorem 2.4. To leading order Gaussian elimination requires 2
3n

3 operations.

Proof. The vector U(j,k:n) has n− k + 1 entries. Thus, there are 2n− 2k + 3
arithmetic operations (n − k + 1 multiplications, n − k + 1 subtractions, and
one division) at each step of the inner loop. The total number of operations
required equals

n−1∑
k=1

n∑
j=k+1

(2n− 2k + 3) ≈
n−1∑
k=1

n∑
j=k+1

2(n− k).

26 CHAPTER 2. NUMERICAL LINEAR ALGEBRA

Since n−k does not depend on the inner summation index j and the inner sum
has n− (k + 1) + 1 = n− k summands, we have

n−1∑
k=1

n∑
j=k+1

2(n− k) =

n−1∑
k=1

2(n− k)2 = 2

n−1∑
k=1

n2 − 4

n−1∑
k=1

nk + 2

n−1∑
k=1

k2.

For computing the second and third sums we use the formulas

m∑
i=1

i =
1

2
m(m+ 1) and

m∑
i=1

i2 =
1

6
m(m+ 1)(2m+ 1),

respectively, and obtain

2n2(n− 1)− 2n(n− 1)n+
1

3
(n− 1)n(2n− 1).

Only keeping the highest order terms we end up with 2n2 − 2n2 + 2n3/3.

Remark 2.3. Recall that forward substitution, and for reasons of symmetry
also backward substitution, requires only n2 operations. Thus, the work in-
volved in solving Ax = b via LU factorization and subsequent forward and back
substitution is dominated by the factorization step.

Existence and Uniqueness

There are some basic questions about LU decomposition that we have not ad-
dressed so far: Can every regular matrix be decomposed into a product LU? If
not, which matrices can and which cannot? Assuming that an LU factorization
exists, is it unique?

Clearly, Algorithm 2.2 is not well-defined for every regular matrix A. If,
for instance, a11 = 0, then in line 5 a division by zero will occur. Or, more
generally, if for any k the diagonal entry U(k,k) turns out to be zero, then the
algorithm will break down. However, U(k,k) being zero means that the k × k
submatrix

(aij)
k
i,j=1 =

a11 · · · a1k
...

. . .
...

ak1 · · · akk


of the original matrix A is singular. Why? Because a sequence of row opera-
tions have produced a row consisting of all zeros. Conversely, if all submatrices
(aij)

k
i,j=1 are regular, then all U(k,k) will be nonzero. Hence the algorithm

does not fail, but instead produces two matrices L and U as desired. Thus we
have found a sufficient condition for existence of an LU factorization. In fact,
the condition can be shown to be necessary as well.

Theorem 2.5. A regular matrix A ∈ Kn×n can be written A = LU with
L ∈ Kn×n lower triangular and U ∈ Kn×n upper triangular, if and only if all
submatrices (aij)

k
i,j=1, k = 1, . . . , n, are regular. In this case there is a unique

normalized LU factorization, that is, `jj = 1 for j = 1, . . . , n.

2.2. LU FACTORIZATION 27

This theorem can also be interpreted in the following way: The matrices for
which Algorithm 2.2 succeeds are exactly those which possess an LU factoriza-
tion.

Below we give two types of matrices which by Thm. 2.5 always admit an LU
factorization.

Example 2.2. A matrix A ∈ Rn×n is positive definite, if (Ax)∗x > 0 for all
nonzero x ∈ Rn. Positive definite matrices are always regular. In addition,
every submatrix (aij)

k
i,j=1 of a positive definite matrix is again positive definite

and therefore regular.

Example 2.3. A matrix A ∈ Rn×n is strictly diagonally dominant, if

|ajj | >
∑
k 6=j

|ajk|

for all j = 1, . . . , n. Such matrices are again always regular. Every submatrix
(aij)

k
i,j=1 of a strictly diagonally dominant matrix is again strictly diagonally

dominant, hence regular.

Instability of Gaussian Elimination

Interestingly, nonexistence of an LU factorization is related to instability of
Gaussian elimination. This connection can be illustrated conveniently by means
of an example.

Example 2.4. Consider the regular matrix

A =

[
0 1
1 1

]
.

We have pointed out already that, since a11 = 0, Algorithm 2.2 cannot be used
to compute an LU factorization of A. Moreover, Theorem 2.5 tells us that this
is not the algorithm’s fault, because A does not have an LU factorization.

Now replace the zero by a very small number ε > 0. Then the resulting
matrix Aε does have an LU factorization. It is given by[

ε 1
1 1

]
Aε

=

[
1 0
ε−1 1

]
L

[
ε 1
0 1− ε−1

]
U

For the sake of simplicity, assume that ε−1 so large that 1 − ε−1 cannot be
represented exactly on our machine and that fl(1− ε−1) happens to be equal to
−ε−1. Consequently, running Algorithm 2.2 on this machine will produce the
factors

L̃ =

[
1 0
ε−1 1

]
, Ũ =

[
ε 1
0 −ε−1

]
.

28 CHAPTER 2. NUMERICAL LINEAR ALGEBRA

While the errors in L̃ and Ũ might seem acceptable, their product

L̃Ũ =

[
ε 1
1 0

]
is entirely different from Aε. In other words, the forward error is small, but the
backward error is not. Therefore a solution of L̃Ũx = b will in general differ
considerably from a solution of Aεx = b. Choosing b = (1, 0)>, for instance, we
get x = (0, 1)>, but the actual solution is A−1ε b ≈ (−1, 1)>. The underlying
problem is that the factorization of Aε was not backward stable.

Another way of looking at this lack of stability is in terms of condition
numbers. At the very beginning of Chapter 2 on page 17 we argued that a
matrix factorization approach A = BC is only reasonable if κ(A) ≈ κ(B)κ(C).
However, this rule of thumb can be severely violated by the LU factorization.
In particular it is violated for Aε: The matrices Aε, L, U have inverses

A−1ε =
1

ε− 1

(
1 −1
−1 ε

)
, L−1 =

[
1 0
−ε−1 1

]
, U−1 =

1

ε− 1

[
1− ε−1 −1

0 ε

]
,

from which we easily compute their condition numbers

κ∞(Aε) = ‖Aε‖∞‖A−1ε ‖∞ = 2
2

1− ε
≈ 4,

κ∞(L) = ‖L‖∞‖L−1‖∞ = (1 + ε−1)(1 + ε−1) ≈ ε−2,

κ∞(U) = ‖U‖∞‖U−1‖∞ = (ε−1 − 1)
ε−1

1− ε
≈ ε−2.

2.2.2 Pivoting

There is a surprisingly simple remedy to the situation encountered in Example
2.4. Let us try to pinpoint what exactly caused the large condition numbers.
Applying Gaussian elimination to Aε the first thing to do is to compute

`21 =
aε,21
aε,11

=
1

ε
.

This number turned out to be huge and directly affected ‖L‖∞. However,
this can be avoided by simply interchanging the rows of Aε first. Recall that,
when solving a linear system Ax = b, interchanging rows is fine as long as we
interchange the corresponding entries of b as well. So, if we apply the elimination
step to

PAε =

[
1

1

] [
ε 1
1 1

]
=

[
1 1
ε 1

]
,

instead of Aε, then `21 = ε and ‖L‖∞ ≈ 1. This is the basic idea of pivoting.

2.2. LU FACTORIZATION 29

In step k of Gaussian elimination, we use the (k, k) element of the system

matrix a
(k)
kk to introduce zeros in the k-th column

∗ ∗ ∗ ∗
a
(k)
kk ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

 −→

∗ ∗ ∗ ∗

a
(k)
kk ∗ ∗
0 ∗ ∗
0 ∗ ∗

 .
This element is usually called the pivot. We have seen above that this elimination
is impossible, if the pivot is zero, or problematic, if it is much smaller in absolute

value than one of the entries below. However, instead of a
(k)
kk we could equally

use any element a
(k)
ik , i ≥ k, to introduce zeros in column k. Ideally we would

like to choose that element a
(k)
ik which is largest in absolute value. In addition,

in order to keep the triangular structure we can interchange rows so that a
(k)
ik

moves into the main diagonal. For example,
∗ ∗ ∗ ∗

∗ ∗ ∗
a
(k)
ik ∗ ∗
∗ ∗ ∗

 −→

∗ ∗ ∗ ∗

a
(k)
ik ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

 −→

∗ ∗ ∗ ∗

a
(k)
ik ∗ ∗
0 ∗ ∗
0 ∗ ∗

 .
This strategy is called partial pivoting. Using matrix products we can write
the result of n − 1 steps of Gaussian elimination with partial pivoting in the
following way.

Ln−1Pn−1 · · ·L1P1A = U,

where the Pj are permutation matrices.
More generally, we could look not only at the k-th column for the largest el-

ement but at all entries a
(k)
ij , where both i ≥ k and j ≥ k, and then interchange

rows and columns in order to move it into the (k, k) position. This more expen-
sive strategy is called complete pivoting. In practice, however, partial pivoting
is often sufficient.

Example 2.5. We consider the same 4× 4 matrix as before

A =


2 1 1 0
4 3 3 1
8 7 9 5
6 7 9 8


and apply Gaussian elimination with partial pivoting. The largest element in
the first column is a31. Therefore we interchange rows three and one. This is
achieved by multiplying A from the left with an identity matrix that has rows
one and three interchanged

P1A =


1

1
1

1

A =


8 7 9 5
4 3 3 1
2 1 1 0
6 7 9 8

 .

30 CHAPTER 2. NUMERICAL LINEAR ALGEBRA

Next we eliminate

L1P1A =


1
− 1

2 1

− 1
4 1

− 3
4 1

P1A =


8 7 9 5
− 1

2 − 3
2 − 3

2

− 3
4 − 5

4 − 5
4

7
4

9
4

17
4

 .
Since 7

4 is greater than both − 3
4 and − 1

2 in absolute value, we interchange rows
two and four before eliminating

1
1
3
7 1
2
7 1


L2


1

1
1

1


P2

L1P1A =


8 7 9 5

7
4

9
4

17
4

− 2
7

4
7

− 6
7 − 2

7

 .

Finally, to obtain an upper triangular matrix we interchange the third and
fourth rows and then introduce a zero in position (4, 3).

1
1

1
− 1

3 1


L3


1

1
1

1


P3

L2P2L1P1A =


8 7 9 5

7
4

9
4

17
4

− 6
7 − 2

7
2
3

 = U.

In the end we have obtained L3P3L2P2L1P1A = U . Now, the natural question
is whether this gives us an LU factorization of A. In short the answer is no,
because the product L3P3L2P2L1P1 in general is far from lower triangular, and
so is its inverse. However, it is easy to check that

L3P3L2P2L1P1 = L′3L
′
2L
′
1P3P2P1,

where L′j is equal to Lj up to a permutation of subdiagonal entries. More
precisely, the L′j are given by

L′3 = L3, L′2 = P3L2P
−1
3 , L′1 = P3P2L1P

−1
2 P−13 .

For example,

L′2 = P3L2P
−1
3 =


1

1
1

1




1
1
3
7 1
2
7 1




1
1

1
1



=


1

1
2
7 1
3
7 1

 .

2.2. LU FACTORIZATION 31

Note that the product of lower triangular matrices L′3L
′
2L
′
1 is again lower tri-

angular and so is their inverse. Similarly the product of permutation matri-
ces is again a permutation matrix. We therefore define L := (L′3L

′
2L
′
1)−1 and

P := P3P2P1 and return to the factorization of A

U = L3P3L2P2L1P1A = L′3L
′
2L
′
1P3P2P1A = L−1PA,

or equivalently
1

1
1

1


P


2 1 1 0
4 3 3 1
8 7 9 5
6 7 9 8


A

=


1
3
4 1
1
2 − 2

7 1
1
4 − 3

7
1
3 1


L


8 7 9 5

7
4

9
4

17
4

− 6
7 − 2

7
2
3


U

Thus, we have found an LU factorization not of A but of PA, which is a row-
permuted version of A. Besides, note how all subdiagonal entries of L are ≤ 1
in absolute value because of the pivoting strategy.

General Formulas and Algorithm

Let A be a regular n×n matrix. Then, after n−1 steps of Gaussian elimination
with partial pivoting we can write the resulting upper triangular matrix U in
the following way

U = Ln−1Pn−1 · · ·L1P1A.

If we define for every k = 1, . . . , n− 1 the modified row operation matrices as

L′k = Pn−1 · · ·Pk+1LkP
−1
k+1 · · ·P

−1
n−1,

we can rewrite the above expression for U

U = L′n−1 · · ·L′1︸ ︷︷ ︸
=L−1

Pn−1 · · ·P1︸ ︷︷ ︸
=P

A.

Since the L′k have the same structure as the Lk, they are just as easily multiplied
and inverted.

We are now in a position to write down the algorithm. For the sake of
readability we use pseudocode instead of correct Matlab syntax.

Algorithm 2.3: Gaussian Elimination with Partial Pivoting

1 L=I;

2 U=A;

3 P=I;

4 for k = 1:n-1

5 select i >= k to maximize |U(i,k)|

6 interchange U(k,k:n) and U(i,k:n)

7 interchange L(k,1:k-1) and L(i,1:k-1)

32 CHAPTER 2. NUMERICAL LINEAR ALGEBRA

8 interchange P(k,:) and P(i,:)

9 for j = k+1:n

10 L(j,k) = U(j,k)/U(k,k);

11 U(j,k:n) = U(j,k:n) - L(j,k)*U(k,k:n);

12 end

13 end

A few remarks are in order regarding actual implementation of this algorithm.
First, there is no need to represent P as a matrix. The same can be achieved
more efficiently using a permutation vector, that is, a vector which is initialized
as p = (1, 2, . . . , n) and whose entries are subsequently interchanged according
to P . In addition, as was the case for Algorithm 2.2, the matrices L,U are
actually superfluous, since their entries can be stored directly into A.

To leading order Algorithm 2.3 requires the same amount of floating point
operations as Algorithm 2.2, that is, 2n3/3. In order to determine the pivot
in step k, one has to look at n − k entries. Thus, in total the partial pivoting
strategy leads to additional cost of

∑n−1
k=1(n− k) operations, which is quadratic

in n and therefore negligible compared to the already cubic cost. With complete
pivoting, however, in every step (n−k)2 entries must be examined, thus leading
to an additional cost which is cubic in n and not negligible anymore.

Finally, concerning existence of a factorization PA = LU we have the fol-
lowing result.

Theorem 2.6. For every regular matrix A ∈ Kn×n Gaussian elimination with
partial pivoting produces a normalized LU factorization of PA, where P ∈ Kn×n
is a permutation matrix.

Stability

Stability analysis of Gaussian elimination is a complicated matter, which is why
we will not go into details here. The gist is, however, that Gaussian elimination
with partial pivoting is unstable in theory but perfectly stable in practice. Put
differently, there are certain matrices for which it behaves in an unstable way,
but these matrices are extremely rare in practice.

Theorem 2.7. Let A ∈ Kn×n be a regular matrix. Suppose A has normalized
LU factorization A = LU , and that L̃, Ũ are the factors computed by Algorithm
2.2 on a machine satisfying (1.2) and (1.3). Then there is a matrix ∆A ∈ Kn×n
such that

L̃Ũ = A+ ∆A and ‖∆A‖ ≤ C‖L‖‖U‖u

for a moderate constant C > 0.

This theorem is to be interpreted in the following way. If ‖L‖‖U‖ ≈ ‖A‖,
then ‖∆A‖/‖A‖ . Cu. In this case Gaussian elimination without pivoting is
backward stable. Otherwise it is not. However, in Example 2.4 we have seen
that ‖L‖ and ‖U‖ can become arbitrarily large. Therefore, Algorithm 2.2 is not
backward stable.

2.3. CHOLESKY FACTORIZATION 33

For Gaussian elimination with partial pivoting there is a similar theorem
stating that L̃Ũ = P̃A+ ∆A, where P̃ is the permutation matrix produced by
the algorithm. In addition, we know that ‖L‖ is small because of the pivoting
strategy. In this case the estimate on ‖∆A‖ implies that

‖∆A‖
‖A‖

≤ C‖L‖‖U‖u
‖A‖

≈ Cu‖U‖
‖A‖

.

Thus, for Gaussian elimination with partial pivoting to be backward stable the
ratio ‖U‖/‖A‖ must remain moderate. For virtually all matrices A encountered
in practice this is the case and therefore Algorithm 2.3 can be called backward
stable in practice. Yet there are matrices where the ratio does become very large
(see below). This is the reason why Gaussian elimination with partial pivoting
is not backward stable in theory.

Example 2.6. Consider the following matrix

A =


1 1
−1 1 1
−1 −1 1 1
−1 −1 −1 1

 .
Gaussian elimination with (or without) partial pivoting leads to the factors

L =


1
−1 1
−1 −1 1
−1 −1 −1 1

 , U =


1 1

1 2
1 4

8

 .
Partial pivoting leads to the same factors as no pivoting at all, since no row
interchanges will occur for this particular A. Choosing the∞-norm, for instance,
the ratio mentioned in the previous paragraph equals

‖U‖∞
‖A‖∞

=
8

4
= 2.

In general, however, for an n×n matrix with the same pattern as A the largest
element of U will equal 2n−1. Therefore the ratio equals 2n−1/n which for
growing n quickly becomes a huge number.

2.3 Cholesky Factorization

Self-adjoint positive definite matrices arise naturally in many physical systems.
They have factorizations A = R∗R, where R is upper triangular. In contrast to
LU factorization only one matrix must be constructed. Accordingly, Cholesky
factorizations can be computed twice as fast. The standard algorithm for doing
so can be viewed as a symmetric variant of Gaussian elimination that operates
on rows and columns at the same time.

34 CHAPTER 2. NUMERICAL LINEAR ALGEBRA

2.3.1 SPD Matrices

A matrix A ∈ Kn×n is an SPD matrix, if it is self-adjoint and positive definite.
That is, A∗ = A and x∗Ax > 0 for all nonzero x ∈ Kn. Note that the diagonal
entries of such a matrix are positive real numbers, because ajj = e∗jAej > 0.

Lemma 2.3. Let A ∈ Kn×n be an SPD matrix and let B ∈ Kn×m, n ≥ m,
have full rank. Then B∗AB is an SPD matrix.

Proof. The matrix B∗AB is self-adjoint, because

(B∗AB)∗ = B∗A∗B∗∗ = B∗AB.

Let x ∈ Km be a nonzero vector. Then Bx is again nonzero, since B is of full
rank. Therefore

x∗B∗ABx = (Bx)∗ABx > 0.

An important consequence of Lemma 2.3 is that every principal submatrix
of an SPD matrix is again SPD. An m ×m submatrix of A is called principal
submatrix, if it is obtained from A by deleting any n−m columns and the same
n −m rows. Principal submatrices can be written as (aij)i,j∈J where J is any
subset of {1, . . . , n}. In matrix notation principal matrices can be written as
follows. Denote by IJ the matrix that results from the n-dimensional identity
matrix by deleting all those columns whose indices are not in the set J . Then
(aij)i,j∈J = I∗JAIJ . By the previous lemma this matrix is SPD, if A is.

2.3.2 Symmetric Gaussian Elimination

Let A ∈ Kn×n be an SPD matrix. Using block notation we can write it as[
a w∗

w K

]
,

where a > 0, w ∈ Kn−1 and K ∈ Kn−1×n−1. One step of Gaussian elimination
gives

L1A =

[
1 0

−w/a I

] [
a w∗

w K

]
=

[
a w∗

0 K − ww∗/a

]
.

Next, instead of proceeding to the second column (as we would, were we comput-
ing an LU factorization), we apply a symmetric elimination step on the columns.
That is, using column operations we eliminate the w∗ in the first row of L1A.
Due to the self-adjointness of A, the matrix that performs this step is just L∗1,
which has to be multiplied from the right. Therefore, we get

L1AL
∗
1 =

[
a w∗

0 K − ww∗/a

] [
1 −w∗/a
0 I

]
=

[
a 0
0 K − ww∗/a

]
.

2.3. CHOLESKY FACTORIZATION 35

Inverting the two matrices L1 and L∗1 we have the following factorization of A

A =

[
1 0
w/a I

]
L−1

1

[
a 0
0 K − ww∗/a

]
Ã1

[
1 w∗/a
0 I

]
L−∗

1

.

This is almost one step of Cholesky factorization. For reasons that will become
clear soon, we would like the (1, 1) entry of Ã1 to equal 1. Note that Ã1 can be
decomposed in the following way

Ã1 =

[√
a 0

0 I

] [
1 0
0 K − ww∗/a

] [√
a 0

0 I

]
.

Recall that a = a11 > 0 and therefore
√
a is again a real number, in particular

a positive one. Plugging this product back into the previous factorization of A
we finally arrive at

A =

[√
a 0

w/
√
a I

]
R∗

1

[
1 0
0 K − ww∗/a

]
A1

[√
a w∗/

√
a

0 I

]
R1

. (2.5)

If the (1, 1) entry of K −ww∗/a is a positive real number, we can eliminate
the second row and column of A1 by applying the above procedure toK−ww∗/a.
This would give us a factorization A1 = R∗2A2R2 and in combination with (2.5)
we would get A = R∗1R

∗
2A2R2R1. Continuing this process, after n steps we

would eventually end up with

A = R∗1 · · ·R∗n︸ ︷︷ ︸
R∗

I Rn · · ·R1︸ ︷︷ ︸
R

= R∗R,

where rjj > 0 for j = 1, . . . , n. Such a factorization is called Cholesky factor-
ization.

So, is the (1, 1) element of K −ww∗/a positive? The answer is yes, because
it is a diagonal entry of A1 = R−∗1 AR−11 , which by Lemma 2.3 is an SPD matrix.
With the same is reasoning it follows that for every k the (k, k) entry of Ak−1
must be a positive number. The process we have described so far cannot fail
and in fact produces a unique matrix R for every given SPD matrix A. Thus,
we have the following theorem.

Theorem 2.8. Every SPD matrix A ∈ Kn×n has a unique Cholesky factor-
ization. That is, there is exactly one upper triangular matrix R ∈ Kn×n such
that

A = R∗R

and rjj > 0 for j = 1, . . . , n.

Example 2.7. Consider the SPD matrix

A =

4 2 0
2 3 3
0 3 9

 .

36 CHAPTER 2. NUMERICAL LINEAR ALGEBRA

First, we subtract 1
2 times the first row from the second and obtain

L1A =

 1
− 1

2 1
1

4 2 0
2 3 3
0 3 9

 =

4 2 0
0 2 3
0 3 9

 .
Next we apply the same operations to the columns of L1A, that is, we subtract
1
2 times the first column from the second

L1AL
∗
1 =

4 2 0
0 2 3
0 3 9

1 − 1
2
1

1

 =

4
2 3
3 9

 .
Now we invert the matrices L1 and L∗1 and write A as a product of three matrices

A =

1
1
2 1

1

4
2 3
3 9

1 1
2
1

1


=

2
1 1

1


R∗

1

1
2 3
3 9


A1

2 1
1

1


R1

.

We continue with the matrix A1 and subtract 3/2 times the second row from
the third row, as well as 3/2 times the second column from the column. Using
matrix notation this yields

L2A1L
∗
2 =

1
1
− 3

2 1

1
2 3
3 9

1
1 − 3

2
1

 =

1
2
0 9

 .
But now A1 can be expressed as

A1 =

1
1
3
2 1

1
2

9

1
1 3

2
1


=

1 √
2

3√
2

1


R∗

2

1
1

9
2


A2

1 √
2 3√

2

1


R2

.

In order to finish the Cholesky factorization we only have to decompose

A2 =

1
1

3√
2


R∗

3

1
1

3√
2


R3

.

2.3. CHOLESKY FACTORIZATION 37

The factor R is now the product of the matrices R1, R2 and R3

R =

1
1

3√
2

1 √
2 3√

2

1

2 1
1

1

 =

2 1√
2 3√

2
3√
2

 .
2.3.3 Algorithm

Let A ∈ Kn×n be an SPD matrix. After k steps of symmetric Gaussian elimi-
nation, we have reduced A to

Ak =

[
I

S

]
,

where I is a k × k identity matrix and S is an (n − k) × (n − k) SPD matrix
which can be written as

S =

[
s w∗

w S̃

]
,

with s > 0. The (k + 1)-th step now consists of two parts. One is computation
of Rk+1 and the other one is updating Ak into Ak+1. The general formulas are

Rk+1 =

I √
s w∗/

√
s

I

 ,
Ak+1 =

[
I

S̃ − ww∗/
√
s

]
.

Note how the one nontrivial row of Rk+1 is just the first row of S divided by√
s.

We can now write down the algorithm in Matlab syntax. It takes as input
an n× n SPD matrix A and returns the upper triangular matrix R.

Algorithm 2.4: Cholesky Factorization

1 R = zeros(n,n);

2 for k=1:n

3 for j from k+1:n

4 A(j,j:n) = A(j,j:n) - A(k,j)/A(k,k) * A(k,j:n);

5 end

6 R(k:k:n) = A(k,k:n)/sqrt(A(k,k));

7 end

As usual, the new matrix R need not be formed explicitly. Its entries can be
written directly into the input array A.

Theorem 2.9. To leading order Algorithm 2.4 requires n3/3 operations.

38 CHAPTER 2. NUMERICAL LINEAR ALGEBRA

Proof. The work for the whole algorithm is dominated by the inner for-loop,
which requires

n∑
j=k+1

(2(n− j + 1) + 1) ≈ 2

n∑
j=k+1

(n− j).

In total we get

2

n∑
k=1

n∑
j=k+1

(n− j) = 2

n∑
k=1

n−k∑
j=1

(n− (j + k))

= 2

n∑
k=1

[
(n− k)(n− k + 1)− 1

2
(n− k)(n− k + 1)

]

≈
n∑
k=1

(n2 − 2nk + k2)

= n3 − 2n
n(n+ 1)

2
+

1

6
n(n+ 1)(2n+ 1)

≈ n3

3
.

When computing Cholesky-factorizations there is no need for pivoting, be-
cause Algorithm 2.4 is always stable. The problems encountered for the LU
factorization, where the factors U might have very large norms compared to A,
cannot occur here. In fact, one can show that

‖R‖2 = ‖R∗‖2 = ‖A‖
1
2
2 .

Theorem 2.10. Algorithm 2.4 is backward stable. More precisely, for every
SPD matrix A ∈ Kn×n Algorithm 2.4 implemented on a machine satisfying
(1.2) and (1.3) produces an upper triangular matrix R̃ such that

R̃∗R̃ = A+ ∆A,

where the error matrix ∆A ∈ Kn×n satisfies

‖∆A‖
‖A‖

≤ Cu, for some C > 0.

2.4 QR Factorization

In this section we do not restrict our attention to square matrices, but instead
consider A ∈ Km×n, m ≥ n. For such matrices there are two different types of
QR factorizations, a reduced and a full one. The reduced QR factorization

A = Q̂R̂

2.4. QR FACTORIZATION 39

expresses A as a product of an m× n matrix Q̂ with orthonormal columns and
an upper triangular matrix R̂ ∈ Kn×n. For the full QR factorization

A = QR

the matrix Q ∈ Km×m is orthogonal/unitary and R ∈ Km×n is generalized
upper triangular, that is, it is not necessarily square but still rij = 0 for i > j.
The relation between these two factorization can be visualized as follows

A =
[
Q̂ · · ·

]
Q

[
R̂
0

]
R

.

The matrix Q contains an additional m − n orthonormal vectors so that its
columns form an orthonormal basis of Km. However, these additional columns
do not contribute to the product QR since they are multiplied with the block
of zeros at the bottom of R.

2.4.1 Gram-Schmidt

The QR factorization can be understood in terms of a well-known algorithm
from linear algebra: the Gram-Schmidt process. See the section Orthogonality
in the Appendix.

First, let us write out a reduced QR factorization using column vectors a1 · · · an


A

=

 q1 · · · qn


Q̂

r11 · · · r1n
. . .

...
rnn

 .
R̂

Writing out separate equations for every column of A yields the following system

a1 = r11q1

a2 = r12q1 + r22q2

...

an = r1nq1 + r2nq2 + · · ·+ rnnqn.

(2.6)

Since every column of A is expressed as a linear combination of certain columns
of Q̂, we have that

ak ∈ span {q1, . . . , qk}, k = 1, . . . , n.

Assume for the moment that A has full rank. This implies that also R̂ has
full rank and therefore all diagonal entries rkk are nonzero. In particular the
top left k × k submatrix of R̂ is invertible so that we can express qk as linear
combinations of the first k columns of A. Thus,

qk ∈ span {a1, . . . , ak}, k = 1, . . . , n,

40 CHAPTER 2. NUMERICAL LINEAR ALGEBRA

and therefore the columns of A and Q̂ span the same spaces

span {a1, . . . , ak} = span {q1, . . . , qk}, k = 1, . . . , n. (2.7)

We can now reformulate the problem of finding a reduced QR factorization
for a given full rank matrix A ∈ Km×n: Given n linearly dependent vectors
a1, . . . , an ∈ Km, find n orthonormal vectors q1, . . . , qn ∈ Km satisfying (2.7).
But this is exactly what the Gram-Schmidt process does! Thus, we already
know an algorithm to compute the qk.

What about the rij? Let us first express the qk in (2.6)

q1 =
a1
r11

q2 =
1

r22
(a2 − r12q1)

...

qn =
1

rnn
(an − r1nq1 − · · · − rn−1,nqn−1) .

Now we only have to compare with the Gram-Schmidt process, see eq. (8) in
the Appendix, to find that

rij =

{
q∗i aj , i < j

‖aj − r1jq1 − · · · − rj−1,jqj−1‖2 , i = j.

Having found general formulas for both qk and rij we can write down an algo-
rithm which for a given full rank matrix A ∈ Rm×n computes a reduced QR
factorization.

Algorithm 2.5: Classical Gram-Schmidt

1 R = zeros(n);

2 Q = zeros(m,n);

3 V = A;

4 for j=1:n

5 for i = 1:j-1

6 R(i,j) = Q(:,i)’ * A(:,j);

7 V(:,j) = V(:,j) - R(i,j) * Q(:,i);

8 end

9 R(j,j) = norm(V(:,j));

10 Q(:,j) = V(:,j)/R(j,j);

11 end

Theorem 2.11. Every A ∈ Km×n, m ≥ n, has both a reduced and a full QR
factorization.

2.4. QR FACTORIZATION 41

Proof. If A has full rank, then Algorithm 2.5 cannot break down, because rjj 6=
0, thus producing a reduced QR factorization. Extend Q̂ to an orthonormal
basis and append m− n zero rows to R̂ to obtain a full QR factorization.

If A does not have full rank, then rjj = 0 for some j. In this case set qj
equal to any normalized vector orthogonal to all previously computed qi and
proceed to j + 1.

Theorem 2.12. Every A ∈ Km×n, m ≥ n, with full rank has a unique QR
factorization with rjj > 0 for all j = 1, . . . , n.

Proof. Since A has full rank, the algorithm does not fail. However, we could set
rjj = −‖ · · · ‖ and obtain a different set of orthonormal vectors. Upon fixing
these signs, the factorization becomes unique.

Theorem 2.13. To leading order Algorithm 2.5 requires 2mn2 flops.

Proof. As usual the work is dominated by the inner for loop. There are 2m
multiplications, m− 1 additions and m subtractions. We compute

n∑
j=1

j−1∑
i=1

(4m− 1) ≈ 4m

n∑
j=1

j−1∑
i=1

1 = 4m

n∑
j=1

(j − 1) = 4m

n−1∑
j=1

j = 4m
n(n− 1)

2
.

Unfortunately, the classical Gram-Schmidt process is well-known for its nu-
merical instability. We illustrate its behaviour using a simple example.

Example 2.8. Let ε > 0 be a small number and consider the matrix
1 1 1
ε

ε
ε

 .
Below we will go through the steps of the classical Gram-Schmidt process using
the approximation 1 + ε2 ≈ 1.

First, since r11 = ‖a1‖2 =
√

1 + ε2 ≈ 1 we have q1 = a1.
Next, we compute r12 = q∗1a2 = 1 and a2−r12q1 = (0,−ε, ε, 0)>. This vector

has length r22 =
√

2ε and therefore

q2 =
1

r22


0
−ε
ε
0

 =
1√
2


0
−1

1
0

 .
Finally, we have r13 = q∗1a3 = 1 and r23 = q∗2a3 = 0. The vector a3−r13q1−

r23q2 = (0,−ε, 0, ε) has again norm r33 =
√

2ε. This gives

q3 =
1

r33


0
−ε

0
ε

 =
1√
2


0
−1

0
1

 .

42 CHAPTER 2. NUMERICAL LINEAR ALGEBRA

Now, the three vectors q1, q2 and q3 should be orthonormal. While their
lengths are fine (‖q1‖2 ≈ 1 and ‖q2‖2 = ‖q3‖2 = 1), the two vectors q2 and q3
are not even close to orthogonal: q∗2q3 = 1/2.

2.4.2 Modified Gram-Schmidt

There is a slight modification to Algorithm 2.5 that improves matters. The
inner for loop of the classical Gram-Schmidt process computes the following
expression

aj − (q∗1aj)q1 − · · · − (q∗j−1aj)qj−1 =
(
I −

j−1∑
i=1

qiq
∗
i

)
aj ,

which is the projection of aj onto the orthogonal complement of span{q1, . . . , qk}.
The basic idea is that this sum of projections can be written as a product.

Lemma 2.4. Let q1, . . . , qk ∈ Km be a set of orthonormal vectors. Then

I −
k∑
i=1

qiq
∗
i = (I − qkq∗k) · · · (I − q1q∗1) .

Proof. This statement can be proven by induction. The case k = 2 should
clarify the general idea:

(I − q2q∗2) (I − q1q∗1) = I − q1q∗1 − q2q∗2 − q2q∗2q1q∗1 = I − q1q∗1 − q2q∗2 ,

because q∗1q2 = 0.

Implementing this change is surprisingly simple. In Algorithm 2.5 we only
have to replace the A in line 6 with a V:

R(i,j) = Q(:,i)’ * V(:,j);

In contrast to the classical Gram-Schmidt, the auxiliary variable V is now up-
dated in every iteration of the inner for-loop. In order to show how this change
can lead to smaller errors, we revisit the previous example.

Example 2.9. For q1 and q2 we get the same results as before. Therefore
q1 = a1 and

q2 =
1√
2


0
−1

1
0

 .
Next, we have r13 = q∗1v

(0)
3 = q∗1a3 = 1. The first update of the auxiliary

variable is v
(1)
3 = v

(0)
3 − r13q1 = (0,−ε, 0, ε)>. Now, r23 = q∗2v

(1)
3 = ε/

√
2 and

the second and last update of v3 is given by

v
(2)
3 = v

(1)
3 − r23q2 = ε(0,−1/2,−1/2, 1)>.

2.4. QR FACTORIZATION 43

This vector has length r33 = ε
√

6/2 and therefore

q3 =
v
(2)
3

r33
=

1√
6


0
−1
−1

2

 .
Now the inner products q∗i qj , i 6= j, stay below ε/

√
2 in absolute value.

However, while the modified Gram-Schmidt process in general performs bet-
ter than the classical one, it also suffers from a significant so-called numerical
loss of orthogonality, especially when A is close to rank-deficient. The following
example3 illustrates this behaviour and applies to both the classical and the
modified Gram-Schmidt, since for 2× 2 matrices they are equivalent.

Example 2.10. Consider the matrix

A =

[
0.70000 0.70711
0.70001 0.70711

]
.

On a machine with a precision of 5 digits r11 is computed to be r11 = 0.98996.
The first column of Q equals

q1 = a1/r11 =

[
0.70710
0.70711

]
.

Next, r12 = 1.0000 and finally, by means of cancellation, the rounding errors
become prevalent

a2 − r12q1 =

[
0.00001
0.00000

]
, q2 =

[
1.0000
0.0000

]
.

Clearly, q1 and q2 are far from orthogonal.

2.4.3 Householder’s Method

Dissatisfied with our previous two algorithms for computing QR factorizations,
we consider a third one: the Householder method. Its basic idea is to transform
A into generalized upper triangular form R via multiplication from the left with
orthogonal/unitary matrices

Qn · · ·Q1︸ ︷︷ ︸
Q∗

A = R.

As a product of orthogonal/unitary matrices Q∗ is itself orthogonal/unitary and
so is its inverse

Q = Q∗∗ = Q∗1 · · ·Q∗n,
3This example is taken from Numerical Linear Algebra by Trefethen and Bau.

44 CHAPTER 2. NUMERICAL LINEAR ALGEBRA

and therefore A = QR is a full QR factorization.
The matrix Qk should be such that it introduces zeros in the k-th column

below the main diagonal while leaving previously introduced zeros untouched,
for example

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗


A

Q1−→


∗ ∗ ∗
∗ ∗
∗ ∗
∗ ∗


Q1A

Q2−→


∗ ∗ ∗
∗ ∗
∗
∗


Q2Q1A

Q3−→


∗ ∗ ∗
∗ ∗
∗


Q3Q2Q1A=R

.

If Qk is to leave the first k−1 columns unchanged while being an orthogonal/u-
nitary matrix, it should have the following block structure

Qk =

[
I

Hk

]
, (2.8)

where I is the (k − 1)-dimensional identity matrix and Hk is another (m− k +
1)× (m− k+ 1) orthogonal/unitary matrix. On the other hand, the matrix we
are operating on in the k-th step should look like this

Qk−1 · · ·Q1A =

[
U B

C

]
,

where U is a (k−1)×(k−1) upper triangular matrix and B,C have no particular
structure. Therefore the result of step k reads as follows[

I
Hk

]
Qk

[
U B

C

]
Qk−1···Q1A

=

[
U B

HkC

]
Qk···Q1A

.

The matrix Hk should introduce zeros in the first column c1 of C, more
precisely it should turn the first column of C into a multiple of e1 = (1, 0, . . . , 0)>

Hkc1 = se1,

where s ∈ K. However, Hk is orthogonal/unitary and therefore norm-preserving,
which implies that

‖c1‖2 = ‖Hkc1‖2 = ‖se1‖2 = |s|.

Therefore, the scalar s is not arbitrary, but must equal σ‖c1‖2, where |σ| = 1.
If K = R, then there are two possibilities for s. If, however, K = C, then there
is a whole circle of possibilities.

Supposing that we have fixed a value for σ, there is more than one or-
thogonal/unitary transformation Hk that maps the vector c1 to σ‖c1‖2e1. The
Householder method selects Hk as the matrix that reflects across the hyperplane
orthogonal to the vector

v = c1 − σ‖c1‖2e1. (2.9)

2.4. QR FACTORIZATION 45

c1

‖c1‖2e1

c1

−‖c1‖2e1

E+E−

v

;

Figure 2.1: 2D sketch of the Householder reflection.

See Fig. 2.1 for a two-dimensional sketch of two such reflections.
The question of how to find this reflection remains. First, we could try to

construct the matrix that does not reflect accross E+, say, but projects onto
it. Recall (or see the section Projections in the appendix) that the orthogo-
nal projection that projects onto the hyperplane orthogonal to v, i.e. onto the
orthogonal complement of span {v}, is given by

I − v

‖v‖2
v∗

‖v‖2
= I − vv∗

v∗v
.

Now, if we want to reflect accross E+, we just have to go twice as far into the
same direction. Therefore,

Hk = I − 2
vv∗

v∗v
(2.10)

is the matrix we have been looking for. It is called Householder reflection.
The final question we need to answer is how to choose the σ in (2.9). The

guiding principle for this decision is numerical stability. More specifically, in
order to avoid cancellation in (2.9) we should choose σ such that v is as large
as possible in norm. Therefore

σ = − c11
|c11|

. (2.11)

If c11 = 0, we can choose σ arbitrarily, e.g. equal to one. In this case cancellation
cannot occur.

Formulas (2.8), (2.9), (2.10) and (2.11) completely define the orthogonal
transformation Qk which we want to apply in step k of the Householder method.
Thus we are in a position to write down the algorithm. The following Matlab
code takes as input an m× n matrix A where m ≥ n.

46 CHAPTER 2. NUMERICAL LINEAR ALGEBRA

Algorithm 2.6: Householder Method

1 V = zeros(m,n);

2 for k = 1:n

3 V(1:m-k+1,k) = A(k:m,k);

4 if A(k,k) ~= 0

5 sig = sign(A(k,k));

6 else

7 sig = 1;

8 end

9 V(1,k) = V(1,k) + sig*norm(A(k:m,k));

10 V(1:m-k+1,k) = V(1:m-k+1,k)/norm(V(:,k));

11 A(k:m,k:n) = A(k:m,k:n) - ...

12 ... 2*V(1:m-k+1,k)*(V(1:m-k+1,k)’*A(k:m,k:n));

13 end

14 R=A;

Note that none of the matrices Qk or Q have been constructed explicitly,
but only the vectors v. It takes additional work to construct Q, but often this
is not necessary. First, recall that

Q∗ = Qn · · ·Q1 and Q = Q∗1 · · ·Q∗n = Q1 · · ·Qn, (2.12)

the last equality being due to the fact that the Householder reflections Hk are
self-adjoint and therefore the Qk are as well. Now, if we needed to compute the
matrix-vector product Q∗b for some b ∈ Km we could do so without forming Q∗

with the following lines of code.

Algorithm 2.7: Calculation of Q∗b

1 for k = 1:n

2 b(k:m) = b(k:m) - ...

3 ... 2*V(1:m-k+1,k)*(V(1:m-k+1,k)’*b(k:m));

4 end

Or, if we wanted to compute Qx for some x ∈ Km:

Algorithm 2.8: Calculation of Qx

1 for k = n:-1:1

2 x(k:m) = x(k:m) - ...

3 ... 2*V(1:m-k+1,k)*(V(1:m-k+1,k)’*x(k:m));

4 end

Note how, because of (2.12), the index k increases in the first snippet of code
but decreases in the second one.

Theorem 2.14. To leading order Algorithm 2.6 requires 2mn2− 2
3n

3 operations.

Proof. The proof is very similar to previous ones about operation counting. We
therefore omit it.

2.4. QR FACTORIZATION 47

Theorem 2.15. The Householder method is backward stable. More precisely,
for every A ∈ Km×n with m ≥ n, Algorithm 2.6 implemented on a machine
satisfying (1.2) and (1.3) computes factors Q̃ and R̃ satisfying

Q̃R̃ = A+ ∆A,

where the error matrix ∆A is such that

‖∆A‖
‖A‖

≤ Cu for some C > 0.

As stated the theorem above is sloppy. Recall that Algorithm 2.6 does not
compute Q̃. Instead it explicitly avoids computation of the orthogonal matrix as
this would mean additional work. How should the theorem be interpreted then?
The algorithm does compute vectors ṽ that define the Householder reflections.
Therefore, Q̃ is the exactly unitary matrix satisfying Q̃ = Q̃1 · · · Q̃n and the Q̃k
are the matrices defined mathematically by equations (2.8) through (2.11).

2.4.4 Comparison of Algorithms for Solving Ax = b

Suppose A is a regular matrix. In Chapter 2 we have so far encountered three
matrix factorizations. Combined with forward and/or back substitution each of
them gives rise to a different method for solving a system of linear equations
Ax = b.

LU factorization

1. Factorize PA = LU

2. Solve Ly = Pb for y via forward substitution

3. Solve Ux = y for x via back substitution

Cholesky factorization

1. Factorize A = R∗R

2. Solve R∗y = b for y via forward substitution

3. Solve Rx = y for x via back substitution

QR factorization

1. Factorize A = QR

2. Compute the vector y = Q∗b

3. Solve Rx = y for x via back substitution

Cholesky factorization can only be used if A is an SPD matrix. In this case,
however, it is the method of choice. It is always backward stable and is the
fastest of three methods, only requiring n3/3 operations. If A is not SPD, then
LU factorization is the standard method. It is backward stable in practice and
requires 2n3/3 operations.

48 CHAPTER 2. NUMERICAL LINEAR ALGEBRA

If A is ill-conditioned, then QR factorization is a good choice. Recall Exam-
ple 1.10 where we have shown that the condition number κ2 is invariant under
orthogonal/unitary transformations. Therefore κ2(A) = κ2(QR) = κ2(R). This
means that the QR approach does not lead to additional error amplification.
(Also recall our brief discussion about condition numbers at the beginning of
Chapter 2 on page 17.) The Householder method is a backward stable algorithm
for computing QR factorizations. For square matrices it requires 4n3/3 opera-
tions and is therefore twice as costly as LU factorization. In the next section
we will encounter another application for the QR factorization.

2.5 Linear Least Squares Problems

Linear least squares problems are a fundamental class of problems with a wide
range of applications throughout the mathematical sciences. In finite dimensions
it can be stated as follows. Let m ≥ n. For given matrix A ∈ Km×n and right
hand side b ∈ Km find a vector x ∈ Kn that minimizes ‖Ax − b‖2. Note that
minimizing ‖Ax − b‖2 is equivalent to minimizing ‖Ax − b‖22. Hence the name
least squares.

For m > n the overdetermined system Ax = b does not have a solution in
general. It only does, if b ∈ ranA, which is an n-dimensional subspace of Km.
Therefore, minimizing the norm of the residual Ax−b is, in some sense, the best
one can do. Of course, the choice of the 2-norm is arbitrary and different norms
will lead to different solutions. The 2-norm gives rise to a solution x ∈ Kn such
that Ax is the closest point (in the Euclidean sense) in ranA to b.

The following theorem gives two equivalent characterizations of solutions to
the linear least squares problem as stated above.

Theorem 2.16. Let m ≥ n, A ∈ Km×n and b ∈ Km. A vector x ∈ Kn solves
the linear least squares problem, that is, it satisfies

‖Ax− b‖2 ≤ ‖Ay − b‖2, for all y ∈ Kn, (2.13)

if and only if it solves the normal equations

A∗Ax = A∗b, (2.14)

or equivalently
Ax = Pb, (2.15)

where P is the orthogonal projection onto the range of A. The solution x is
unique, if and only if A has full rank.

Proof. We first show that x is a solution, iff (2.15) is satisfied. Second, we prove
equivalence of (2.14) and (2.15). Finally, we address the uniqueness of x.

First of all we need a generalization of Pythagoras’ theorem: Let x, y ∈ Km
be a pair of orthogonal vectors, that is, x∗y = 0. Then

‖x+ y‖22 = (x+ y)∗(x+ y) = x∗x+ x∗y + y∗x+ y∗y = ‖x‖22 + ‖y‖22.

2.5. LINEAR LEAST SQUARES PROBLEMS 49

That is, the sum of squared norms equals the squared norm of the sum. Next,
we use this identity to rewrite the squared norm of the residual

‖Ax− b‖22 = ‖Ax− Pb+ Pb− b‖22 = ‖Ax− Pb‖22 + ‖Pb− b‖22. (2.16)

Why does Pythagoras’ theorem apply here? We need to verify that the two
vectors Ax−Pb and Pb− b are orthogonal. The first vector Ax−Pb ∈ ranA =
ranP , since P by definition maps onto the range of A. For the second vector we
have Pb− b = (P − I)b ∈ ran (I − P). Recall (or see the section Projections in
the appendix) that the range of an orthogonal projection is always orthogonal
to the range of its complementary projection I − P. Therefore, the splitting of
the norm in (2.16) is justified. We rewrite

‖Ax− b‖22 = ‖Ax− Pb‖22 + ‖Pb− b‖22 ≥ ‖Pb− b‖22,

since obviously ‖Ax−Pb‖22 ≥ 0. This inequality provides us with a lower bound
on ‖Ax − b‖22 that is independent of x. If there is an x such that ‖Ax − b‖22
attains this lower bound, then this x must be a solution of the least squares
problem. However, ‖Ax− b‖22 attaining the lower bound ‖Pb− b‖22 is equivalent
to Ax = Pb, which always has a solution, since Pb ∈ ranA. Thus we have
shown that (2.13) and (2.15) are equivalent.

Another way of writing the equation Ax = Pb is P (Ax−b) = 0. This means
that the residual vector Ax− b lies in the kernel of P . However, since P is the
orthogonal projection onto the range of A we have

kerP ⊥ ranP = ranA.

Thus, the residual Ax− b is orthogonal to the range of A. Since the range of A
is nothing but the column space of A, we can express this orthogonality as

a∗j (Ax− b) = 0, for j = 1, . . . , n,

where aj is the j-th column of A. Yet another way of writing this is

A∗(Ax− b) = 0,

which is just the system of normal equations (2.14).
Finally, x is the unique solution of the least squares problem, if and only if

(2.14) has a unique solution. But this is equivalent to the matrix A∗A being
regular, which is again equivalent to A having full rank.

2.5.1 Numerical Solution

There are several ways to solve the linear least squares problem numerically.
One possibility is to exploit the fact that A∗A is an SPD matrix, if A has full
rank, and to solve the normal equations using Cholesky factorization. The main
steps for this approach are:

1. Compute A∗A and A∗b

50 CHAPTER 2. NUMERICAL LINEAR ALGEBRA

2. Compute the Cholesky factorization A∗A = R∗R

3. Solve R∗y = A∗b via forward substitution

4. Solve Rx = y via back substitution

The work for this approach is dominated by the computation of the matrix A∗A,
which requires mn2 operations, and the Cholesky factorization. To leading order
the total work required is therefore mn2+n3/3. Solving the normal equations is
fast, but the computation of the matrix A∗A can lead to numerical instabilities.

Another possibility is to use QR factorization. Here, we can exploit the fact
that, if A has reduced QR factorization A = Q̂R̂, then the orthogonal projection
P is given by P = Q̂Q̂∗. In this case the system (2.15) simplifies to

Ax = Pb ⇔ Q̂R̂x = Q̂Q̂∗b ⇔ R̂x = Q̂∗b.

The main algorithmic steps are therefore:

1. Compute a reduced QR factorization A = Q̂R̂

2. Compute the vector Q̂∗b

3. Solve R̂x = Q̂∗b via back substitution

The work for this approach is dominated by the QR factorization, which, if the
Householder method is used, requires ∼ 2mn2 − 2n3/3 operations. Solving the
least squares problem using the QR factorization is slower than the previous
approach. It does, however, avoid computation of A∗A and is therefore more
stable in general.

Chapter 3

Interpolation

One way to think of interpolation is as a special case of data fitting. Suppose you
are given n data points (x1, y1), . . . , (xn, yn) ∈ K2. Data fitting is the problem of
finding a (simple) function φ : K→ K that captures the trend of the data. This
could be achieved by minimizing a cost function such as E[φ] =

∑
i |φ(xi) −

yi|2 over a set Φ of of admissible functions. The choice of cost function and
which functions are admissible depends a lot on the considered application. For
example, if the data are oscillatory, then trigonometric functions φ might be a
good choice. On the other hand, if the data display a decay behaviour, then
functions of the form φ(x) = ae−λx + be−µx might be appropriate.

Data interpolation is a special type of data fitting, where you require the
function φ to exactly pass through all the data points, that is,

φ(xi) = yi for i = 1, . . . , n.

In this chapter we will consider interpolation with three types of functions:
polynomials, splines, and trigonometric polynomials.

3.1 Polynomial Interpolation

At the heart of polynomial interpolation lies the following well-known theorem.

Theorem 3.1. Let x0 < · · · < xn ∈ R and y0, . . . , yn ∈ R. Then there is a
unique interpolating polynomial p : R→ R of degree at most n, that is,

p(xi) = yi for i = 0, . . . , n.

Before we discuss the general problem of polynomial interpolation let us go
through a simple example.

Example 3.1 (Interpolating four points with a cubic polynomial.). Consider
the data points (−2, 10), (−1, 4), (1, 6) and (2, 3). The previous theorem tells
us that there is a unique cubic polynomial

p(x) = a0 + a1x+ a2x
2 + a3x

3

51

52 CHAPTER 3. INTERPOLATION

satisfying the four equations

p(−2) = 10, p(−1) = 4, p(1) = 6, p(2) = 3.

These are four equations in the four unknowns a0, a1, a2, a3. In matrix-vector
notation they can be written as

1 −2 4 −8
1 −1 1 −1
1 1 1 1
1 2 4 8



a0
a1
a2
a3

 =


10
4
6
3

 .
Since the matrix is regular, we have a unique solution

a0
a1
a2
a3

 =
1

12


54
23
6

−11

 .
3.1.1 The General Problem

In the rest of this section we assume to be given n+ 1 real data points

(x0, y0), . . . , (xn, yn) ∈ R2,

where the xi are pairwise distinct. We want to find the unique polynomial p of
degree less or equal to n

p(x) = a0 + a1x+ · · ·+ anx
n (3.1)

such that
p(xi) = yi for i = 0, . . . , n.

Since p is completely determined by its coefficients, the polynomial interpolation
problem now consists in finding the n + 1 real numbers ai ∈ R. Plugging the
n+ 1 data points into the general formula for p(x) leads to the following system
of n+ 1 linear equations

1 x0 x20 · · · xn0
1 x1 x21 · · · xn1
...

...
...

...
1 xn x2n · · · xnn



a0
a1
...
an

 =


y0
y1
...
yn

 .
The (n+ 1)× (n+ 1) matrix arising in this way is called Vandermonde matrix.
The polynomial interpolation problem has a unique solution, if and only if the
Vandermonde matrix is regular. From the previous theorem we can infer that
it must be regular, but how to see this?

Lemma 3.1. The Vandermonde matrix V = (xji)
n
i,j=0 is regular.

3.1. POLYNOMIAL INTERPOLATION 53

Proof. A square matrix A is regular, if the zero vector x = 0 is the only vector
satisfying Ax = 0. (See the theorem in the Invertibility section of the appendix.)
We use this argument to show that V is regular.

Suppose c ∈ Rn+1 is a coefficient vector satisfying V c = 0. An equivalent
way of writing this is

n∑
i=0

cix
i
j = 0 for j = 0, . . . , n.

But this means that the polynomial

p(x) = c0 + c1x+ · · ·+ cnx
n,

which is of degree ≤ n, has n + 1 zeros. (Recall that the xj are pairwise
distinct.) This contradicts the Fundamental Theorem of Algebra, which states
that p cannot have more than n zeros, unless p is the zero polynomial. Thus p
must be the zero polynomial, or equivalently c = 0.

In summary, the polynomial interpolation problem reduces to a system of
linear equations, which always has a unique solution. Therefore, at least from a
theoretical perspective, we have solved the polynomial interpolation problem. In
practice, however, it turns out to be more intricate, since Vandermonde matrices
tend to have very large condition numbers.

Above, in equation (3.1), we have chosen to represent the polynomial p as
a linear combination of the “canonical” basis {1, x, x2, . . . , xn}. Yet there are
many other bases in which polynomials can be expressed and the choice of basis
strongly influences the condition number of the resulting Vandermonde matrix.

Lemma 3.2. Let n ∈ N and denote by Pn the set of all polynomials p : R→ R
of degree ≤ n.

1. The set Pn is a vector space of dimension n+ 1.

2. The monomials {1, x, x2, . . . , xn} form a basis of Pn.

3. The Newton polynomials {ω0(x), ω1(x), . . . , ωn(x)} form a basis of Pn,
where

ωj(x) =


1, j = 0,

j−1∏
k=0

(x− xk), j = 1, . . . , n.

4. The Lagrange polynomials {L0(x), L1(x), . . . , Ln(x)} form a basis of Pn,
where

Lj(x) =


1, j = 0,
n∏
k=0
k 6=j

x− xk
xj − xk

, j = 1, . . . , n.

54 CHAPTER 3. INTERPOLATION

The statement “{q0(x), . . . , qn(x)} forms a basis of Pn” means we can write
every polynomial of order ≤ n as a linear combination of the qi. Also note
that, in contrast to the monomial basis, the Newton and Lagrange polynomials
depend on the interpolation points xi.

Example 3.2. Consider the following interpolation points

(x0, y0) = (1, 1),

(x1, y1) = (2, 4),

(x2, y2) = (3, 9).

The associated Newton polynomials

ω0(x) = 1,

ω1(x) = x− x0 = x− 1,

ω2(x) = (x− x0)(x− x1) = (x− 1)(x− 2)

form a basis of P2. Therefore, the unique quadratic interpolating polynomial
can be written as

p(x) = a0ω0(x) + a1ω1(x) + a2ω2(x)

= a0 + a1(x− 1) + a2(x− 1)(x− 2).

Plugging in the three interpolation points leads to the following system1
1 1
1 2 2

a0a1
a2

 =

1
4
9

 ,
which has solution a = (1, 3, 1)> and therefore p(x) = x2.

On the other hand, the Lagrange polynomials associated to the interpolation
points (xi, yi) are given by

L0(x) =
x− x1
x0 − x1

x− x2
x0 − x2

=
x− 2

1− 2

x− 3

1− 3
=

1

2
(x− 2)(x− 3),

L1(x) =
x− x0
x1 − x0

x− x2
x1 − x2

=
x− 1

2− 1

x− 3

2− 3
= −(x− 1)(x− 3),

L2(x) =
x− x0
x2 − x0

x− x1
x2 − x1

=
x− 1

3− 1

x− 2

3− 2
=

1

2
(x− 1)(x− 2).

They also form a basis of P2, which means we can write

p(x) = b0L0(x) + b1L1(x) + b2L2(x).

This time we obtain the system1
1

1

b0b1
b2

 =

1
4
9

 .

3.1. POLYNOMIAL INTERPOLATION 55

The system is very easy to solve this time. We have b = y and therefore

p(x) =

2∑
i=0

yiLi(x) = x2.

Remark 3.1. In the previous example the Vandermonde matrix for the Newton
basis turned out to be lower triangular. In fact, this is always the case, since
the Newton polynomials have the property

ωj(xi) = 0 for i < j.

Similarly, the Lagrange polynomials satisfy

Lj(xi) = δij ,

and therefore they always let you write down the interpolating directly in terms
of the yi without any additional calculations required

p(x) =

n∑
i=0

yiLi(x). (3.2)

We summarize the polynomial interpolation problem with the following the-
orem.

Theorem 3.2. Let n ∈ N, x0 < · · · < xn ∈ R and y0, . . . , yn ∈ R. Suppose
that {q0, . . . , qn} is a basis of Pn. Then the unique interpolating polynomial p is
given by

p(x) =

n∑
i=0

aiqi(x),

where the vector of coefficients (a0, . . . , an)> solves the regular systemq0(x0) · · · qn(x0)
...

...
q0(xn) · · · qn(xn)


a0...
an

 =

y0...
yn

 .
3.1.2 Error Estimates

Frequently, the yi happen to be the values of some function f , that is,

yi = f(xi) for i = 0, . . . , n.

In this case a natural question to ask is how well the interpolating polynomial
p approximates f at points x 6= xi.

Before we state our main result we introduce the space of k times contin-
uously differentiable functions. Let [a, b] be a closed interval and k ∈ N ∪ 0.
Then we denote by Ck[a, b] the space of all functions f : [a, b] → R that are

56 CHAPTER 3. INTERPOLATION

k times differentiable and whose k-th derivative f (k) is continuous. If k = 0,
then Ck[a, b] denotes the space of continuous functions. By C∞[a, b] we denote
the space of infinitely differentiable functions on [a, b]. Clearly, if m ≥ k, then
Cm[a, b] ⊂ Ck[a, b]. For f ∈ C0[a, b] the following norm

‖f‖∞ = max
x∈[a,b]

|f(x)|

is always finite.

Theorem 3.3. Let n ∈ N and a ≤ x0 < · · · < xn ≤ b. Suppose that f ∈
Cn+1[a, b] and that p ∈ Pn is the unique interpolating polynomial, that is,

p(xk) = f(xk), for k = 0, . . . , n.

Then,

|p(x)− f(x)| ≤ ‖f
(n+1)‖∞|ωn+1(x)|

(n+ 1)!

for all x ∈ [a, b], where ωn+1(x) =
∏n
k=0(x − xk) is the (n + 1)-th Newton

polynomial.

An immediate consequence of this theorem is that, if f ∈ C∞[a, b] has uni-
formly bounded derivatives, then the sequence of interpolating polynomials con-
verges in the∞-norm to f . Interestingly, the choice of interpolation points does
not matter as long as their number increases steadily.

Corollary 3.1. Let f ∈ C∞[a, b] and assume that there exists an M ≥ 0 such
that

‖f (n)‖∞ ≤M for all n ∈ N.

For every n ∈ N let a ≤ x
(n)
0 < · · · < x

(n)
n ≤ b be a set of n + 1 interpolation

points and let pn ∈ Pn be the unique polynomial interpolating f at these points,
that is,

pn
(
x
(n)
k

)
= f

(
x
(n)
k

)
, for k = 0, . . . , n.

Then,

lim
n→∞

‖pn − f‖∞ = 0.

Proof. By the previous theorem we have for every n ∈ N that

|pn(x)− f(x)| ≤ ‖f
(n+1)‖∞|ωn+1(x)|

(n+ 1)!

for all x ∈ [a, b]. Since the Newton polynomial satisfies

|ωn+1(x)| =
n∏
k=0

|x− x(n)k | ≤
n∏
k=0

|b− a| = (b− a)n.

3.2. SPLINE INTERPOLATION 57

we get

‖pn − f‖∞ ≤
‖f (n+1)‖∞(b− a)n

(n+ 1)!
≤M (b− a)n

(n+ 1)!
.

But the fraction on the right hand side goes to zero as n → ∞, because the
factorial (n+ 1)! grows much faster than the geometric sequence (b− a)n.

If the assumption that f has uniformly bounded derivatives is not met, then
the approximation quality of the interpolating polynomials can be arbitrarily
poor. In fact, it is not difficult to find an example where ‖pn − f‖∞ →∞.

Example 3.3 (Runge’s phenomenon.). Consider the function

f(x) =
1

1 + x2

on the interval [a, b] = [−5, 5]. It is infinitely differentiable, but the ∞-norms of
its derivatives grow very fast. In particular, there is no number M ≥ 0 such
that ‖f (n)‖∞ ≤ M for all n ∈ N. The polynomials pn interpolating f at the
equidistant points

x
(n)
k = a+ k

b− a
n

,

do not converge to f , but instead display oscillations near the interval bound-
aries. In fact the oscillations grow stronger as n increases. This is called Runge’s
phenomenon.

This example shows that polynomial interpolation for a large number of
equidistant points should be avoided in general. But then the question is what
to do in practice, if the number of interpolation points is large? There are
several options. One of them is discussed in the next section.

3.2 Spline Interpolation

Instead of computing one interpolating polynomial globally, that is, for all in-
terpolations points at once, one can divide the interval [a, b] into several subin-
tervals and then interpolate with a low degree polynomial on each subinterval.
The resulting interpolating function is a piecewise polynomial, also called spline.
The presentation of the topics covered in this section is along the lines of the
corresponding chapter in Grundlagen der Numerischen Mathematik und des
Wissenschaftlichen Rechnens by Hanke-Bourgeois.

Let ∆ = (x0, . . . , xn) be a set of pairwise distinct points in [a, b] such that
x0 = a, xn = b, and xi < xi+1 for 0 ≤ i ≤ n− 1. We call ∆ a partition of [a, b].
A spline of order p ∈ N is a function s ∈ Cp−1[a, b] such that the restriction of
s to each subinterval [xi, xi+1] is a polynomial of degree ≤ p, in symbols,

s|[xi,xi+1] ∈ Pp for i = 1 . . . n− 1.

The set of all splines of order p on ∆ is denoted by Sp(∆). Clearly, Pp ⊂ Sp(∆),
since every polynomial of degree p is also a spline of order p.

58 CHAPTER 3. INTERPOLATION

Lemma 3.3. Let n, p ∈ N and ∆ a partition of [a, b] as defined above.

1. The set Sp(∆) is a vector space of dimension n+ p.

2. Let 0 ≤ k ≤ p − 1. If s ∈ Sp(∆), then s(k) ∈ Sp−k(∆). That is, the k-th
derivative of a p-th order spline is a spline of order p− k.

In these notes we consider interpolation with two types of splines. In Section
3.2.1 we treat the simplest case of linear splines (p = 1) and afterwards, in
Section 3.2.2, we discuss interpolation using cubic splines (p = 3).

3.2.1 Linear Splines

Let ∆ be a partition of [a, b] and y0, . . . , yn ∈ R. We want to find a linear
interpolating spline, that is, a function s ∈ S1(∆) satisfying

s(xi) = yi, for i = 0, . . . , n. (3.3)

According to Lemma 3.3 the space S1(∆) has dimension n+ 1. In other words
n + 1 conditions are required to uniquely determine a linear spline. On the
other hand, the interpolation problem (3.3) imposes just n+1 conditions on the
unknown spline. This suggests that the linear spline interpolation problem has
a unique solution.

Consider the subinterval [xi, xi+1]. On this subinterval we simply have to
find the linear interpolating polynomial. We can, for instance, use equation
(3.2) to express it in terms of the locally computed Lagrange polynomials

`i(x) = yi
x− xi+1

xi − xi+1
+ yi+1

x− xi
xi+1 − xi

.

Having found a formula for all the local interpolants `i, we can write down the
globally interpolating linear spline in the following way

s(x) =


`0(x), x ∈ [x0, x1],

...

`n−1(x), x ∈ [xn−1, xn].

Another convenient way to express linear splines is in the basis of hat functions.
The hat function Λi, 0 ≤ i ≤ n, is defined as the unique linear spline satisfying

Λi(xj) = δij for j = 0, . . . , n.

Theorem 3.4. For a given partition ∆ of [a, b] and values y0, . . . , yn ∈ R. The
unique interpolating linear spline is given by

s(x) =

n∑
i=0

yiΛi(x).

3.2. SPLINE INTERPOLATION 59

As for polynomials we can ask the following question. Suppose that yi =
f(xi) for some function f : [a, b] → R. How well does the piecewise linear
interpolant s approximate f with respect to the ∞-norm? An answer can be
derived directly from Theorem 3.3.

Corollary 3.2. Let f ∈ C2[a, b] and denote by s ∈ S1(∆) the linear spline that
interpolates f at some partition ∆ of [a, b]. Denote by hi = xi+1−xi the length
of the i-th subinterval. Then

‖s− f‖∞ ≤
‖f ′′‖∞

8
max

0≤i≤n−1
h2i .

Proof. Applying Thm. 3.3 to the subinterval [xi, xi+1] gives the estimate

|s(x)− f(x)| ≤ |ω2(x)|
2

max
y∈[xi,xi+1]

|f ′′(y)|,

which holds for every x ∈ [xi, xi+1]. The Newton polynomial

ω2(x) = (x− xi)(x− xi+1)

is a quadratic polynomial and therefore attains its extremum at the midpoint
(xi + xi+1)/2 of the subinterval

|ω2(x)| ≤ |ω2 ((xi + xi+1)/2) | = h2i
4
.

Thus we get

|s(x)− f(x)| ≤ h2i
8

max
y∈[xi,xi+1]

|f ′′(y)|

≤ 1

8
‖f ′′‖∞ max

0≤i≤n−1
h2i .

The maximal error between f and s is controlled by the second derivative of
f and the length of the longest subinterval. If we steadily decrease this length
by adding more and more interpolation points, the error can be made arbitrarily
small.

Corollary 3.3. Let f ∈ C2[a, b]. For every n ∈ N let ∆(n) be a partition of
[a, b] consisting of n + 1 points. Denote the length of the longest subinterval of
∆(n) by h(n) and assume that h(n) → 0 as n → ∞. Let sn ∈ S1(∆(n)) be the
linear spline interpolating f at ∆(n). Then,

lim
n→∞

‖sn − f‖∞ = 0.

Compare this result to Corollary 3.1. While in Cor. 3.1 the interpolation
points can be chosen arbitrarily, the assumptions on the function f are much
more restrictive.

60 CHAPTER 3. INTERPOLATION

3.2.2 Cubic Splines

Now, for a given partition ∆ = (x0, . . . , xn) of [a, b] and values y0, . . . , yn ∈ R
we want to find a cubic spline s ∈ S3(∆) such that s(xi) = yi for all i. Recall
Lemma 3.3. If ∆ consists of n + 1 points, then the space of all cubic splines
S3(∆) has dimension n + 3. This suggests that, in contrast to the linear case,
a cubic interpolating polynomial will not be uniquely determined by the n + 1
interpolation conditions.

Every cubic spline s is a piecewise cubic polynomial that is two times con-
tinuously differentiable. According to Lemma 3.3, the second derivative of s is
a linear spline and can therefore be expressed in the basis of hat functions

s′′(x) =
∑
i=0

γiΛi(x). (3.4)

The coefficients γi are called the moments of the cubic spline s. Below we will
make use of the following abbreviations

s′i = s′(xi), hi = xi − xi−1.

The next lemma gives us an explicit formula for the cubic interpolation spline.

Lemma 3.4. Assume s ∈ S3(∆) satisfies the interpolation conditions

s(xi) = yi for i = 0, . . . , n.

Then, for x ∈ [xi, xi−1] we have

s(x) = yi + (x− xi)s′i + γi
(x− xi)2

2
+
γi − γi−1

hi

(x− xi)3

6
. (3.5)

Proof. Let x ∈ [xi, xi−1]. We can write

s(x)− s(xi) =

∫ x

xi

s′(t) dt

= s′(t)(t− x)
∣∣∣x
xi
−
∫ x

xi

s′′(t)(t− x) dt,

where we have used the integration by parts formula∫ x

xi

u′(t)v(t) dt = u(t)v(t)
∣∣∣xi
x
−
∫ x

xi

u(t)v′(t) dt

with u(t) = t− x and v(t) = s(t). Therefore s(x) is given by

s(x) = s(xi) + s′(xi)(xi − x)−
∫ x

xi

s′′(t)(t− x) dt

= yi + (xi − x)s′i −
∫ x

xi

s′′(t)(t− x) dt.

3.2. SPLINE INTERPOLATION 61

Next, we compute the integral on the right hand side. On [xi, xi−1] the second
derivative s′′ is given by

s′′(t) = γi−1Λi−1(t) + γiΛi(t)

= γi−1
xi − t

xi − xi−1
+ γi

t− xi−1
xi − xi−1

,

which, as can be easily verified, equals

=
γi − γi−1

hi
(t− xi) + γi.

Plugging this into the integral above we get∫ x

xi

s′′(t)(t− x) dt =
γi − γi−1

hi

∫ x

xi

(t− xi)(t− x) dt+ γi

∫ x

xi

(t− x) dt

=
γi − γi−1

hi

(x− xi)3

6
− γi

(xi − x)2

2
,

which together with the above expression for s(x) finishes the proof.

Equation (3.5) completely determines the interpolating spline, as soon as we
know the moments γi and the values of the first derivatives s′i. The latter can
be expressed in terms of the former by evaluating s(x) at x = xi−1 according
to (3.5)

yi−1 = yi − his′i + γi
h2i
2

+ (γi−1 − γi)
h2i
6

= yi − his′i + h2i

(γi
3

+
γi−1

6

)
. (3.6)

Now, a simple rearrangement of terms yields a formula for s′i in which the only
unknowns are γi and γi−1. Thus it remains to determine the moments.

Lemma 3.5. The vector of moments γ = (γ0, . . . , γn)> associated to the inter-
polating spline s ∈ S3(∆) solves the system Aγ = d, where A ∈ R(n−1)×(n+1)

and d ∈ Rn−1 are given by

A =
1

6


h1 2(h1 + h2) h2

h2 2(h2 + h3)
. . .

. . .
. . . hn−1
hn−1 2(hn−1 + hn) hn

 ,

d = −


−h−11 h−11 + h−12 −h−12

−h−12 h−12 + h−13

. . .

. . .
. . . −h−1n−1
−h−1n−1 h−1n−1 + h−1n −h−1n



y0

y1
...

yn

 .

62 CHAPTER 3. INTERPOLATION

Proof. Rewrite (3.6) in the following way

−yi − yi−1
hi

= −s′i + γi
hi
3

+ γi−1
hi
6
.

Now subtract from this the same equation but with i replaced by i+ 1

yi+1 − yi
hi+1

− yi − yi−1
hi

= s′i+1 − s′i + γi
hi
3

+ γi−1
hi
6
− γi+1

hi+1

3
− γi

hi+1

6
, (3.7)

which holds for 1 ≤ i ≤ n− 1.
Next we want to get rid of the difference s′i+1 − s′i. We first differentiate

(3.5) with respect to x yielding

s′(x) = s′i + γi(x− xi) +
γi − γi−1

hi

(x− xi)2

2
.

Since this equation holds for every x ∈ [xi−1, xi], we can plug in xi−1 for x.
After a slight rearrangement of terms we arrive at

s′i − s′i−1 =
hi
2

(γi + γi−1).

Now we can replace the difference s′i+1 − s′i in (3.7) and after simplification of
the appearing terms we finally end up with

yi+1 − yi
hi+1

− yi − yi−1
hi

= γi−1
hi
6

+ γi
hi + hi+1

3
+ γi+1

hi+1

6
.

Again this equation holds for 1 ≤ i ≤ n − 1. Rewrite all these equations in
matrix-vector form we end up with the system Aγ = d as asserted.

The system Aγ = d is underdetermined, as there are n + 1 unknowns but
only n − 1 equations. Therefore, two more conditions are needed in order to
completely determine the moments. This confirms our reasoning from the be-
ginning of this section. Additional conditions are usually imposed on s at the
boundary of the interval [a, b]. A common choice for such boundary conditions
are the so-called natural boundary conditions

s′′(a) = s′′(b) = 0.

Cubic splines that satisfy natural boundary conditions are called natural cubic
splines.

Directly from the definition of moments (3.4) it follows that the moments γ0
and γn of a natural cubic spline must vanish. In this case the system Aγ = d
from Lemma 3.5 simplifies to

1

6


2(h1 + h2) h2

h2 2(h2 + h3)
. . .

. . .
. . . hn−1
hn−1 2(hn−1 + hn)



γ1

γ2
...

γn−1

 =


d1

d2
...

dn−1

 . (3.8)

3.3. TRIGONOMETRIC INTERPOLATION 63

Theorem 3.5. Let ∆ be a partition of [a, b] and y0, . . . , yn ∈ R. Then there is
a unique natural cubic spline s ∈ S3(∆) such that s(xi) = yi for i = 0, . . . , n.

Proof. The system (3.8) is regular and therefore uniquely determines the mo-
ments, which in turn uniquely determine the interpolating cubic spline s via
(3.5) and (3.6).

Example 3.4. Let ∆ be a partition consisting of n+1 equidistant points. That
is, xi−xi−1 = hi = h. Fix a j ∈ {0, . . . , n}. The moments of the unique natural
cubic spline that interpolates the values yi = δij solve the system

h

6


4 1

1 4
. . .

. . .
. . . 1
1 4



γ1

γ2
...

γn−1

 = − 1

h


−1 2 −1

−1 2 −1
. . .

. . .
. . .

−1 2 −1

 ej+1,

where as usual ej+1 ∈ Rn+1 is the zero vector with a one at position j + 1.

3.3 Trigonometric Interpolation

In this section we mainly deal with complex-valued functions. While the topic
of trigonometric interpolation could be treated using only real-valued functions
as well, the notation becomes much more tedious. Therefore, in all of Section
3.3 the symbol i denotes the complex unit

√
−1.

A trigonometric polynomial of degree ≤ n − 1 is a function p : [0, 2π] → C
which can be written as

p(x) =

n−1∑
j=0

cje
ijx,

where cj ∈ C. We denote the set of all trigonometric polynomials of degree less
or equal to n− 1 by Πn−1.

Lemma 3.6. The set Πn−1 is a vector space of dimension n.

Theorem 3.6. Let x0 < · · · < xn−1 ∈ [0, 2π] and y0, . . . , yn−1 ∈ C. There is a
unique p ∈ Πn−1 satisfying

p(xj) = yj for j = 0, . . . n− 1. (3.9)

For the rest of this section we only consider equidistant points

xk =
2πk

n
, k = 0, . . . , n− 1.

In this case the resulting linear system will turn out to have a very special
structure. Denote by

wn = e
2πi
n

64 CHAPTER 3. INTERPOLATION

the n-th root of unity. Note that for k = 0, . . . , n− 1 we have

wkn =
(
e

2πi
n

)k
= e

2πki
n = eixk

and that wnn = 1. The interpolation conditions (3.9) can now be written as

p(xk) =

n−1∑
j=0

cje
ijxk =

n−1∑
j=0

cjw
jk
n = yk, for k = 0, . . . n− 1,

or in matrix-vector notation
Fnc = y, (3.10)

with the Fourier matrix Fn = (wjkn)n−1j,k=0 ∈ Cn×n. This system is very easy to
solve, once we have collected some properties of Fn.

Lemma 3.7. The Fourier matrix is symmetric, that is, F>n = Fn and 1√
n
Fn is

unitary.

Proof. The matrix Fn is symmetric, because wjkn = wkjn . For unitarity we have
to show (

1√
n
Fn

)∗
1√
n
Fn =

1

n
F ∗nFn = I.

Let vk be the k-th column of Fn. Then

v∗kvk =

n−1∑
j=0

wjkn w
jk
n =

n−1∑
j=0

|wjkn |2 =

n−1∑
j=0

1 = n.

On the other hand, if ` 6= k, then

v∗kv` =

n−1∑
j=0

wjkn w
j`
n =

n−1∑
j=0

w−jkn wj`n =

n−1∑
j=0

(
w(`−k)
n

)j
,

which is a geometric sum. We use the well-known formula

n−1∑
j=0

aj =
1− an

1− a

to get

v∗kv` =
1− wn(`−k)n

1− w`−kn

= 0,

because wnn = 1 and w`−kn 6= 1. Thus we have shown F ∗nFn = nI.

Theorem 3.7. The solution to the trigonometric interpolation problem (3.10),
that is, the vector of coefficients c = (c0, . . . , cn−1)> ∈ Cn of the interpolating
polynomial is given by

c =
1

n
Fny.

3.3. TRIGONOMETRIC INTERPOLATION 65

Proof. Since the matrix Fn is unitary up to a scaling factor, it is in particular
invertible. Therefore the solution of (3.10) is given by c = F−1n y. It remains to
show that F−1n = 1

n F̄n. From the previous lemma we know that(
1√
n
Fn

)−1
=

(
1√
n
Fn

)∗
=

1√
n
F
>
n =

1√
n
Fn.

Combining this equality with the fact that
(

1√
n
Fn

)−1
=
√
nF−1n completes the

proof.

3.3.1 Fast Fourier Transform

The function
Fn : Cn → Cn, y 7→ Fn(y) = Fny.

is called discrete Fourier transform in analogy to its continuous counterpart.
Note that the literature is not consistent in regards to this definition. Some
authors include a factor of 1

n or 1√
n

in the definition of Fn.1

According to Thm. 3.7 solving the trigonometric interpolation involves two
main tasks:

1. assembly of the matrix Fn,

2. matrix-vector multiplication Fny.

For general matrices and vectors of dimension n the number of flops required
for both tasks is quadratic in n. However, for reasons of periodicity Fn only has
n different entries w0

n, . . . , w
n−1
n . Moreover, using the Fast Fourier Transform

(FFT) the matrix-vector multiplication can be realized with essentially n log2 n
operations. This is a significant speedup. For example, if n = 210 = 1024, then
n log2 n ≈ 104 while n2 ≈ 106.

At the heart of the FFT lies, again, a matrix factorization. We start with
an example.

Example 3.5. Consider the case of n = 4 interpolation points. The 4-th root
of unity is w4 = e

πi
2 = i and the Fourier matrix is given by

F4 =


w0

4 w0
4 w0

4 w0
4

w0
4 w1

4 w2
4 w3

4

w0
4 w2

4 w4
4 w6

4

w0
4 w3

4 w6
4 w9

4

 =


1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i

 .
It turns out that F4 can be factorized in the following way

F4 =


1 1

1 i
1 −1

1 −i




1 1
1 −1

1 1
1 −1




1
1

1
1

 (3.11)

1In what follows we will not make explicit use of the function Fn. We mainly mention it
for the sake of completeness.

66 CHAPTER 3. INTERPOLATION

The matrix on the right is a permutation matrix P . When applied to a vector
it puts the entries with even indices ahead of the entries with odd indices. Note,
however, that in this section we start indexing with 0 instead of 1. Therefore,
the matrix P maps (c0, c1, c2, c3)> to (c0, c2, c1, c3)>.

The matrix in the middle, in fact, contains two copies of F2:
1 1
1 −1

1 1
1 −1

 =


w0

2 w0
2

w0
2 w1

2

w0
2 w0

2

w0
2 w1

2

 =

[
F2

F2

]
.

Finally, the leftmost matrix in the factorization (3.11) can be generalized to
higher dimensions by realizing that

1 1
1 i

1 −1
1 −i

 =

[
I D2

I −D2

]
,

where I is the 2× 2 identity matrix and D2 = diag (1, i) = diag (w0
4, w

1
4).

Therefore, the following sequence of steps leads to the same result as direct
multiplication of F4 with a vector c = (c0, c1, c2, c3)>.

1. Rearrange the entries of c so that the ones with even indices are ahead of
those with odd indices. 

c0
c1
c2
c3

 7→

c0
c2
c1
c3

 =:

[
ceven
codd

]

Here we set ceven = (c0, c2)> and codd = (c1, c3)>.

2. Multiply both the top and bottom halves of the resulting vector with F2.[
ceven
codd

]
7→
[
F2ceven
F2codd

]

3. Multiply the bottom half of the resulting vector with D2. Add the result
to the top half to form the first two entries of the final result. Subtract it
from the top half to form the last two entries of the final vector.[

F2ceven
F2codd

]
7→
[
F2ceven +D2F2codd
F2ceven −D2F2codd

]
= F4c (3.12)

The matrix factorization encountered in this example extends to general
even n ∈ N in the following way.

3.3. TRIGONOMETRIC INTERPOLATION 67

Lemma 3.8. Let m ∈ N and n = 2m. Then the n×n Fourier matrix Fn admits
the following factorization

Fn =

[
I Dm

I −Dm

] [
Fm

Fm

]
Pn, (3.13)

where I is the m×m identity matrix, Dm = diag (w0
n, . . . , w

m−1
n) and Pn is the

permutation matrix that maps every vector c = (c0, . . . , cn−1)> ∈ Cn to

Pnc = (c0, c2, . . . , cn−2, c1, c3, . . . , cn−1)>.

If in the previous theorem m is again an even number, m = 2k say, we can
factorize both copies of Fm in (3.13) and obtain

[
Fm

Fm

]
=


I Dk

I −Dk

I Dk

I −Dk



Fk

Fk
Fk

Fk

[Pm Pm

]
,

which yields a new factorization of the original Fourier matrix Fn

Fn =

[
I Dm

I −Dm

]
I Dk

I −Dk

I Dk

I −Dk



Fk

Fk
Fk

Fk

[Pm Pm

]
Pn.

More generally, if n = 2p, then we can perform this recursive decomposition
p times, and compute the matrix-vector product Fnc accordingly. This is the
main idea behind the FFT. The following theorem shows that this approach
pays off in terms of number of operations.

Theorem 3.8. Let p ∈ N, n = 2p and c ∈ Cn. Computation of the product Fnc
as outlined above requires 3

2n log2 n flops.

Proof. Using the recursive factorization approach the Fourier matrix Fn can be
written as a product of 2p + 1 matrices, p of which are permutation matrices
and do not require arithmetic operations. The matrix in the middle will look
like F1

. . .

F1

 ,
which is just an identity matrix, because F1 = 1. Thus we only need to consider
the remaining p matrices on the left hand-side. Multiplication with one of these
matrices requires n

2 multiplications, because, first, the matrices Dj are diagonal
and, second, they are multiplied with only one half of the entries of each vector;
recall (3.12). In addition each of the remaining p matrices requires n additions.
The total number of flops is therefore

p
(n

2
+ n

)
=

3

2
np =

3

2
n log2 n.

68 CHAPTER 3. INTERPOLATION

So far we have only discussed how to efficiently multiply with Fn, which
up to a scaling factor corresponds to computing the inverse discrete Fourier
transform F−1n . The reasoning above, however, is easily modified to apply to
Fn as well, for instance, by taking the complex conjugate of equation (3.13).

Chapter 4

Numerical Integration

The aim of numerical integration is to approximate the numerical value of def-
inite integrals. In these notes we restrict our attention to one-dimensional inte-
grals over intervals of finite length. Thus, for a < b ∈ R and f : [a, b] → R, we
want to approximate the integral

I[f] =

∫ b

a

f(x) dx.

Clearly, if F is an antiderivative of f , that is F ′(x) = f(x), then I[f] =
F (b)−F (a). This raises the question what the purpose of numerical integration
is. First, there are functions whose antiderivatives are difficult or impossible to
express as elementary functions. (An elementary function is a function that is a
finite combination of arithmetic operations, trigonometric functions, exponen-
tials, logarithms, and so on.) An example of a function whose antiderivative is

not elementary is f(x) = e−x
2

. Second, even if an antiderivative of f can be
computed, it might just be more efficient to numerically integrate f instead of
evaluating F . Finally, in certain situations the integrand might not be known on
the whole interval [a, b] but only at a few points. While this makes determining
an antiderivative impossible in general, numerical approximation of I[f] might
still be feasible.

In order to numerically integrate a given function f we consider quadrature
rules Q[f] ≈ I[f]. These will take the following general form

Q[f] =

n∑
i=0

wif(xi)

with weights wi ∈ R and nodal points xi ∈ [a, b]. That is, Q[f] is a linear
combination of a finite number of function values.

Example 4.1 (Midpoint rule). The simplest example of such a quadrature rule
is maybe the midpoint rule

Q[f] = (b− a)f
(a+ b

2

)
.

69

70 CHAPTER 4. NUMERICAL INTEGRATION

The midpoint rule approximates the area below the function graph with the
area of a rectangle with sides b − a and f((a + b)/2). Therefore it is exact for
constant functions f(x) = c. However, it is not hard to see that even linear
polynomials f(x) = kx + d are integrated exactly by the midpoint rule. Using
our notation from Section 3.1, we can formulate this property of the midpoint
rule as

Q[p] = I[p] for all p ∈ P1.

Example 4.2 (Trapezoidal rule). Another example is the trapezoidal rule

Q[f] =
b− a

2
f(a) +

b− a
2

f(b).

Visually it approximates the integral I[f] with the combined area of two rect-
angles, one with sides (b − a)/2 and f(a), and one with (b − a)/2 and f(b), or
equivalently with that of a trapezoid with vertices (a, 0), (b, 0), (a, f(a)), and
(b, f(b)). The trapezoidal rule, too, is exact for polynomials of degree one.

In general, we say a quadrature rule Q has degree k ∈ N, if all p ∈ Pk are
integrated exactly, that is,

Q[p] = I[p] for all p ∈ Pk.

The next result tells us what maximal degree we can expect of a quadrature
rule with n+ 1 nodal points.

Lemma 4.1. The degree of

Q[f] =

n∑
i=0

wif(xi)

cannot be higher than 2n+ 1.

Proof. We prove the assertion by constructing a p ∈ P2n+2 for which Q[p] 6= I[p].
Define

p(x) =

n∏
k=0

(x− xk)2,

where the xk are just the nodal points of the quadrature rule. The polynomial
p is obviously of degree 2(n + 1) = 2n + 2. Since it only consists of quadratic
terms it is nonnegative. Hence, its integral must be positive I[p] > 0. On the
other hand p has been constructed in such a way that Q[p] = 0.

4.1 Newton-Cotes Formulas

Newton-Cotes formulas are a special class of quadrature rules. Their basic idea
is to replace the integrand f by the polynomial p that interpolates f at the nodal
points xi, that is, Q[f] := I[p]. The polynomial p can be integrated exactly by
taking the right linear combination of its values at the nodal points.

4.1. NEWTON-COTES FORMULAS 71

More specifically, let f be given together with a set of nodal points x0, . . . , xn.
From Section 3.1 we know that the unique polynomial p ∈ Pn satisfying p(xi) =
f(xi) for i = 0, . . . , n can be expressed in terms of the Lagrange polynomials

p(x) =

n∑
i=0

f(xi)Li(x).

The main argument behind Newton-Cotes formulas is that I[p] should be close
to I[f], if p is close to f . Therefore

I[f] ≈ I[p] =

∫ b

a

p(x) dx =

∫ b

a

(n∑
i=0

f(xi)Li(x)
)
dx

=

n∑
i=0

f(xi)

∫ b

a

Li(x) dx︸ ︷︷ ︸
wi

. (4.1)

Lemma 4.2. The degree of a Newton-Cotes formula with n + 1 nodal points,
as defined by (4.1), is at least n.

Proof. Let p ∈ Pn. Then the unique polynomial interpolating p is p itself.
Therefore I[p] = Q[p].

If the nodal points are equispaced and such that x0 = a and xn = b, that is,

xi = i
b− a
n

, for i = 0, . . . , n,

then we have a so-called closed Newton-Cotes formula. The closed Newton-Cotes
formula for n = 1 is the trapezoidal rule, which can be shown by computing the
two weights w0 and w1 according to (4.1). For n = 2 we obtain Simpson’s rule

Q[f] =
b− a

6

[
f(a) + 4f

(a+ b

2

)
+ f(b)

]
.

Lemma 4.2 tells us that all quadratic polynomials are integrated exactly by
Simpson’s rule.

If a and b are not nodal points, then the resulting Newton-Cotes formula is
called open. Such quadrature rules can be used for improper integrals like∫ 1

0

dx√
x
,

where the integrand cannot be evaluated at one of the endpoints, but the integral
is finite nonetheless.

72 CHAPTER 4. NUMERICAL INTEGRATION

4.1.1 Error estimates

The error estimates that we have obtained for polynomial interpolation can be
used to estimate the error

|Q[f]− I[f]|

of a Newton-Cotes formula Q.

Example 4.3 (Error estimate for the trapezoidal rule). The trapezoidal rule
Q as defined in Example 4.2 is the closed Newton-Cotes formula for n = 1. This
means that

Q[f] =
b− a

2
[f(a) + f(b)] = I[p],

where p is the linear polynomial that interpolates f at the two points x0 = a
and x1 = b. By Thm. 3.3 we have the following error estimate for p

|p(x)− f(x)| ≤ ‖f
′′‖∞
2
|x− a||x− b|,

for all x ∈ [a, b]. Therefore

|Q[f]− I[f]| = |I[p]− I[f]| =
∣∣∣ ∫ b

a

(
p(x)− f(x)

)
dx
∣∣∣

≤
∫ b

a

∣∣p(x)− f(x)
∣∣ dx

≤ ‖f
′′‖∞
2

∫ b

a

(x− a)(b− x) dx

=
‖f ′′‖∞

12
(b− a)3.

Example 4.4 (Error estimate for Simpson’s rule). A similar derivation shows
that Simpson’s rule satisfies

|Q[f]− I[f]| ≤ ‖f
(4)‖∞

2880
(b− a)5.

Note that the quadrature error of Simpson’s rule is controlled by the fourth
derivative of the integrand. If f is a cubic polynomial, then f (4) = 0 and the
quadrature error vanishes. This implies that the degree of Simpson’s rule is
actually three and not merely two (as guaranteed by Lemma 4.2).

More generally, it can be shown that a Newton-Cotes formula with n + 1
nodal points has degree

r =

{
n, if n is odd,

n+ 1, if n is even.

4.2. COMPOSITE RULES 73

Theorem 4.1. A Newton-Cotes formula Q of degree r satisfies

|Q[f]− I[f]| ≤ C ‖f
(r+1)‖∞

(r + 1)!
(b− a)r+2 (4.2)

for all f ∈ Cr+1[a, b], where the value of the constant C > 0 depends on the
distribution of the nodal points.

Not surprisingly, Newton-Cotes formulas suffer from the same problems as
polynomial interpolation does: A large number of nodal points n + 1 should
be avoided, unless the derivatives of f can be guaranteed to have small ∞-
norms. Fortunately, the very idea that overcomes this problem in the case of
interpolation also works for numerical integration.

4.2 Composite Rules

Instead of using Newton-Cotes formulas with a large number of nodal points, it
is often better to subdivide the domain of integration [a, b] and use quadrature
rules with fewer points on every subinterval. This leads to the definition of a
composite rule QN [f]

I[f] =

∫ b

a

f(x) dx =

N∑
j=1

∫ bj

aj

f(x) dx ≈
N∑
j=1

Q(j)[f] =: QN [f],

where a = a1 < b1 = a2 < · · · < bN−1 = aN < bN = b. The following theorem
shows how this subdivision strategy affects the quadrature error.

Theorem 4.2. Let QN be a composite rule of length N ∈ N. Suppose that
every subinterval is of equal length bj − aj = b−a

N and that Q(j) is a closed
Newton-Cotes formula of degree r ∈ N for every j = 1, . . . , N. Then,

|QN [f]− I[f]| ≤ C ‖f
(r+1)‖∞

(r + 1)!

(b− a)r+2

Nr+1
, (4.3)

for every f ∈ Cr+1[a, b].

74 CHAPTER 4. NUMERICAL INTEGRATION

Proof. Applying (4.2) to every subinterval we get

|QN [f]− I[f]| =
∣∣∣ N∑
j=1

Q(j)[f]−
∫ b

a

f(x) dx
∣∣∣

=
∣∣∣ N∑
j=1

(
Q(j)[f]−

∫ bj

aj

f(x) dx
)∣∣∣

≤
N∑
j=1

∣∣∣(Q(j)[f]−
∫ bj

aj

f(x) dx
)∣∣∣

(4.2)

≤
N∑
j=1

C
(bj − aj)r+2

(r + 1)!
max

x∈[aj ,bj]

∣∣∣f (r+1)(x)
∣∣∣

=
C

(r + 1)!

N∑
j=1

(b− a)r+2

Nr+2
max

x∈[aj ,bj]

∣∣∣f (r+1)(x)
∣∣∣

≤ C (b− a)r+2

(r + 1)!Nr+2

N∑
j=1

‖f (r+1)‖∞

= C
‖f (r+1)‖∞

(r + 1)!

(b− a)r+2

Nr+1
.

Note that the quadrature error of the composite rule (4.3) is equal to the
error of the non-composite Newton-Cotes formula (4.2) divided by Nr+1. We
can state the result of Thm. 4.2 more succinctly by saying that there is a B ≥ 0
such that

|QN [f]− I[f]| ≤ B
(1

N

)r+1

(4.4)

for every f ∈ Cr+1[a, b]. Since B is independent of N , we can decrease the
quadrature error arbitrarily much by simply increasing the number of subinter-
vals N . When a composite rule QN satisfies estimate (4.4), we say that QN
converges with order r + 1.

The trapezoidal rule, for instance, has degree r = n = 1. Therefore, by
Thm. 4.2 the composite trapezoidal rule converges with order r + 1 = 2. Ac-
cording to Example 4.4 Simpson’s rule has degree r = n + 1 = 3. Its order of
convergence is therefore r + 1 = 4.

4.3 Gauss Quadrature

Lemma 4.1 states that the degree of a quadrature rule with n+ 1 nodal points
cannot be higher than 2n+ 1. This raises the question whether it can actually
be equal to 2n+ 1.

4.3. GAUSS QUADRATURE 75

Example 4.5 (Two-point Gauss-Legendre rule1). Let [a, b] = [−1, 1] and con-
sider a general quadrature rule with n+ 1 = 2 nodal points∫ 1

−1
f(x) dx ≈ w0f(x0) + w1f(x1). (4.5)

We want to find values for the weights w0, w1 ∈ R and points x0, x1 ∈ [−1, 1]
such that (4.5) becomes an equality for all cubic polynomials f ∈ P3. If we plug
in the four monomials 1, x, x2, x3, we get a system of four nonlinear equations
in four unknowns

w0 + w1 = 2

w0x0 + w1x1 = 0

w0x
2
0 + w1x

2
1 =

2

3

w0x
3
0 + w1x

3
1 = 0.

Subtracting x20 times the second equation from the fourth yields

w0x
3
0 + w1x

3
1 − w0x

3
0 − w1x1x

2
0 = w1x1(x21 − x20) = 0. (4.6)

The weight w1 cannot equal zero, since then Q would be a 1-point rule. For the
same reason we must have x0 6= x1. Therefore x0 = −x1 must hold in order to
satisfy (4.6). Plugging this into the second equation gives

w0x0 + w1x1 = w0x0 − w1x0 = x0(w0 − w1) = 0,

which implies w0 = w1. From the first equation we now get w0 = w1 = 1.
Finally, the third equation yields x0 = − 1√

3
and x1 = 1√

3
.

Thus, we have found the so-called two-point Gauss-Legendre rule

Q[f] = f
(−1√

3

)
+ f

(1√
3

)
,

which is exact for all polynomials of degree less than or equal to 3.

In general, the (n+ 1)-point Gauss-Legendre rule

Q[f] =

n∑
i=0

wif(xi)

has maximal degree 2n + 1. Its weights and nodal points solve the 2n + 2
nonlinear equations

n∑
i=0

wix
k
i =

∫ 1

−1
xk dx =

1− (−1)k+1

k + 1
, k = 0, . . . , 2n+ 1.

1This example is taken from Introduction to Scientific Computing by Van Loan.

76 CHAPTER 4. NUMERICAL INTEGRATION

As above, the weights and nodes are usually computed for the interval [−1, 1]
and tables containing their precise values can be found in the literature. If the
domain of integration happens to be different from [−1, 1], one can transform
the integral first using integration by substitution:∫ b

a

f(x) dx =
b− a

2

∫ 1

−1
f

(
a+ b

2
+ x

b− a
2

)
dx.

Finally, for the sake of completeness we mention that the (n+ 1)-point Gauss-
Legendre rule satisfies the following error estimate

|Q[f]− I[f]| ≤ (b− a)2n−3 [(n+ 1)!]
4

(2n+ 3) [(2n+ 2)!]
3 ‖f

(2n+2)‖∞.

Appendix on Linear Algebra

Linear dependence. Let K ∈ {R, C}. We follow the usual convention that
elements of the vector space Kn are identified with column vectors. A subspace
of Kn is a subset S ⊂ Kn that is closed under addition and scalar multiplication.
That is, for all x, y ∈ S and scalars α, β the vector αx+ βy lies again in S. Let
x1, . . . , xk ∈ Kn be a set of vectors. Any sum of the form

α1x1 + · · ·+ αkxk

with αi ∈ K is called a linear combination. The set of all possible linear combi-
nations is called span of x1, . . . , xk, in symbols

span {x1, . . . , xk} = {α1x1 + · · ·+ αkxk : αi ∈ K}.

The span of a set of vectors in Kn is always a subspace of Kn. A set of vectors
is called linearly dependent, if there is a nontrivial linear combination (not all
αi = 0) that equals zero. If there is no such linear combination, the set is called
linearly independent. Let S be a subspace of Kn. A linearly independent set of
vectors whose span equals S is called basis of S. The dimension of a space is
the number of elements of any of its bases. For example, if the vectors x1, . . . , xk
are linearly independent, then they form a basis of their span, which in this case
is k-dimensional.

Matrix products. Let A = (aij) ∈ Km×n be a matrix with m rows and n
columns. For every x ∈ Kn the matrix-vector product Ax = b ∈ Km is defined
by

bi =

n∑
j=1

aijxj , b =

 b1
...
bm

 .

In this way, every matrix defines a function from Kn to Km

A : Kn → Km, x 7→ Ax.

Every such function is linear, meaning that A(αx + βy) = αAx + βAy for
all x, y ∈ Kn and all α, β ∈ K. Conversely, it can be shown that every linear
function between Kn and Km can be represented by a matrix A ∈ Km×n. Denote

77

78 APPENDIX ON LINEAR ALGEBRA

the j-th column of A by aj . Then we can rewrite the matrix-vector product as
Ax =

∑n
j=1 xjaj . Thus, Ax is a linear combination of the columns of A.

Let A ∈ Km×n and B ∈ Kn×k. The matrix-matrix product AB = C ∈ Km×k
is defined by

cij =

n∑
`=1

ai`b`j , 1 ≤ i ≤ m, 1 ≤ j ≤ k.

Again denote the j-th column of B,C by bj , cj respectively. Then, cj equals
the matrix vector product Abj . In other words the j-th column of C is a
linear combination of the columns of A where the coefficients are given by the
entries of the j-th column of B. Matrix-matrix multiplication is associative and
distributive over addition. It is not commutative.

Invertibility. The range of a matrix A ∈ Km×n is simply its range when
regarded as a function from Kn to Km

ranA = {Ax : x ∈ Kn}.

The interpretation of the matrix-vector product as linear combination implies
that ranA is equal to the span of the columns of A. This is the reason why ranA
is sometimes called column space of A. The row space is defined analogously. It
can be shown that the column and row spaces of a matrix always have the same
dimension. This number is called rank of the matrix and denoted by rankA. If
rankA is maximal, that is, rankA = min(m,n), then A is said to have full rank.
The kernel or nullspace of a matrix is the set of all vectors that are mapped to
zero by A

kerA = {x ∈ Kn : Ax = 0}.

The identity or unit matrix I ∈ Kn×n is the matrix which has ones along its
main diagonal and zeros elsewhere. It satisfies IA = A for all matrices A with n
rows and BI = B for all matrices B with n columns. Let A ∈ Kn×n be a square
matrix. If there is another matrix B satisfying AB = BA = I, then A is called
invertible or regular. In this case, the matrix B is unique, it is called the inverse
of A and it is denoted by A−1. The inverse of a product of two regular matrices
is the reversed product of the inverse matrices: (AB)−1 = B−1A−1. A matrix
which does not have an inverse is called singular. The following characterization
of regular matrices is a standard result.

Theorem. Let A ∈ Kn×n. The following statements are equivalent.

1. A is regular,

2. A is injective,

3. For every b ∈ Kn the linear system Ax = b has exactly one solution.

4. ranA = Kn,

5. rankA = n,

79

6. kerA = {0},

7. detA 6= 0.

Orthogonality. The adjoint or conjugate transpose of anm×nmatrixA is the
n ×m matrix defined by A∗ = Ā>, where the bar means complex conjugation
of all entries. If A∗ = A, then A is called self-adjoint. In the complex case
(K = C) A is also called Hermitian. If K = R and A∗ = A, then A is also called
symmetric. The adjoint of a product of two matrices is the reversed product of
the adjoint matrices: (AB)∗ = B∗A∗.

Using the ∗-notation we define the inner product between two vectors x, y ∈
Kn as x∗y. (Note that every vector can be regarded as a single column matrix.)
Also note that, if K = R, then the inner product is symmetric, whereas if K = C,
then it is not. The inner product induces a norm on Kn: ‖x‖ =

√
x∗x, the so-

called Euclidean norm, which measures the length of vectors. The definition of
a general norm together will be given below. The inner product allows one to
measure the angle α between vectors as well

cosα =
x∗y

‖x‖‖y‖
.

Two vectors x, y ∈ Kn are orthogonal, if their inner product equals zero.
The zero vector is orthogonal to every vector. A set of more than two nonzero
vectors is called orthogonal, if they are all mutually orthogonal. A set of vectors
q1, . . . , q` is called orthonormal, if it is orthogonal and all vectors have norm 1.
This can be stated succinctly as q∗i qj = δij for all i, j, where the Kronecker delta
is defined by

δij =

{
1, i = j

0, i 6= j.

Sets of nonzero orthogonal vectors are linearly independent. For, if we suppose
they are not, then

α1x1 + · · ·+ αkxk = 0,

where at least one αj is nonzero. Multiplying both sides with x∗j leads to ‖xj‖ =
0, which is contradicts the assumption that all vectors are nonzero. Thus, every
orthogonal set consisting of n vectors in Kn is a basis of Kn. The best known
example of an orthonormal basis is the canonical basis of Kn: e1, . . . , en, where
ei consists only of zeros except for its i-th entry, which is one.

Orthonormal vectors are convenient to work with. One reason is that they
allow us to easily decompose any vector into orthogonal components. To demon-
strate this let q1, . . . , qk ∈ Kn be an orthonormal set and x ∈ Kn an arbitrary
vector. Then the vector

r = x− (q∗1x)q1 − · · · − (q∗kx)qk (7)

is orthogonal to all qi. Multiply both sides with q∗i to see this! Thus we have
found a way to write x as a sum of k + 1 mutually orthogonal vectors. This

80 APPENDIX ON LINEAR ALGEBRA

decomposition suggests a procedure for turning a linearly independent set of
vectors into an orthonormal set:

Let x1, . . . , x` ∈ Kn be linearly independent. We construct an orthonormal
set q1, . . . , q` inductively. Set q1 = x1/‖x1‖. Then q1 has norm one. To find the
second vector we set

q̃2 = x2 − (q∗1x2)q1.

By (7) this vector is orthogonal to q1. After normalizing q2 = q̃2/‖q̃2‖, the set
{q1, q2} is orthonormal. Now, suppose you have already found k orthonormal
vectors, where k ≤ `− 1. Then set

q̃k+1 = xk+1 − (q∗1xk+1)q1 − · · · − (q∗kxk+1)qk (8)

and normalize again to get qk+1. After ` steps we have found an orthonormal
set with the property

span {q1, . . . , qk} = span {x1, . . . , xk}

for all k between 1 and `. This is the Gram-Schmidt process.
A square matrix Q ∈ Cn×n is called unitary, if Q∗Q = QQ∗ = I. Put

differently, the inverse and the adjoint of Q coincide. A square matrix Q ∈ Rn×n
with the analogous property Q−1 = Q> is called orthogonal. It is easy to see
that the columns of Q form an orthonormal basis of Kn: Denote the j-th column
of Q by qj . Then the (i, j) entry of Q∗Q equals q∗i qj . On the other hand the
(i, j) entry of I equals δij . Since Q∗Q = I, the columns of Q are an orthonormal
basis of Kn. An analogous argument for QQ∗ instead of Q∗Q shows that the
rows form an orthonormal basis as well.

Orthogonal and unitary matrices preserve the geometrical structure of the
underlying space. Applying such a matrix to a pair of vectors does not change
their inner product:

(Qy)∗Qx = y∗Q∗Qx = y∗x.

Consequently it does not change norms or angles either. Multiplying a vector
with a 2× 2 or 3× 3 orthogonal matrix gives a rotated and/or reflected version
of that vector.

Projections. A projection (matrix) is a square matrix that satisfies P 2x =
Px for all x. Here, P 2 stands for the matrix-matrix product PP . Applying
a projection matrix more than once to a vector does not change the result
anymore. For example, identity matrices with an arbitrary number of ones
deleted are projection matrices. If P is a projection, then

(I − P)2x = (I − P)(x− Px) = x− Px− Px+ Px = (I − P)x

and therefore I − P is a projection as well, the complementary projection to P.
The complementary projection to I−P is again P . Every projection decomposes
Kn into the two subspaces ranP and kerP in the sense that

ranP + kerP = Kn, while ranP ∩ kerP = ∅.

81

This can be seen by writing x = Px+ (I − P)x. Obviously, the first summand
lies in ranP , whereas the second one lies in ran (I−P). It remains to show that
ran (I − P) actually equals kerP. Assume that y ∈ ran (I − P). Then there is
an x such that Py = P (I − P)x = 0. Thus y ∈ kerP. Conversely, let x ∈ kerP .
Then x = (I − P)x which shows x ∈ ran (I − P).

A projection is said to be orthogonal, if ranP is orthogonal to kerP . This
means that x∗y = 0 for all x ∈ kerP and y ∈ ranP . An alternative character-
ization is this: A projection is orthogonal if and only if it is self-adjoint. The
complementary projection to an orthogonal projection is again orthogonal, since
(I − P)∗ = I∗ − P ∗ = I − P .

Every set of orthonormal vectors q1, . . . , qk ∈ Kn can be used to construct
an orthogonal projection. Let Q ∈ Kn×k be the matrix whose j-th column is qj
and define P = QQ∗. This matrix is an orthogonal projection, because

P 2 = QQ∗QQ∗ = QIQ∗ = P, and

P ∗ = (QQ∗)∗ = Q∗∗Q∗ = P.

The range of P is easily seen to be the span of {q1, . . . , qk}. Finally, notice
that the j-th entry of Q∗x is q∗jx and therefore, by the linear combination
interpretation of the matrix-vector product, we have

Px = QQ∗x =

k∑
j=1

(q∗jx)qj .

This expression sheds new light on (7), which we can now rewrite as r = (I−P)x.
The fact that r is orthogonal to all qj can be deduced from what we have shown
above. We have

r ∈ ran (I − P) = kerP ⊥ ranP = span {q1, . . . , qk},

where the symbol ⊥ means “orthogonal to.”
Now we can also reformulate the Gram-Schmidt process using our new termi-

nology. Suppose we have found k orthonormal vectors q1, . . . , qk. Arrange them
as columns into a matrix Qk ∈ Kn×k and define the projection Pk = QkQ

∗
k.

Then

q̃k+1 = xk+1 −QkQ∗kxk+1 = (I − Pk)xk+1,

and the normalization of q̃k+1 is as before.

Norms. A vector norm is a function ‖·‖ : Kn → [0,+∞) that assigns a length
to each vector. It must satisfy the following three conditions. First, the zero
vector is the only vector with length 0. Second, if a vector is multiplied by a
scalar, then its length should scale accordingly. Third, the length of a sum of
two vectors must never exceed the sum of their lengths. More precisely, for all
α ∈ K and x, y ∈ Kn

82 APPENDIX ON LINEAR ALGEBRA

1. ‖x‖ = 0 if and only if x = 0,

2. ‖αx‖ = |α|‖x‖,

3. ‖x+ y‖ ≤ ‖x‖+ ‖y‖ (triangle inequality).

An important family of norms are the p-norms

‖x‖p = (|x1|p + · · ·+ |xn|p)
1
p , p ∈ [1,+∞),

and the maximum norm
‖x‖∞ = max

1≤i≤n
|xi|.

The Euclidean norm, which we introduced above using the inner product, corre-
sponds to the value p = 2. The p-norms satisfy the so-called Hölder inequality,
which states that for all x, y ∈ Kn

|x∗y| ≤ ‖x‖p‖y‖q,

where p, q ∈ [1,+∞] must be such that 1/p + 1/q = 1. The fraction 1/+∞ is
defined to be 0. The special case where p = q = 2 is called Cauchy-Schwarz
inequality.

Two norms ‖ · ‖ and ‖ · ‖′ on Kn are called equivalent, if there are positive
constants C1 and C2 such that the inequality

C1‖x‖ ≤ ‖x‖′ ≤ C2‖x‖ (9)

holds for all x ∈ Kn. It can be shown that all vector norms are equivalent. (The
same holds true for matrix norms, see below.) For example, we have

‖x‖∞ ≤ ‖x‖2 ≤
√
n‖x‖∞

for all x ∈ Rn. Because of this equivalence certain statements involving norms
hold true independently of the choice of norm.

There are two ways of looking at m × n matrices. First, we can view them
as elements of an mn-dimensional vector space. Second, we can interpret them
as linear maps between Kn and Km. The first viewpoint leads to a definition
analogous to the one for vectors: A matrix norm is a function ‖ · ‖ : Km×n →
[0,+∞) that satisfies, for all α ∈ K and A,B ∈ Km×n, the following conditions

1. ‖A‖ = 0 if and only if A = 0,

2. ‖αA‖ = |α|‖A‖,

3. ‖A+B‖ ≤ ‖A‖+ ‖B‖.

The second viewpoint leads to a definition of matrix norm that depends on the
respective norms on Kn and Km: Fix norms on Kn and Km. Then the induced
matrix norm of A ∈ Km×n is defined as

‖A‖ = sup
x 6=0

‖Ax‖
‖x‖

. (10)

83

Intuitively, the ratio ‖Ax‖/‖x‖ measures the amount by which A has stretched
the vector x. Thus, the number ‖A‖measures the maximal amount of stretching
that the matrix A induces on Kn.

Let us collect some properties of induced matrix norms. First, every induced
matrix norm satisfies the three conditions above. Next, we can deduce directly
from the definition that ‖Ax‖ ≤ ‖A‖‖x‖ for all x. Consequently, we have for
matrices A ∈ Km×n and B ∈ Kn×k

‖ABx‖ ≤ ‖A‖‖Bx‖ ≤ ‖A‖‖B‖‖x‖.

Dividing by ‖x‖ and taking suprema on both sides shows the so-called submul-
tiplicativity of induced matrix norms:

‖AB‖ ≤ ‖A‖‖B‖.

It is sometimes useful to realise that in (10) it is actually enough to take the
supremum only over those x ∈ Kn with ‖x‖ = 1

‖A‖ = sup
x 6=0
‖A(x/‖x‖)‖ = sup

‖x‖=1

‖Ax‖.

The induced norm of A−1 can be written as

‖A−1‖ = sup
x 6=0

‖A−1x‖
‖x‖

= sup
y 6=0

‖y‖
‖Ay‖

=

(
inf
y 6=0

‖Ay‖
‖y‖

)−1
=

(
inf
‖y‖=1

‖Ay‖
)−1

.

(11)
Finally, notice that all suprema and infima above are attained, which means
that they are in fact maxima/minima.

The matrix norm induced by the p-norm on both Kn and Km is denoted by
a subscript p as well. That is,

‖A‖p = sup
x6=0

‖Ax‖p
‖x‖p

.

For p = 1 and p =∞ this leads to

‖A‖1 = max
1≤j≤n

‖aj‖1, and ‖A‖∞ = max
1≤i≤m

‖a∗i ‖1. (12)

respectively, where aj denotes the j-th column and a∗i the i-th row of A.
In order to explain the matrix norm that is induced by the Euclidean norm

(p = 2) we need a few more definitions. A scalar λ ∈ K is called eigenvalue
of B ∈ Kn×n, if there is a nonzero vector x such that Bx = λx. The spectral
radius of B is defined as

ρ(B) = max{|λ| : λ eigenvalue of B}.

The square roots of the eigenvalues of A∗A are called singular values of A ∈
Km×n. Singular values are always nonnegative real numbers. This can be seen
by multiplying the equation A∗Ax = λx from the left with x∗ which leads to

‖Ax‖2 = λ‖x‖2.

84 APPENDIX ON LINEAR ALGEBRA

Now it can be shown that the matrix norm induced by the Euclidean vector
norm, that is,

‖A‖2 = max
‖x‖2=1

‖Ax‖2. (13)

equals the largest singular value of A, in symbols ‖A‖2 =
√
ρ(A∗A). Hence its

name spectral norm. Similarly, if A is regular, then ‖A−1‖2 equals the reciprocal
of the smallest singular value of A. Compare this statement to (11) and (13)!

One remarkable property of the spectral norm is that it is invariant under
orthogonal or unitary transformations. Let U and V be two such matrices.
Then

‖UAV ‖22 = max
‖x‖2=1

x∗V ∗A∗U∗UAV x = max
‖x‖2=1

‖AV x‖22

= max
‖V x‖2=1

‖AV x‖22 = ‖A‖22.
(14)

Let us look at the spectral norm for two certain types of matrices: or-
thogonal/unitary ones and self-adjoint ones. The spectral norm of an orthog-
onal/unitary matrix equals one. For in this case A∗A is the identity matrix
and all eigenvalues of the identity are one. If A ∈ Kn×n is self-adjoint, then
‖A‖2 = ρ(A). Due to the spectral theorem every self-adjoint matrix is diago-
nalizable by orthogonal/unitary matrices. This means that there is an orthog-
onal/unitary matrix U such that A = UΛU∗, where Λ = diag (λ1, . . . , λn) is a
diagonal matrix and the λi are eigenvalues of A. Hence

‖A‖22 = ρ(A∗A) = ρ(A2) = ρ(UΛ2U∗) = max
1≤i≤n

|λi|2 = ρ(A)2.

The most important matrix norm which is not an induced norm is the Frobe-
nius norm. It corresponds to the Euclidean norm for vectors and is defined by

‖A‖F =
(∑

ij

a2ij

) 1
2

.

Linear systems of equations. A general system of m linear equations in n
unknowns has the form

a11x1 + · · · + a1nxn = b1
...

...
...

...
am1x1 + · · · + amnxn = bm

Using matrix-vector notation we can write this simply as Ax = b with system
matrix A ∈ Km×n, vector of unknowns x ∈ Kn and right-hand side b ∈ Km. A
system with more equations than unknowns (m ≥ n) is called overdetermined.
If there are less equations than unknowns (m ≤ n), then the system is under-
determined. The m× (n+ 1) matrix that results from appending b to the right
side of A is called augmented matrix. The Rouché-Capelli theorem states that
the linear system Ax = b has a solution, if and only if the augmented matrix

85

has the same rank as A. If rank (A) = n, then the solution is unique. Otherwise
there are infinitely many solutions.

When solving a system of linear equations one often interchanges columns
or rows or adds a multiple of a row to another. Such operations can be written
as matrix-matrix multiplications. While row operations correspond to multi-
plication of the augmented matrix with another matrix from the left, column
operations correspond to multiplication of A with another matrix from the right.

For example, interchanging columns k and ` can be realized by multiplying
from the right with an identity matrix that has columns k and ` interchanged.
Such a matrix is also called permutation matrix. Multiplying the same matrix
from the left interchanges rows k and `. Multiplying a row by α ∈ K is realized
by multiplication from the left with an identity matrix that has the correspond-
ing 1 replaced wit α. Finally adding α times row k to row ` can be achieved
by multiplying from the left with an identity that has an α inserted at position
(`, k).

In general, finding a matrix that performs a certain row operation on A is
achieved by appending an identity matrix horizontally to A (i. e. to the left or
right of A) and performing the row operation on the augmented matrix (I |A) or
(A | I). The modified identity matrix is just the matrix that, if multiplied from
the left with A, performs the desired row operation. For column operations the
identity matrix must be appended vertically to A.

