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L Convergence Rates

Inverse Problems

Let X, Y be topological spaces and F: X — Y and solve, for
given data y € Y, the equation

If (1) is ill-posed, regularization is necessary:
Search for x, € X minimizing

T(x; o, y) ==S(F(x),y) + aR(x) .

Here,
S:YxY =Ry ... non-negative distance measure,
R: X —R>g ... non-negative regularization functional,
a>0 ... regularization parameter.
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Well-Posedness

Existence:
7 (+; v, y) attains a minimizer for every « >0 and y € Y.

Stability:
If S(y(¥),y) — 0 and X e arg min, 7 (x; a, y(¥)), then

X((Xk) — Xq € argmin7 (x; i, y) .
X

Convergence:
If S(y%,y") <6 — 0 and o — 0 sufficiently slowly (6/ac — 0), then

argmin 7 (x;a,y°) 5 x5 — x' carg min{R(x) : F(x) = yT} .

Conditions for well-posedness in: Hofmann et al. 2007, Poschl
2008, Scherzer et al. 2009.
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Convergence Rates

Measure speed of convergence: Let
Y (x;a,8) = {xg cargminT(x;a,y?) : S(y0,y1) < 5}

and define for some distance measure
D: X x X — [0, +00]
the function
H(x"; a,8) = sup{D(xJf x2):x% e Z(XT;a,(S)} .

e

Convergence rate: behaviour of H as « and § tend to zero ~
accuracy of the regularization method (for small noise level).
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Classical Convergence Rates in Hilbert Spaces

Setting: X, Y Hilbert spaces, F: X — Y bounded linear.
Let ) )
Sy, y2) =y — »2lly R(x) = [Ix[lx ;

D(x1.x2) = I — sellk
If xT satisfies the range condition

xI € Ran F*

then there exists a constant v > 0 such that

H(x"; o, 6) < ’y\[—i- T

Q\%

Note that 6 ~ S(yf,y?) = |ly' — y?||%.
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Banach Spaces: Bregman Distances

Let X, Y be Banach spaces, F: X — Y bounded linear,
S(y1,y2) = [ly1 — y2l3. Let

R: X — [0,400] convex and lower semi-continuous,
D(x1, %) = R(x1) — R(x2) — (OR(x2), x1 — x2) .

D. .. Bregman distance.
If xT satisfies the range condition

Ran F* N OR(x") # 0

then there exists a constant v > 0 such that
t 0 7
H(x"; o, 0) < = + V6 + S
o
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Range Condition and Variational Inequalities

The range condition
Ran F* N OR(x") # 0
is equivalent to the inequality
<6R(XT),XT —x) < 'yHF(XJr - x)]| - (2)

Proofs of rates rely on (2) rather than on the range condition.
Slight modification of proofs yields similar rates under the weaker
condition

<8R(XT),XT — X> < UD(XT,X) + ’yHF(XT) — F(X)H .
for some 0 < 1 < 1. No linearity of F is required.
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Variational Inequalities

Let X, Y be Banach spaces and F: X — Y sufficiently regular.
Assume that, for some 3 > 0, v > 0,

BD(x,x") < R(x) = R(x") +7[[F(x) — F(x")]|

whenever x sufficiently close to x™ and |R(x) — R(xT)| small

enough. Then

BH(x'; o, 8) < g+’y\/5+ >

whenever 6, «, and §/« are small enough.
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Abstract Convexity

Definition
Let X be a set and let W be a family of functions

w: X — R=RU{+o0}.
A function R: X — R is
W -convex at x € X,
if for every € > 0 there exists w € W such that
R(X) > R(x) + (w(X) — w(x)) — ¢

for all x € X.
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Abstract Bregman Distance

Definition
Let R be a W-convex function.
The W-sub-differential of R at x € X is defined as

IWR(X) :={w e W :R(X) > R(x) + w(X) — w(x)} .

We define, for w € Oy R(x), the W-Bregman distance with
respect to w as
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Example — Classical Convexity

Let X be a Banach space with dual X*.

A function R: X — R is X*-convex, if and only it is lower
semi-continuous and convex in the classical sense.

We have
Ox+R {ﬁeX* 'R(X)ZR(X)+<§,>"<>—(§,X)} = OR(x) .

Moreover,

D%(x,%) = R(%X) = R(x) — (£, % — x)

is the usual Bregman distance.
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Example — Clarke Sub-differential

Let X be a Hilbert space. The
proximal sub-differential OpR(x)
is defined as the set of all £ € X such that
R(%) = R(x) + (&% = x) — o||% — x|

for some o > 0 and all X near x.

Define W by
weW —= wk) = (% —x)—o||x — x|
for some £ € X, 0 > 0, and X close to x. Then

aP'R(X) #* ) — aw'R(X) #* 0.
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Example — Generalized Sub-differential

Define W as the set of all functions of the form

for X close to x, with £ € X and A a positive semi-definite,
symmetric, bounded quadratic form.

Define the generalized sub-differential of R at x as OwR(x).
Again,
aPR(X) # ) — 8wR(X) # 0.

We have the Bregman distance
D" (x,%) = R(X) — R(x) — ({, % — x) + A(X — x, X — x)
for X close to x.
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Generalized Variational Inequalities

Let
xI € arg min{R(x) : Ax = yT} .

and let ®: R>g — R>( concave and strictly increasing with
®(0) =0.

Definition

We say that a variational inequality at x' holds with 3 > 0 and ®,
if
BD™(x',x) < R(x) — R(x") + ®(S(F(x), F(x1))

for all x in a neighbourhood of x' with R(x) close to R(x").
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Convergence Rates

Assume that a variational inequality at x' holds with 3 > 0 and ®.
Then for o and § small enough we have the following estimates:

o Iflim; o+ ®(t)/t < +o0, then

BH(x,6) < 2 4+ 10(5) .
«
o Iflim; g+ ®(t)/t = +o0, then
5 v
BH(xT; @, 8) < — (@) + 72 S‘)

with W denoting the convex conjugate of ®~1.
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Convergence Rates — Asymptotics

Let now

xJ € argmin T (x; o, y°) with Sy’ yh <s.

Corollary

Assume that a variational inequality at x™ holds with > 0 and ®.

o Iflim,_ g+ ®(t)/t < +00, then we have for a = const small
enough
D" (x',x%) = 0(9) .

o Iflim; g+ ®(t)/t = +00 and a ~ §/P(J) then

D% (xT,x%) = O(®(9)) -

V.
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Metric Regularization

Let Y be a metric space and

S(y1,y2) = dy1,y2)° with p>1.

If the variational inequality
BDY(xT, x) < R(x) = R(x) +7d (F(x), F(x))

holds, then we have for a parameter choice

a~d(yl,y?)Pt

the rate
D (x',x)) < 0(d(y',»%)) -
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Setting

Let X and Y be Hilbert spaces and F: X — Y bounded linear.
Let moreover

Sy, y2) = lly1 — y2llP with p>1.
Assume that R has a proximal sub-differential w at xt, that is,
R(x) > R(x") + (£, x — xT) — A(x — xT, x — xT)

with £ € X and A: X — X positive semi-definite, symmetric,
bounded, bilinear.
Then there exists L: X — X bounded linear and self-adjoint such
that

A(x1, x2) = <Lx1,x2> .
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Lemma

Assume that for some yi > 0 the mapping (1> F*F — L is positive
semi-definite and that

€ € Ran(\/p2F*F — L) .
Then the variational inequality
D*(xt, x) < R(x) = R(x') + 4[| F(x — x|

holds for some v > 0. In particular, with a parameter choice
a~ |yt —y°|Pt,

D" (x",x3) = O(lly" - y°lIl) -

)
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Setting

Let Y be a Hilbert space, X = (2, and F: (> — Y bounded linear.
Let S(y1,y2) = |ly1 — y2||? and define

R(x) = Z (x) for some ¢: R —[0,+00] .
A

Let 1 < p < 2 and consider the set W of functions of the form

w(x) = (&, x —XT> - Zcﬂx)\ —xj\\p
A

with £ € /2 and ¢, > 0. Assume that, for some p > g > 0 and
>0,

Clt|9
1+ |t|9

o(t) >
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Convergence Rates

Assume that the following hold:
o x' is the unique R-minimizing solution of Fxt = yT.
o supp(x') is finite (x' is sparse).
° F|g2(supp(x1‘)) is injective.

Assume that

W=x ({x— XT> - Z anxn — X;f\|p € dwR(x") .
A
If € € Ran(F*) and supp(&) = supp(x'), then, for some
w € OwR(x") and v > 0,

vllxe = x| < D¥(xT,x3) = O(lly’ — ¥'Il) -
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Summary

@ Derivation of convergence rates for non-convex Tikhonov
regularization.

@ Variational inequalities allow generalization by means of
abstract concepts of convexity.

@ Connection to standard range condition for linear operators on
Hilbert spaces.

o Convergence rates for sparse regularization with non-convex
regularization term.
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