
Numerical Methods for the Solution of

Differential Equations

Markus Grasmair

Vienna, winter term 2011–2012

Analytical Solutions of Ordinary Differential Equations

1. Find the general solution of the differential equation

ẏ = y2 .

In addition, find particular solutions for the initial conditions y(1) = 1, y(1) = −1,
and y(1) = 0.

2. Find the general solution of the differential equation

(t2 + 1)ẏ + ty =
1

2
.

3. Find the general solution of the differential equation

(3t− y)ẏ + t = 3y .

NB: This equation is of homogeneous type.

Numerical Solution of ODEs

4. Implement inMatlab orOctave the explicit Euler method, the midpoint method,
and Heun’s method for the solution of an ODE (or a system of ODEs) of the form

ẏ(t) = f
(

t, y(t)
)

, y(t0) = y0 , (1)

up to some given time T > t0.

Test your code on the system of ODEs

ẏ1 = −y2 , ẏ2 = y1 , y1(0) = 1 , y2(0) = 0 , (2)

1



with final time T = 2π, and compute the approximation error errj (the norm of
the difference between the solution of the ODE and its approximation) for step
sizes 2π/2j , j = 1, . . . , 10 (the solution is: y1(t) = cos(t), y2(t) = sin(t)).

A numerical approximation of the order of the methods (the numerical order) can
be found by observing the ratios

−
ln(errj+1 / errj)

ln(2)

for large j. Explain why, and determine the numerical order of the methods.

5. Use your code to solve the ODE

ẏ = 3y2/3 , y(−1) = 1 ,

and determine the numerical order of the methods at the final times T = −0.5,
T = 0, and T = 1. Explain the result!

6. Implement inMatlab orOctave Taylor’s method of second order for the solution
of an ODE of the form (1). Test your implementation on the ODE

ẏ(t) = y(t) cos(t) , y(0) = 1 .

Multi-step Methods

7. Write a Matlab or Octave implementation of the Adams–Bashforth method of
third order and test your code on the system of ODEs in (2).

8. Write a Matlab or Octave implementation of a predictor–corrector method
based on the third order explicit and implicit Adams methods and test your code
on the system of ODEs in (2).

Stiff ODEs

In the next exercises, we will mainly consider the mass–spring system discussed in the
lecture, which can lead to a stiff ODE depending on the relative size of the input para-
meters. The second order system of ODEs is given by the equations

ÿ1 = −
k1
m1

y1 +
k2
m1

(y2 − y1) ,

ÿ2 = −
k2
m2

(y2 − y1) ,

with initial conditions
y1(0) = a , ẏ1(0) = b ,

y2(0) = c , ẏ2(0) = d .

Here, y1 and y2 describe the displacement of the masses m1 and m2 from the equilibrium
position, and k1 and k2 the spring constants.



9. Rewrite the second order mass–spring system as a first order system by introducing
auxiliary variables for ẏ1 and ẏ2.

10. Write aMatlab orOctave implementation of the classical Runge–Kutta method
and use it for computing numerical solutions of the mass–spring system with the
following parameters:

a) Non-stiff setting:

k1 = 100, k2 = 200, m1 = 10, m2 = 5,

a = 0, b = 1, c = 0, d = 1 .

b) Stiff setting:

k1 = 100, k2 = 2000, m1 = 10, m2 = 0.1,

a = 0, b = 1, c = 0, d = 1 .

Solve the systems for different numbers of steps and compare the results (for the
stiff setting, the comparison between 1000 and 1005 steps can be interesting).

In addition, test your implementation on the linear ODE

ẏ = −200
(

y − sin(t)
)

+ cos(t) . (3)

11. The implicit Euler method for the solution of a linear ODE of the form

ẏ = Ay , y(0) = y0 ,

is defined by the iteration

yk+1 = yk + hAyk+1 .

Write a Matlab or Octave implementation and use it for the numerical solution
of the mass–spring system in the stiff setting.

12. Write a Matlab or Octave implementation of the trapezoidal rule (second order
Adams–Moulton method) for linear ODEs and use it for the numerical solution of
the mass–spring system in the stiff setting.

13. Modify your implementations of the implicit Euler method and the trapezoidal
rule in such a way that they can also be used for linear (inhomogeneous and non-
autonomous) ODEs of the form

ẏ = g(t) + A(t)y ,

where g : R → R
d and A : R → R

d×d are given functions. Test your implement-
ations on the ODE (3) and compare the results for different initial conditions
y(0) ∈ R and different step sizes.



A Non-linear Stiff ODE

Next we consider the non-linear system of ODEs

mÿ1 = −k
(

‖y‖ − l
) y1
‖y‖

− d〈y, ẏ〉
y1

‖y‖2
,

mÿ2 = −g − k
(

‖y‖ − l
) y2
‖y‖

− d〈y, ẏ〉
y2

‖y‖2

(4)

with initial conditions
y1(0) = a , ẏ1(0) = c ,

y2(0) = b , ẏ2(0) = d ,

which approximately describes the behaviour of the damped spring pendulum depicted
in Figure 1. Here g is the gravitional acceleration at the earth’s surface, m is the mass of
the weight attached to the spring, k is the spring constant, l is the length of the spring
at its resting position, d is the damping coefficient, and y1, y2 denote the coordinates of
the weight (the suspension point of the spring is assumed to be the origin). Moreover
‖y‖ :=

√

y21 + y22 is the Euclidean norm of y (that is, the length of the pendulum), and
〈y, ẏ〉 = y1ẏ1+y2ẏ2 is the scalar product of y and ẏ (and thus the length of the projection
of ẏ onto y). This equation is stiff, if, for instance, the spring constant is much larger
then the gravitational acceleration and also the damping is strong.

�����������
�����������
�����������
�����������

g

k

Figure 1: Spring pendulum.

14. Rewrite the system (4) as a first order system of ODEs.

15. Consider the numerical solution of the ODE (4) with the implicit Euler method.
Formulate explicitly the equations that have to be solved in each time step. In
addition, formulate the linear equations that appear when the non-linear equations
are solved using the simplified Newton method.

16. Write Matlab or Octave implementations of the two-stage Gauß method and
the two-stage Radau IIA method for the solution of non-linear ODEs. Use the
simplified Newton method for the solution of the non-linear system that appears
in each time step. Test your code on the system (4) and compare the results (and



the necessary step lengths) with the results using an explicit method of a similar
order (for instance, the classical Runge–Kutta method).

Remark: The m-files spring pendulum.m and spring pendulum der.m on the web-
page of the lecture contain implementations of the functions defining the system (4)
(already written as a first order system of ODEs) and its derivative. The functions
take as input one scalar (the time, which is not used) and one vector with four
components. The first component vector corresponds to y1, the second to y2, the
third to ẏ1, and the fourth to ẏ2.

The coefficients in the implementation are g = 1, m = 1, k = 100, l = 5, d = 1000.
Interesting initial conditions might be:

• y1(0) = 0, ẏ1(0) = 0 and any intial conditions y2(0) < 0 and ẏ2(0) ∈ R. This
setting can be good for testing purposes, as the first variable should remain
zero during the whole evolution.

• y1(0) = 0, y2(0) = −5, ẏ1(0) = c ∈ R, ẏ2(0) = 0. Then the trajectory of
the solution lies almost on a circle. Depending on the size of c, this circle is
closed or not.

• y1(0) = 6, y2(0) = −6, ẏ1(0) = ẏ2(0) = 0.


