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Abstract

In this paper we construct a shape space of medial ball representations from
given shape training data using methods of Computational Geometry and Statis-
tics. The ultimate goal is to employ the shape space as prior information in su-
pervised segmentation algorithms for complex geometries in 3D voxel data. For
this purpose, a novel representation of the shape space (i.e., medial ball repre-
sentation) is worked out and its implications on the whole segmentation pipeline
are studied. Such algorithms have wide applications for industrial processes and
medical imaging, when data are recorded under varying illumination conditions,
are corrupted with high noise or are occluded.

Keywords: medial ball representation,medial axis transform, image segmentation, Pro-
crustes analysis, skin surfaces, EM algorithm

1 Introduction
Segmentation and detection of objects in image data is of major importance in sev-
eral applications, such as for instance medical imaging, video surveillance and mo-
tion tracking. There are basically two different categories of segmentation algorithms,
∗Computational Science Center, University of Vienna, Nordbergstraße 15, A-1090 Wien, Austria,

{jochen.abhau,otmar.scherzer}@univie.ac.at; present address of Jochen Abhau: Institute
of Mathematics, University of Innsbruck, Technikerstraße 21a, A-6020 Innsbruck, Austria
†Institute for Software Technology, Graz University of Technology, Austria, oaich@ist.tugraz.at
‡Institute of Mathematics, University of Innsbruck, Technikerstraße 21a, A-6020 Innsbruck, Austria,

Sebastian.Colutto@uibk.ac.at; present address of Sebastian Colutto: Department of Digitization
and Digital Preservation, University of Innsbruck, Innrain 52, A-6020 Innsbruck, Austria
§Geom e.U. Softwareentwicklung, Brockmanngasse 15, A-8010 Graz, Austria office@geom.at
¶Radon Institute of Computational and Applied Mathematics, Austrian Academy of Sciences, Al-

tenberger Straße 69, A-4040 Linz, Austria

1



namely supervised and unsupervised methods. Unsupervised algorithms do not make
benefit out of object models or statistics on object models; this models will not be stud-
ied in this paper. Supervised methods and algorithms on the other hand make use of
statistics on object models to be segmented. This is the type of algorithm which we
investigate in this paper. Historically, unsupervised segmentation algorithms have been
introduced first. However, there the segmentation results are poor if the data is noisy,
has little contrast, or if the object is partially occluded. To cope with these difficult
situations supervised segmentation has to be used.

In this paper we focus on supervised segmentation methods based on minimiza-
tion of energy functionals, which have been proven to be very efficient. The shape
prior model is a medial ball representation of low dimensionality. In this context it is
common to differ between edge based (see [51]) and region based energy functionals
(see [41]).

In the following we review some energy minimization segmentation approaches
which incorporate shape prior information:
In [19] (this work is actually in 2D) contours are represented as simple, closed B-
spline curves. The shape prior and statistic are computed as the mean and the principal
components of the spline control points of the training shapes. For segmentation a
Mumford-Shah like energy functional is supplemented by the Mahalanobis distance to
the shape prior, which is calculated from the statistics. This approach is based on the
assumption that the shapes are distributed according to a multivariate Gaussian distri-
bution. Using kernel space techniques, a generalization to non-Gaussian distributed
shapes is given in [18]. Applications to medical MR image segmentation have been
studied in [15].

A level set approach for segmentation with shape priors has been studied in [38].
There shapes are associated with the associated signed distance functions. On the train-
ing distance functions of the shapes the actual statistics, which is used in the segmen-
tation algorithm, is calculated. Shape statistics are implemented in a geodesic active
contour evolution as maximum a posteriori estimator of the shape. By this approach
geometrically and topologically complex shape priors can be considered. However,
this representation requires large computational resources, and efficient implementa-
tions with narrow bands tend to create inaccuracies and artifacts in the segmentation
results. In [23], the work of [38] has been improved concerning efficiency. The same
shape prior strategy as in [38] has been used in combination with the unsupervised
Chan-Vese energy minimization [13] in [50]. Further generalizations of [38] are given
in [45] and [46].

In [16], shape statistical prior information is incorporated in a variational segmen-
tation functional with an additional regularization term. A generalization of this work
is presented in [27]. More recently, the paper [12] proposes a variational level set
framework that takes into account shape prior information which combines gradient
and region based segmentation.

A compact representation of shapes, called discrete m-rep (Medial atom represen-
tation) has been proposed in [25] and [43] (see also [47]). A discrete m-rep consists
of medial atoms aligned on a regular grid structure, that approximates the medial axis
defined by Blum in [9]. Medial atoms consist of a coordinate position in space, a ra-
dius and two boundary vectors. The actual surface associated with the m-rep can be
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constructed using an enfolding B-spline of the surface that interpolates the boundary
points and normals defined by the medial atoms. In contrast to discrete m-reps as de-
fined above, continuous m-reps were introduced in [52]. There, the boundary of the
object and the medial axis itself are approximated using B-splines. Discrete m-reps
can be regarded as elements of a Riemannian shape manifold, which defines distances
between m-reps by lengths of geodesics amongst them. An m-rep shape space is suit-
able for modeling shapes of very similar geometry and topology. Image segmentation
with m-reps has been considered in [30, 42]. Mumford-Shah energy segmentation on
an m-rep shape space has been presented in [17]. A limitation of using m-reps defined
on a fixed grid structure is that the geometry of the object to be segmented has to be
determined in advance.

Therefore, in this work, we use shapes which are defined via a fixed number of me-
dial balls which are defined by its position and radius only. This shape representation
does not require an underlying grid-structure as m-reps do. In fact this flexibility in
combination with surface generation using skin surfaces (cf. Section 5.1) allows us to
consider objects of complex geometry. To clarify and highlight the notation we give
the following comparision of the two different approaches:

medial balls: uses (position,radius) [our work]
medial atom: uses (position, radius, two boundary vectors) [47]

Note that m-reps are defined by medial atoms on a regular grid that approximates the
medial axis, while our representation is a collection of medial balls that sample the
medial axis. Medial balls are a basic tool in Computational Geometry. Since in our
approach we rely on medial balls rather than atoms, it is natural to work with estab-
lished Computational Geometry algorithms for surface creation rather than algorithms
usually applied for m-reps. Such combinations of algorithms – as for instance skin
surfaces – are outlined below.

In this paper, we consider the construction of medial ball shape spaces and the
computation of statistics of training shapes, which are then used for supervised energy
minimization segmentation. We are given training shapes, which are represented as
triangular surface meshes. They can either be provided by expert segmentation, or have
been obtained from unsupervised segmentation (see e.g. [2, 17]). For the latter one
can also imagine to use data of other imaging modalities, which have higher contrast
or are less affected by noise.

The following scheme, which can as well serve as an outline of our work, is studied:

Scheme 1.1

Preprocessing (Shape Statistics)

• For each mesh a discrete medial axis transform

M = (x1, . . . , xk; r1, . . . , rk) (1)

is computed. We refer to c(M) = (x1, . . . , xk) ∈ R3×k as the centers of the
k medial balls of M , and r1, . . . , rk are their radii. It is important for our
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application that each discrete medial axis transform Mj consists of the same
number k of medial balls (xi, ri) ∈ R3 × R+. The algorithm developed in
here is capable to do so, which is a novel aspect in the literature. For sake of
simplicity, the discrete medial axis transform computed in this step will be called
ball representation according to its definition (Section 2).

• A labeling of the ball representation Mj is computed by an EM-algorithm and
the Kuhn-Munkres algorithm (Section 3).

• Using Procrustes analysis, a mean ball representation is computed from the la-
beled ball representations, and a Mahalanobis distance between ball represen-
tations is defined. These are the building blocks of our medial ball shape space.
(Section 4).

Segmentation

• For segmentation the shape space is implemented as shape prior information in
a simplified Mumford-Shah functional. The implied surface of the ball represen-
tations is constructed by a skin surface [21] (Section 5).

In Section 6 the full pipeline of statistics and segmentation is applied to synthetic data,
and Section 7 concludes the paper.

2 Medial Axis Transform
In this section we consider the problem of approximating a number of bounded open
sets Ω1, . . . ,Ωn ⊂ R3 by sets B1, . . . , Bn of approximate medial balls, where all
sets Bi have the same cardinality. Stability of the approximation, described below,
is of vital importance for the statistical analysis of medial axis representations. Our
novel approach for calculating sets of approximate medial balls of the same cardinality
for a class of objects combines three well known methods. First we utilize Voronoi
diagrams to approximate objects by sets of (approximate) medial balls [7, 8]. As these
sets will usually have a rather huge cardinality we then use set covering methods to
obtain sufficiently small and stable subsets [5, 4]. Finally, we use a k-means clustering
algorithm [31] to control the cardinality of the approximating sets in order to obtain
sets of approximate medial balls of uniform cardinality.

We start by reviewing some basic facts of the medial axis transform.

2.1 Discrete medial axis transform
The following definitions of the medial axis and medial axis transform are standard and
can for instance be found in [10].

Definition 2.1 ([10]) The inner Medial Axis M(Ω) of a bounded open set Ω ∈ R3 is
the set of points x ∈ Ω which have at least two closest points in ∂Ω, where ∂Ω denotes
the boundary of Ω. The inner Medial Axis Transform MTin(Ω) is the collection of
maximal (with respect to inclusion) open balls centered at M(Ω) and included in Ω.
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Note that the cardinality of the inner Medial Axis Transform is in general infinite.
Moreover the medial axis M(Ω) behaves unstable with respect to perturbations of high
curvature of ∂Ω. That is, the medial axis might contain branches that are far from
being intuitive. The corresponding inner medial axis transform MTin(Ω) expresses
this unstable behavior by small balls near the surface of Ω. For these reasons we seek
for an approximation of MTin(Ω), which we define next.

Definition 2.2 ([10]) The inner Discrete Medial Axis Transform DMT(Ω)
in is a fi-

nite set of open, approximate medial balls, which approximates the inner Medial Axis
Transform MTin(Ω).

In the following we assume that the input object Ω is given by a set SΩ of sample
points of the boundary ∂Ω of Ω and a triangular mesh T (SΩ), representing ∂Ω. We
first show how to approximate one three-dimensional object Ω by the union of its dis-
crete medial axis transform DMT(Ω)

in in a stable way. We start with the well known
Voronoi approach [7, 8].

Definition 2.3 The Voronoi Diagram of a set of points SΩ in R3 is a partition of R3

into (possibly unbounded) convex polyhedral regions, called Voronoi cells, such that
each point si ∈ SΩ has an associated Voronoi cell v(si) with

v(si) := {x ∈ R3 : ‖x− si‖ ≤ ‖x− sj‖ ,∀i 6= j, si, sj ∈ SΩ}.

We first compute the Voronoi diagram of SΩ. Then we extract for each sample point
si ∈ SΩ the inner pole point pi, which is the vertex of the Voronoi cell v(si) being
farthest away from si and inside Ω. Finally, we construct for each inner pole point pi
a so called polar ball Bpi,ρi centered at pi with radius ρi = ‖si − pi‖. The set of all
polar balls created in this way is the inner discrete medial axis transform DMT(Ω)

in,
and SΩ is contained in the boundary of its union [7, 8]. See Figure 1(a) for an example
with more than 10000 balls.

In the original approach a dense sampling SΩ of a smooth surface ∂Ω of Ω is
required in order to be able to distinguish inner Voronoi vertices from outer ones [7, 8].
To overcome this restriction we use, as mentioned above, the triangular surface mesh
T (SΩ) as additional input. This allows us to easily distinguish between inner and
outer Voronoi vertices. Thus noise - always present in real-world data sets - and poor
sampling quality do not affect the correctness of our inner/outer labeling, and correct
operation of this step is ensured.

The centers of DMT(Ω)
in are close to M(Ω), see [6] for a quantitative analy-

sis and a precise statement of that fact. This implies that DMT(Ω)
in might include

small, surface near balls corresponding to unwanted features of MTin(Ω). Moreover,
DMT(Ω)

in approximates Ω by up to |SΩ| balls. For our purposes the instability and
the high cardinality of DMT(Ω)

in prevent its direct usage.
To avoid these disadvantages we apply a pruning algorithm to DMT(Ω)

in in or-
der to extract a proper subset of DMT(Ω)

in. The result will be a stable (we remove
surface near balls which result from instability) and compact representation of Ω, cf.
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Figure 1(d) for an example. Moreover the pruning step will give us control to obtain
sets of approximate medial balls of predefined cardinality, see Subsection 2.2 for de-
tails. In the following we briefly describe the pruning approach of [4], see there for
further details.

By the above construction each ball in DMT(Ω)
in has four sample points on its

boundary but none in its interior. We enlarge each ball of DMT(Ω)
in by a sufficiently

small constant ε > 0. Then we use a spatial search structure to find for each enlarged
ball bi all sample points from SΩ which are now covered by bi (typically tens or even
hundreds of sample points are contained). Finally we use a set-covering algorithm to
find an (almost) minimal subset DMT(Ω)

in
∗ of the enlarged balls whose union covers

all sample points SΩ. This set DMT(Ω)
in
∗ is the output of the pruning step.

Let us stress the fact that the applied set-covering algorithm to find a minimal subset
of balls will favor balls that cover a large fraction of SΩ and thus large areas of ∂Ω

in order to make the cardinality of DMT(Ω)
in
∗ ,
∣∣∣DMT(Ω)

in
∗

∣∣∣, as small as possible.
These balls are centered near stable parts of M(Ω). This implies that surface-near
balls, which originate from small perturbations of high curvature of ∂Ω (recall the
above discussion) are avoided. Thus stability of our approach is significantly improved
by the set-covering algorithm, see also [4]. In addition the one sided Hausdorff distance
from the union of the obtained compact discrete medial axis transform DMT(Ω)

in
∗ to

the original object Ω is bounded by O(ε).

2.2 Sets of approximate medial balls of uniform cardinality
As described in Section 1 our goal is to obtain sets of approximate medial balls of
uniform cardinality for different input objects, Ωi, i = 1, . . . , n. So far we have shown
how to compute a stable representation DMT(Ωi)

in
∗ of the enlarged discrete medial

axis transform for one fixed object Ωi. We can control |DMT(Ωi)
in
∗ | to some extent by

the value ε by which we enlarge the polar balls.
For each single object Ωi, the value ε is chosen such that the resulting set

|DMT(Ωi)
in
∗ | is at least as large as the desired uniform cardinality k, that is, k ≤

min
i

(|DMT(Ωi)
in
∗ |). This approach is justified by the fact, that for piecewise linear

∂Ω, the quantity |DMT(Ωi)
in
∗ | tends to infinity for ε → 0. We then apply the k-

means clustering algorithm [31] to the centers of each DMT(Ωi)
in
∗ and get for every

set DMT(Ωi)
in
∗ exactly k clusters. For each cluster we choose as an representative ball

the one whose center is closest to the center of that cluster. This results in n stable
representations of Ω1, . . . ,Ωn by sets of balls B1, . . . , Bn with uniform cardinality k.

For the remainder of the paper we will use the term ball representation to refer
to the pruned inner discrete medial axis transform of uniform cardinality, denoted by
M1, . . . ,Mn.
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(a) Unpruned discrete me-
dial axis transform (10603
balls)

(b) Transparent (c) Unpruned discrete me-
dial axis

(d) Pruned discrete medial
axis transform (55 balls)

(e) Transparent (f) Pruned discrete medial
axis

Figure 1: Discrete Medial Axis Transforms and Discrete Medial Axes
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3 Labeling of the Ball Representations
In this section we use statistical algorithms for labeling of the ball representations.
Given two ball representations M = (x1, . . . , xk; r1, . . . , rk) and
M̃ = (x̃1, . . . , x̃k; r̃1, . . . , r̃k), the labeling problem consists in determining a rear-
rangement of indices such that the two ball representations optimally match. Every
matching involves a distance measure between ball representations. In view of the used
definition of an Euclidean invariant shape space of ball representations considered be-
low (see Section 4), we consider the following minimization problem for determining
the optimal alinement:

min
ρ>0,A∈SO(3),b∈R3,π∈Sk

k∑
i=1

‖ρAxπ(i)−b−x̃i‖2 + α(ρrπ(i)−r̃i)2 . (2)

Here SO(3) is the special orthogonal group of degree 3 (that is the group of rotations
in R3, which can be represented as unitary matrices with determinant one), Sk is the
symmetric group of degree k, and ‖·‖ denotes the Euclidean norm in R3. The parameter
α is a weighting parameter, providing a trade-off between matching of balls and radii.
Since it is difficult to compute global minimizers of (2) efficiently, we use a two-step
algorithm from [35], to compute approximate minimizers. This algorithm consists of
the following two steps:

• An Expectation Maximization (EM) algorithm is used to compute a similarity
transformation, i.e., a translation b ∈ R3, a rotation A ∈ SO(3), and a scaling
ρ > 0, which is close to an optimal one in (2). The algorithm is explained in
Subsection 3.1.

• Keeping the similarity transform fixed, the Kuhn-Munkres algorithm is used to
compute an optimal labeling π ∈ Sk in (2). This algorithm is explained in
Subsection 3.2.

The algorithm outlined below also applies to variants of the minimization problem
(2), such as

min
ρ>0,A∈SO(3),b∈R3,π∈Sk

k∑
i=1

‖ρAxπ(i)−b−x̃i‖2 + α(log(1 + (ρrπ(i))
2)−log(1 + r̃2

i ))
2 .

For the sake of simplicity of notation we restrict attention to (2) and omit a discussion
on general minimization problems.

3.1 EM-algorithm to compute the similarity transformation
EM-algorithms have been used successfully for solving a wide range of labeling prob-
lems [34]. In general, EM algorithms [40] consist in maximizing a likelihood function,
which depends on parameters and hidden variables. There two successive steps are
performed iteratively:
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• An Expectation step, which consists in computation of the expected values of
the hidden variables and

• a Maximization step, which is to optimize the likelihood function for the param-
eters.

We propose an algorithm which is closely related to [35]. However, the difference is
that we take into account information on the radii of the medial balls in addition. The
key idea of [35] is to compute the optimal similarity transformation of (2) relaxing the
constraint π ∈ Sk. This allows to apply the EM algorithm.

1. Relaxation step.

A mapping π ∈ Sn can be represented as a matrix P ∈ {0, 1}k×k with entries

Pj,i =

{
1 if π(j) = i
0 otherwise .

The relaxation consists in assuming instead of Sk stochastic matrices

{P ∈ [0, 1]k×k :

k∑
i=1

Pj,i = 1 for all j} .

It is common to interpret Pj,i as the probability that j is mapped to i. For medial
ball representation this means that the ball (xj , rj) is mapped onto (x̃i, r̃i).

Furthermore, a distribution p = (p1, . . . , pk) is assumed over {1, . . . , k}. The
number pi represents the probability, that an arbitrary element of {1, . . . , k} is
mapped to i.

2. Distances of balls.

Under the condition π(j) = i and for a given similarity transformation (ρ,A, b),
we assume that the transformed ball (xj , rj) is normally distributed around (x̃i, r̃i),
i.e., ρAxj+b is normally distributed with mean x̃i and ρrj is normally distributed
with mean r̃i. Concerning the radii, this assumption is slightly inaccurate since
radii cannot become negative; we overcome this problem by choosing the vari-
ance σ sufficiently small, such that the 0.01 quantile is positive. Hence we define
(for i, j = 1, . . . , k)

gi(xj , rj) = (2πσ2)−
1
2 exp

(
− 1

2σ2

(
||ρAxj + b− x̃i||22 + α(ρrj − r̃i)2

))
.

(3)
The function gi(xj , rj) is large if (xj , rj) is mapped closely to (x̃i, r̃i) and small
otherwise.

The likelihood function for the parameters of the similarity transform (ρ,A, b) and the
relaxed labeling (P, p) for given ball representations M and M̃ is then given by the
product probability

L(ρ,A, b, P, p) =

k∏
i,j=1

(pigi(xj , rj))
Pj,i . (4)
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Taking the logarithm on both sides defines the log-likelihood function

l(ρ,A, b, P, p) =

k∑
i,j=1

Pj,i (log pi + log gi(xj , rj)) . (5)

It is important to note, that if P is a permutation, then pi = 1/k. Therefore in this
case, maximizers of (5) are minimizers in (2) and vice versa. Following [35], enlarging
the class of labelings from Sk to stochastic matrices has little effect on the optimal
similarity transform.
The advantage of the formulation (5), compared to (2), is, that (5) can be minimized
efficiently with an EM-algorithm, where the variables ρ,A, b, p are regarded as param-
eters, and the entries of P are regarded as hidden variables of the likelihood function l.
The EM algorithm for minimization of (5) reads as follows:

Algorithm 1 EM Maximization of l
Initialize ρ = 1, A = id and b = 0 ∈ R3. Choose values for σ, α.
while l still increases do

E-Step: Compute the expected value of the relaxed permutation matrix P ,

Pj,i ←
pigi(xj , rj)∑k
s=1 psgs(xj , rj)

(6)

By this assignment it is guaranteed that
k∑
i=1

Pj,i = 1 for all j.

M-Step: Maximize

k∑
i,j=1

Pj,i(log pi + log gi(xj , rj)) (7)

over A, ρ, b and p1, . . . , pk.
Compute the new value of l.

end while

Compared to different algorithms for minimizing (2) such as Markov Chain Monte
Carlo Methods (MCMC), the output of the EM Algorithm is more sensitive to initial
values of the parameters. This is no drawback in our case, since the ball representations
are often already quite well aligned. However, the provided algorithm is assumed to be
more efficient than MCMC.

3.2 Labeling
This subsection is concerned with computing an optimal labeling π ∈ Sk in (2).

It is instructive to reformulate the labeling problem as a combinatorial optimization
problem.
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1. A weighted graph is constructed of the following data:

• Nodes are the 2k balls (x1, r1) . . . , (xk, rk) and (x̃1, r̃1), . . . , (x̃k, r̃k).

• Let α be as in (2). The weights of the edges between the nodes are defined
by

wj,i = ||ρAxj − b− x̃i)||2 + α(ρrj − r̃i)2, with α ∈ [0, 1].

Here, (ρ,A, b) is the similarity transform computed in Subsection 3.1.

2. A permutation π ∈ Sk minimizing

k∑
i=1

wπ(i),i (8)

is computed.

For the fixed similarity transform transformation (ρ,A, b), a minimizer π ∈ Sk of (2)
is a minimizer of (8) and vice versa. For the solution of the matching problem (8) we
apply the Kuhn-Munkres algorithm, which is a special case of the primal-dual algo-
rithm in linear programming [3]. According to [49] the complexity of the algorithm
is O(k3). In our applications, the high order of complexity of the algorithm is not an
issue since it is only applied for medial ball representations of dimension k, which is
in the range of 10 to 50.

4 Medial Ball Shape Space by Procrustes Analysis
In the following we perform a statistics of the ball representations M1, . . . ,Mn and
establish a shape space, which we call medial ball shape space. Moreover, a distance
between elements of the medial ball shape space is employed to compare them quanti-
tatively.

4.1 Elements of the medial ball shape space
A shape is all the geometrical information that remains when location, scale and rota-
tional effects are filtered out from an object (taken from [20, Chapter 1]). We consider
this definition when constructing the medial ball shape space as the factor space of ball
representationsM = (x1, . . . , xk; r1, . . . , rk) modulo similarity transformations. That
is

Σ = R3×k × (R>0)k/ ∼ST . (9)

In other words, two medial ball representations M = (x1, . . . , xk; r1, . . . , rk) and
M̃ = (x̃1, . . . , x̃k; r̃1, . . . , r̃k) represent the same shape (or in other words are equiva-
lent with respect to ∼ST ) if there exists a similarity transformation (ρ,A, b) such that

ρAx̃i + b = xi and ρr̃i = ri for i = 1, . . . , k (10)
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We emphasize that in the segmentation literature (see e.g. [17, 42, 38, 19]) frequently
shape spaces are not defined as factor spaces. As a consequence the according shape
space allows for different representations of the same shape.

Below we derive a segmentation model taking into account the original shape con-
cept and coordinates of Kendall [33]. Compared to Bookstein [11], Kendall coordi-
nates do not depend on the choice of a baseline i.e., two medial balls in our case.
Therefore statistical analysis like PCA is not distorted. Since it is bulky to define a dis-
tance between equivalence classes we systematically choose representatives, for which
we define a shape distance. The process is similar to [20, Chapter 4] where mid axis
representations M = (x1, . . . , xk) (without radii) have been considered.

1. A mean ball representation µ of the (labeled) ball representations M1, . . . ,Mn

is defined by

µ = arg min
µ̃={(µ̃1,r̃1),...,(µ̃k,r̃k)}

n∑
l=1

d(Ml, µ̃)2 (11)

where

d(Ml, µ̃)2 = min
ρ>0,A∈SO(3),b∈R3

k∑
i=1

‖ρAx(l)
i −b−µ̃i‖

2 + α(ρr
(l)
i −r̃i)

2 (12)

The parameter α is the same as in Equation (2). The minimization problem (11)
can be solved with an iterative algorithm, which is along the lines of [20, Chapter
5].

2. M is normalized with respect to translation by multiplying the ball centers ofM
with the (k−1)×k Helmert submatrix H (see [20, p.34] for the definition). The
advantage in using the Helmert matrix for this task (compared to for instance
centering the coordinates) is that the arising representation only consists of k−1
centers and that the Helmert matrices can be computed efficiently inductively.
The resulting representation T (M) is given by

T (M) = ((H[c(M)T ])T ; r1, . . . , rk) ∈ R3×(k−1)\{0} × (R>0)k . (13)

3. T (M) is normalized with respect to scaling by dividing the coordinates and
radii by the Frobenius norm ‖c(T (M))‖. The resulting scaled representation is
denoted by S(T (M)).

4. S(T (M)) is normalized with respect to Rotation by minimizing the Frobenius
norm

min
A∈SO(3)

‖c(S(T (µ)))T − c(S(T (M)))TA‖ . (14)

Rotating S(T (M)) by the optimal A ∈ SO(3) gives

Rµ(S(T (M))) =

(
c(S(T (M)))A;

r1

‖c(T (M))‖
, . . . ,

rk
‖c(T (M))‖

)
, (15)

which is the representative of the class.
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0

vec(µ)

vec(M)
c(Pµ(M))

∗ ∗
∗

A B

C

Figure 2: On the left hand side, Procrustes tangent coordinates of the centers of a ball
representation are shown. Translated, scaled and rotated ball representations µ, M are
on the circle. vec(M) is orthogonally projected to the subspace spanned by vec(µ).
The difference between the projection of vec(M) and vec(µ) is c(Pµ(M)). PCA and
Mahalanobis distance are visualized on the right hand side. The data points vary in
horizontal direction much more than in vertical direction. The Mahalanobis distance
between A and B is smaller than the distance between A and C, which is the opposite
measured in the Euclidean distance.

As shown in [33], the optimal rotation A in (14) can be calculated as follows: If

(c(S(T (µ))))c(S(T (M)))T = V ΛUT (16)

is the signed singular value decomposition of
(c(S(T (µ))))c(S(T (M)))T , then

A = UV T . (17)

The mean shape µ and the representative are utilized to compute distances in Σ in
the next Subsection 4.2.

We emphasize that in our approach we consider ball representations of the shapes.
This should not be confused with m-reps, which have an additional grid structure. In
the latter a principal geodesic analysis seems preferable to a PCA (see [47]).

4.2 Variability in the medial ball shape space

Standard techniques for capturing the variability of data are principal component anal-
ysis (PCA) and the Mahalanobis distance. Historically, these techniques have been
defined in Euclidean space. A standard way to transfer these concepts to Riemannian
manifolds is to project the data to a tangent space (which is Euclidean) and perform an
variability analysis there. Recently, techniques have been established, which consider
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the whole tangent bundle for parallel transport of tangent vectors along geodesics and
perform a principal geodesic analysis, [24]. In our case, the medial ball shape space Σ
is a Riemannian manifold with singularities. As is detailed in [48] for shape spaces of
point configurations and carries over to our situation, Σ has singularities at equivalence
classes of ball representations under translation and scaling, where the rotation group
does not act free. These shapes arise from ball representations consisting of balls of
the same radius lying on a straight line. We can exclude these ball representations from
our further considerations since they are not of interest to us, or apply the simulation
of simplicity concept [22] to ball representations M1, . . . ,Mn and avoid this case. For
sake of simplicity, we present only details on the projection technique, although the
whole shape analysis and segmentation pipeline is generalizable to a nonlinear frame-
work.

The tangent space of Σ at [µ]∼ST
.

For our medial ball shape space Σ, we compute projections of shapes on the tangent
space at [µ]∼ST

. Let M = (x1, . . . , xk−1; r1, . . . , rk) be a ball representation, in
normalized form (15), and vec(M) = (xT1 , . . . , x

T
k−1)T ∈ R3k−3. Then the orthogonal

projection of M to the tangent space of Σ at µ is given by

Pµ(M) = (vec(M)− 〈vec(M), vec(µ)〉 vec(µ); r1, . . . , rk) ∈ R3k−3 × (R>0)k

(18)
Concerning the center points c(M) of M , these are the Procrustes tangent coordinates
as in [20, p.76]. The tangent projection is illustrated in Figure 2, left part. Tangent
coordinates represent the linear deviation of M relative to µ and will be used for sta-
tistical analysis in the sequel.

PCA and Mahalanobis distance for ball representations in Σ.
First we recall the concepts of principal component analysis (PCA) and Mahalanobis
distance in Rd. For data points m1, . . . ,mn ∈ Rd, a PCA is given by the normed
eigenvectors of the covariance matrix

Cov(m1, . . . ,mn) =
1

n

n∑
i=1

(mi −m)(mi −m)T with m =
1

n

n∑
i=1

mi. (19)

The eigenvectors e1, . . . , ed are sorted by the size of the corresponding eigenvalues
λ1, . . . , λd and give an orthonormal basis of Rd. This basis represents the main direc-
tions of variability of the data vectors m1, . . . ,mn.

A distance which takes into account the variability of the data m1, . . . ,mn is given by
the Mahalanobis distance. This distance is defined by

dRd(m̃1, m̃2) = (m̃1 − m̃2)T (Cov(m1, . . . ,mn))−1(m̃1 − m̃2) (20)

for m̃1 and m̃2 ∈ Rd. Compared to the Euclidean distance, the Mahalanobis distance
of two data points is small, if they differ along the main directions of variability (which
are the principal components of m1, . . . ,mk), and it is large, if they differ along other
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directions. If d is large it might be appropriate to use a PCA first, and taking only the
d̃ most significant components e1, . . . , ed̃ to eigenvalues λ1, . . . , λd̃. This results in a
simplified Mahalanobis distance

d̃Rd(m̃1, m̃2) = (m̃1 − m̃2)T ŨD̃−1ŨT (m̃1 − m̃2) (21)

with Ũ = (e1, . . . , ed̃) and D̃ the diagonal matrix with entries λ1, . . . , λd̃.

Applying these concepts to ball representations, let Pµ(Mi) = (ciµ; riµ) ∈ R3k−3 ×
(R>0)k be the tangent coordinates of Mi, split into centers ciµ and radii riµ. A PCA of
ball representations M1, . . . ,Mn, is given by the eigenvectors and eigenvalues of the
covariance matrices

Cov(c1µ, . . . , c
n
µ) and Cov(r1

µ, . . . , r
n
µ). (22)

The Mahalanobis distance dΣ between M and M̃ in Σ is then given by
(with Pµ(M) = (cµ; rµ) and Pµ(M̃) = (c̃µ; r̃µ))

dΣ(M,M̃) = (cµ − c̃µ)
T Cov

(
c1µ, . . . , c

n
µ

)−1
(cµ − c̃µ)

+α (rµ − r̃µ)
T Cov

(
r1
µ, . . . , r

n
µ

)−1
(rµ − r̃µ) . (23)

In case that the ball representations contain many balls, a PCA is performed first
and a Mahalanobis distance as in (21) is computed.
PCA and Mahalanobis distance are illustrated in Figure 2, right part.

As a result of this section, a mean shape and distances between shapes have been
defined and this statistics can be used as shape prior in segmentation in the sequel (cf.
(32) and (33)). Generally spoken, the Mahalanobis distance is used to make a point
cloud uniformly distributed. Therefore one can use quadratic regularization function-
als. For a comprehensive work on the problem of defining suitable approximations of
shape metrics in image processing we refer to Charpiat et al. [14] where the authors
also perform warping of two shapes onto another by gradient descent that minimizes
the corresponding distance.

5 Segmentation
In this section we consider object segmentation in 3D voxel data. Thereby we aim
for taking into account shape prior information given in the form that the object to be
recovered belongs to the medial ball shape space. The distance on the shape space is
given by the Mahalanobis distance (see Sections 2-4). The medial ball shape space is
computed from boundaries of training objects as discussed in Section 2.

The boundary of a ball representation is defined as the skin surface [21]. Below
we give a definition and some properties of skin surfaces which predestine them as
boundary surfaces of medial ball representations.

Finally we describe the whole pipeline of the proposed segmentation process.
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5.1 Skin Surfaces
In this subsection, we review the definition and basic properties of skin surfaces.

Properties of skin surfaces.
We employ the concept of a skin surface later on for definition of a surface from a ball
representation. We believe that skin surfaces are very suitable for this task, since they
have several attractive properties which we discuss in the sequel.

• Information efficiency: A skin surface only requires center points, weights and
a shrinking factor for its complete description. Center points and weights are
exactly the information available to us after (mean) ball representation computa-
tion in Sections 2 and 3. The shrinking factor can be used as a tuning parameter
depending on the application. Other popular surface construction methods like
NURBS (or other splines), used for instance in [19], or Gregory patches (see
[44, 17]) suffer from the drawback, that an additional grid structure of the con-
trol points is required for surface generation, which is difficult to obtain in an
automatic way.

• Computational efficiency: There exists an efficient algorithm for computing skin
surfaces (see [37]). For k weighted input points, the algorithm produces a trian-
gular mesh consisting of O(k2) vertices.

• Ball representation fidelity: If M is a ball representation of some surface in R3,
and skn(M) is the skin surface defined by M , then M is contained in the ball
representation of skn(M). This follows easily from the definition of the skin
surface as a convex hull.

• Economy: A small number of input points can generate complicated skin sur-
faces [21].

• Universality: Every orientable closed surface has a skin representation [21].

An example of a skin surface, meshed with the algorithm from [37], is given in Figure
3.

Definition of a skin surface.
Basic building blocks of skin surfaces are weighted points p = (xp, wp) ∈ R3 × R.
Weighted points can for instance represent balls with center x and radius r, setting
xp = x and wp = r2, and therefore a ball representation can be regarded as a set of
weighted points. Addition and scalar multiplication of weighted points p, q are defined
by

p+ q = (xp + xq, wp + wq + 2〈xp, xq〉), (24)

and
sp = (sxp, swp + (s2 − s)||xp||2) for s > 0. (25)

Here, 〈·, ·〉 and || · || denote the Euclidean scalar product and its induced norm. As
usual, but with these algebraic operations, the convex hull of a set of weighted points
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Figure 3: Examples of a skin surface of 15 balls with shrink factor s = 0.1 (left) and
s = 0.9 (right). The dots indicate the centers of the medial balls. Note the topology
changing effect of increasing the shrink factor, which can be utilized for constructing
shapes of different topology.

P = {p1, . . . , pk} is defined by conv(P ) =

{
k∑
i=1

λipi | λi ≥ 0,
k∑
i=1

λi = 1

}
. The

shrinkage ps of a weighted point p = (xp, wp) by a factor s ≥ 0 is defined by
ps = (xp, swp).

Assume now we are given a set P of weighted points p = (x,w) with w > 0. Shrink-
age applied to P by s ≥ 0 is defined by P s = {ps | p ∈ P}. Let Bw(x) = {y ∈
R3 | ‖x − y‖ ≤ w} be a ball with radius w and center x. We denote by ∂ denote the
boundary of a set in Euclidean space.

Let s ≥ 0. Then the s-skin of P is defined by

skns(P ) = ∂

 ⋃
q=(xq,wq)∈(convP )s

B√wq
(xq)

 (26)

Note that the square root of a negative number is imaginary and a ball with an imaginary
radius is the empty set.

In the special case s = 0, the skin surface of p1, . . . , pk reduces to the convex hull of
xp1 , . . . , xpk , and in case s = 1, the skin surface is the boundary of the union of the
input weighted points.

Since weighted points are shrunk by a factor of s ∈ [0, 1] in the construction of
the skin surface, the skin surface of a surface represented by medial balls is smaller
than the original surface. A way to circumvent this problem is by prescaling the input
weights wp1 , . . . , wpk by 1/s.
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The implied skin surface of a shape.
For a fixed ball representation µ, and some given similarity transformation (ρ,A, b),
a shape in Σ implies a surface. For its computation, it is necessary to reverse the
transformations in Subsection 4.1. To give some details, assume that the shape in Σ is
given by its tangent coordinates Pµ = (cµ, rµ). First note that the tangent projection
(18) is injective, with inverse

(cµ; rµ) 7→
(

vec−1
(√

1− cTµcµ vec(cµ(µ)) + cµ

)
; rµ

)
(27)

mapping tangent coordinates to normalized ball representations. Normalized ball rep-
resentations are then aligned in R3 by applying A−1 and scaling with 1/ρ. When re-
versing translation, note that the Helmert matrixH has a right inverse H̃ ∈ R(k−1)×(k−1).

Applying H̃ and translating the result by b, an (aligned) ball representation M
consisting of k balls in R3 is obtained, to which the skin surface

γ(M) = γ(Pµ, ρ, A, b) (28)

is the implied boundary.

5.2 Region and edge based segmentation
For segmentation of voxel images, there are essentially two types of segmentation
methods. Region based segmentation is applied to images, if the mean intensity of
voxels inside the object to segment differs significantly from the mean intensity out-
side the object. If contrasts are low and objects are only separated by curves, gradient
based segmentation is used. Here, we briefly discuss both approaches. Let Ω ⊂ R3 be
a bounded domain, and u : Ω→ R an image intensity function.

Region based segmentation.

For a closed surface γ ⊂ Ω, let I(γ) ⊂ Ω be the inner part of γ and O(γ) ⊂ Ω the
outer part of γ. The mean values of an image intensity function u on I(γ) and O(γ)
are then given by

uI(γ) =
1

|I(γ)|

∫
I(γ)

u dx and uO(γ) =
1

|O(γ)|

∫
O(γ)

u dx (29)

A simplified version of the Mumford-Shah model introduced in [13] consists in mini-
mization of the functional

ISMS(γ) =

∫
I(γ)

(uI(γ)− u)2 dx+

∫
O(γ)

(uO(γ)− u)2 dx . (30)

If we assume that the mean intensity of an object in image u differs significantly from
the mean intensity of the region outside of this object, the functional ISMS is mini-
mized by a submanifold γ which represents the boundary of the object to segment, and
I(γ) is the object itself.
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Edge based segmentation.

In edge based segmentation, an object and its closed boundary surface γ are implied
by high gradients. In this case, it is common to minimize a functional which penalizes
small gradients, as for example the Snakes energy introduced in [32]:

IKWT (γ) = −
∫
γ

|∇f(γ)|dxdy + αArea(γ) (31)

Note that edge based energy functionals are usually minimized by active contour meth-
ods. They consist of evolving a small initial contour mesh towards the boundary of the
object, which is a minimizer of the energy functional. An advantage of active con-
tour methods is that the evolution converges to a minimizer close to the initial contour.
However, since the evolution equations only contain local information, but shape prior
is a global information, active contour methods cannot be used efficiently in this case.
In order to retain control over local minimizers of (31), we use the term αArea(γ) in
(31) instead, thus forcing the contour closer to the initial contour.

In the presence of noisy data that e.g. arises in MRI or ultrasound imaging, minimiza-
tion of both functionals (30) and (31) over γ is not well-posed. Furthermore, if the
object to segment is partially occluded, minimizers of (30) and (31) might not only
segment the object, but also parts of the background, and knowledge about the true
shape of the object to segment has to be considered.
Here we use the mean ball representation µ of Equation (11) as a priori information and
the Mahalanobis distance dΣ as defined in Subsection 4.2, formula (23) to measure the
distance between two ball representations. We recall that with a given fixed ball rep-
resentation µ, an equivalence class [M ]∼ST

of ball representations can be uniquely
represented by tangent coordinates Pµ(M) = (cµ(M), rµ(M)), see (18). Tangent
coordinates and a similarity transformation (ρ,A, b) ∈ R>0×SO(3) +×R3 uniquely
determine a skin surface γ = γ(Pµ(M), f) as defined in Subsection 5.1, formula (28).
We obtain the following functionals as a regularization of (30) resp. (31) for some
β > 0:

Iβ : Σ× SO(3)× R3 × R≥0 −→ R,

(Pµ, f) 7→ ISMS(γ(Pµ, f)) + βdΣ(0, Pµ) (32)

(Pµ, f) 7→ IKWT (γ(Pµ, f)) + βdΣ(0, Pµ) (33)

Note that the regularization term actually measures the Mahalanobis distance between
M and µ, since Pµ(µ) = 0.

6 Results
In this section we discuss the results obtained by applying our approach to test images.
A dataset of synthetic torus voxel images was segmented using functional (32) in Sec-
tion 6.1. Additionally, we conducted an experiment on real-world data by segmenting
the human hippocampus in Section 6.2 using functional (33). Both functionals were
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minimized using the evolutionary algorithm CMA-ES (see [28, 36]). This choice is
mainly motivated by the fact that the calculation of the gradient for the functional is
tough, since it requires finding the derivative with respect to the skin surface, which is
given by the coordinates of the medial ball representation. Thus, instead of analytical
differentation, numerical differentiation should be used for this purpose. However, the
skin surface meshing process we used for surface construction ([37]) does not guar-
antee that the resulting polyhedra always have the same structure or even the same
number of vertices and faces, as it is for example the case by using spline based inter-
polation surfaces. Those irregularities in the resulting surface meshes complicate the
numerical differentiation process and thus we decided to use gradient-free evolution-
ary minimization algorithms. We chose the evolutionary algorithm CMA-ES for the
minimization of (32), because it has been successfully applied to a similar task in [17],
where its superior behavior over two other common evolutionary minimization tech-
niques was demonstrated. For more details on the minimization process, especially
also concerning the choice of the minimization parameters, we also refer to [17].

6.1 Synthetic Examples
We now consider the segmentation of a synthetically created and corrupted torus voxel
image. By this example we demonstrate not only the influence of the shape prior
on the segmentation result, but in particular also the capability of the method to seg-
ment surfaces of compley geometry, i.e., a torus in this case. We generated 15 binary
training voxel images containing elliptic tori with differing radii and positions (see Fig-
ure 4). Using the software ITK-SNAP [53] we computed the according input meshes
Ω1, . . . ,Ω15 which are the actual input data for the shape statistics.

Figure 4: 15 different voxel images of tori used as training data

Using the surface meshes, Scheme 1.1 has been used to compute a shape space and
a Mahalanobis distance in it. Figure 3 shows the mean medial ball representation of
the shape space. This shape information was then used to segment a torus corrupted
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Figure 5: Segmentation results for the corrupted torus image for different values of the regular-
ization parameter β. From upper left to lower right: (a) Voxel image of corrupted torus data. (b)
Segmentation result with regularization parameter β = 10−3 (c) β = 10−2 (d) β = 5 ∗ 10−2.

by a large black strip as shown in Figure 5(a). Because high contrasts occur in the
images, we chose (32) as the segmentation functional, which we minimized using the
CMA-ES. The segmentation algorithm was run with k = 15 balls. The shrink factor s
was included in the minimization process. As initial value for s it proved suitable
to take high values if long and thin structures were expected and smaller values in
case of more compact objects. The results of the segmentation process with different
values for the regularization parameter β are shown in Figure 5(b)-(d). As expected,
small values of β, i.e., segmentation with low influence of the regularization, results
in improper segmentation results (Figure 5(b)-(c)), while the right choice of β yields a
good segmentation, as seen in Figure 5(d).

Note that the slight inaccuracies in the segmentation are a consequence of using
skin surfaces as surface generation method, which often results in a surface of ball-like
structure by nature. This effect can be minimized by using more medial balls to repre-
sent the shape. In principle, the medial ball representation presented above is able to
describe complex shapes with bended or flat surfaces and sharp corners provided that
the number of medial balls is sufficiently high. It has to be mentioned though that the
time complexity of the segmentation substantially rises when using more input balls.
This is mainly due to the skin surface meshing algorithm which has to be computed
for every new instantiation of a medial ball representation. Minimization using evo-
lutionary optimization algorithms like the CMA-ES involves multiple evaluations of
the functional with different models at each step of the segmentation and thus the time
complexity for each step rises significantly. However, each evaluation of the functional
is performed independently of each other and thus parallelization can be applied which
is especially boosting the performance on modern multi-core processor environments.
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For the synthetic images above, 15 balls were used to describe the torus shape and
the CMA-ES algorithm was applied with λ = 100 functional evaluations at each step.
Considering 100 iterations for one segmentation, the average time for one step in this
setting was 20 seconds on a standard desktop PC with an Intel Core 2 Q9550 2.83 Ghz
Quad Core CPU and 4 GB of RAM. For the hippocampus model with 50 medial balls
(cf. Section 6.2 below), an average time of 60 seconds per step was measured.

6.2 Real-World Example - Hippocampus Segmentation
In this section we test the presented algorithm on a real-world example from medical
imaging. Our object of interest to segment is the human hippocampus. To this end,
we use a database of MRI images of the human brain presented in [29] which includes
25 labelled samples of the right and left hippocampi respectively. Using the method
described above we constructed a shape space out of the set of right hippocampi for all
training images. Here, k = 50 balls were used to model the hippocampus. Afterwards
we segmented a test image utilizing the shape prior with the edge based functional (33).
This is due to the fact that region based segmentation is not applicable in MRI images
where many regions with different contrast exist. To construct a gradient image of
the hippocampus, we thresholded the test image according to the mean contrast val-
ues gained from the training images and computed a morphological gradient which is
shown in Figure 7. The computation of the gradient image thus depends on the given
training image data. We want to point out however that the presented methodology is
not intended as a fully automatic medical imaging segmentation workflow but could
prove to be effective in this setting when used in conjunction with standard medical
imaging preprocessing steps.

To evaluate our segmentation results we used two common similarity coefficients
in the image segmentation community: Jaccard and Dice’s coefficient. Interpreting
two binary segmentation images as sets A and B Jaccard and Dice’s coefficient, JC
and DC , are defined as follows:

JC =
|A ∩B|
|A ∪B|

, (34)

DC =
2|A ∩B|
|A|+ |B|

. (35)

Additionally, to compare our results against a similar approach based on classical m-
reps (cf. [30, 42]), we manually created a shape space of m-reps for the training images
using a mesh of size 5 × 10 , i.e. 50 atoms as with the medial ball model. This shape
prior was then used to perform image segmentation with a similar edge-based func-
tional as (33). For a detailed outline of the segmentation algorithm using m-reps and
a-priori shape knowledge we refer to the work of [17]. Figure 6 shows the mean medial
models constructed for the m-rep and medial ball representation respectively.

Figures 8 and 9 show the segmentation results using the m-rep and medial ball
model. In Table 1 the similarity coefficients for the resulting segmentations are sum-
marized. Both segmentations yield good results, however the medial ball model is able
to outperform the m-rep based method by a small margin. We want to note however,

22



that the m-rep approach does not include automatic shape space generation as it is the
case with our method.

Figure 6: Mean models for the 25 training hippocampi. On the top the mean for the m-rep model
due to Pizer et al. [30, 42] with and without surface is shown. The bottom row corresponds to
the mean medial ball representation of the hippocampus as presented in this work.

7 Conclusion
In this paper we presented a new approach for segmentation of 3D voxel images tak-
ing into account statistical shape information. The algorithm requires minimal user
interactions for segmentation which is achieved by implementing a pipeline of algo-
rithms. The pipeline involves the automatic generation of training shapes represented
as medial ball representations that were automatically generated from a given set of
input meshes. Afterwards the training shapes are labeled, and a shape space based
on Procrustes statistics is established. The resulting shape space and the Mahalanobis
distance are used as a prior in region- and edge based segmentation algorithms.

We did a proof-of-concept for our algorithm by evaluating its performance on a
synthetic dataset of 15 randomly generated torus images. By utilizing a segmentation
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Model JC DC

m-rep 0.7380 0.8492
medial balls 0.7572 0.8618

Table 1: Segmentation evaluation results for the test image. The suggested medial ball algorithm
performs better than them-reps algorithm with respect to the two distance measures JC andDC .

energy which includes statistical regularization using the PCA of the training data, we
were able to segment a distorted torus image correctly. Additionally, this example
shows the benefit of using only a set of medial balls as object model in combination
with skin surfaces as surface generation method, which enables us to segment images
with complex geometry.

Additionally, the algorithm was applied to a real-world dataset of human hip-
pocampi in MRI images. A comparison with the segmentation using shape priors on
the traditional m-rep model showed that our methodology is able to outperform m-rep
based segmentation by a small margin.

The automatic generation of a medial ball object model from a set of training im-
ages is another advantage of our algorithm in contrast to the work of Pizer et al. (e.g.
[42]), where expert segmentations have to be constructed by using a predefined medial
ball model itself.

We emphasize that Siddiqi and Pizer [47] work with medial atoms while we work
with medial balls, which allows for more flexibility in the objects to be represented.
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