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Abstract. We study Tikhonov regularization for solving ill–posed operator
equations where the solutions are functions defined on surfaces. One contribu-

tion of this paper is an error analysis of Tikhonov regularization which takes

into account perturbations of the surfaces, in particular when the surfaces are
approximated by spline surfaces. Another contribution is that we highlight the

analysis of regularization for functions with range in vector bundles over sur-

faces. We also present some practical applications, such as an inverse problem
of gravimetry and an imaging problem for denoising vector fields on surfaces,

and show the numerical verification.

1. Introduction. We are interested in solving linear inverse problems

(1) Fu = y,

where F : U1 → U2 is a bounded operator between Hilbert spaces of functions
defined on surfaces. Note that the functions in spaces U1 and U2 might be defined
on different surfaces M1 and M2 respectively. Especially we pay attention to
applications (see also Section 3 and 4) where U1 denotes a space of functions from
a surface M1 into the vector bundle or into the tangent vector bundle.

We assume that solving (1) is ill–posed and requires some regularization to ap-
proximate the solution in a stable way. The regularization method of choice for
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solving (1) is Tikhonov regularization, which consists in approximating a solution
of (1) by a minimizer of the functional

(2) Tα,yδ(u) :=
∥∥Fu− yδ

∥∥2

U2
+ αR(u)

over U1. Here yδ denotes some approximation of the exact data y, from which we
assume that

(3)
∥∥y − yδ

∥∥
U2
≤ δ.

Moreover, α > 0 is a regularization parameter, and R is an appropriate regulariza-
tion functional. In contrast to previous work [10, 21, 30, 7, 28, 31, 26, 27] we are
emphasizing on Hilbert spaces of functions defined on surfaces.

The analysis of Tikhonov regularization has advanced from a theory for solving
ill–posed operator equations in a Hilbert space setting, both in a finite and an
infinite dimensional setting (see for instance [29, 10, 21, 28, 12]), to more complex
situations, when F is nonlinear [2, 30, 7, 31] or with sophisticated regularization
[4, 25, 14, 26, 24, 27, 22], and in statistical setting [15]. The analysis of finite
dimensional approximations of regularizers in infinite dimensional spaces (see for
instance [23, 24, 18]) is highly relevant for this work. The results of [24] are already
quite general, but do not cover approximations of solutions of (1) by functions
defined on approximating surfaces. Note that for functions in a infinite dimensional
space defined on planar subsets of an Euclidean domain, the finite dimensional
discretization of the functions are also defined on the same planar domain, and this
is not the case anymore for a curved manifold domain if the underlying manifold
is approximated. In this paper the differential geometrical concept of a pullback is
used to compare functions defined on different surfaces.

The second issue of this paper is, that the solution of (1) may be a function
with range in a vector bundle. Consequently, when the surface is approximated
also the vector bundle, or in other words, the range of the function is varying by
approximation. To resolve this issue we consider vector fields represented with
ambient bases. It is then presented in the paper that the analysis of regularization
for vector fields on surfaces can be incorporated into a general framework developed
for vector valued functions on surfaces.

We consider several applications and perform numerical tests. One example
concerns reconstructing the magnetization from measurements of the magnetic po-
tential [3, 11, 8]. Another numerical test example concerns vector field denoising.
Our analysis on regularizing tangent vector fields in ambient spaces provides a dif-
ferent point of view to existing work on tangent vector field regularization (see for
instance [20, 16, 17]).

The paper is organized as follows: In Section 2 we first review standard reg-
ularization results in an infinite dimensional setting, and then perform a conver-
gence analysis of Tikhonov regularization taking into account approximated sur-
faces, which cannot be handled with the existing theory. In Section 3, we introduce
proper spaces for functions with range in vector bundles, and discuss applications of
the regularization theory for recovering vector fields in ambient spaces. We make an
additional discussion on recovering tangent vector fields there. Finally, in Section
4, we present some examples and verify the theoretical results numerically. The
underlying geometric concepts, including all the basic notations, are summarized
but postponed to Appendix A in order to show the main ideas better.
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2. Regularization for functions defined on surfaces. Below we first review re-
sults from the regularization literature (see [10, 7, 26]), which provide well-posedness,
convergence and stability of Tikhonov regularization. For this purpose we summa-
rize the basic assumptions needed throughout this paper.

Assumption 2.1 (Chapter 3, [26]). In the context of Tikhonov regularization (2)
we make the following assumptions:

1. Let U1, U2 be two Hilbert spaces.
2. F : D(F ) ⊆ U1 → U2 is a bounded linear operator with domain D(F ), which

is weakly sequentially closed.
3. R : U1 → [0,∞] is a proper, convex, and sequentially weakly lower-semi con-

tinuous functional satisfying D := D(R) ∩ D(F ) 6= ∅.
4. For every α, θ > 0 the sets Mα,y(θ) := {u ∈ U1 : Tα,y(u) ≤ θ} are weakly

sequentially compact.

2.1. Standard regularization theory. We review some regularization results
from the literature:

Theorem 2.2 (Chapter 3, [26]). Let F , R, D, U1 and U2 satisfy Assumption 2.1,
and y and yδ satisfy (3).

• Assume that α > 0. Then there exists a minimizer of Tα,yδ . If (yk)k∈N is a
sequence converging to y in U2, then every sequence

(uk := arg min {Tα,yk(u) : u ∈ D})k∈N
has a weakly convergent subsequence in U1, and the limit is a minimizer of
Tα,y.

• If there exists u0 ∈ D such that

(4) Fu0 = y.

Then there exists an R minimizing solution u†. That is

R(u†) = min {R(u) : u ∈ D, Fu = y} .

• Assume that α = α(δ) : (0,∞)→ (0,∞) satisfies

(5) α→ 0,
δ2

α
→ 0, as δ → 0.

Let (yk)k∈N satisfy ‖y − yk‖U2 ≤ δk and set αk = α(δk). Then every sequence

(uk = argmin {Tαk,yk(u) : u ∈ D}) has a weakly convergent subsequence, and the
limit is an R-minimizing solution.

• Moreover, if in addition u† satisfies a source condition, which assumes that
there exists an element W ∈ U2, such that

(6) F ∗W ∈ ∂R(u†).

Here ∂R(u†) denotes the subgradient of R at u†, and F ∗ : U2 → U1 is the
adjoint operator of F .

Then, the R-minimizing solution satisfies

BR(uk,u
†) = O

(
max

{
δ2
k

αk
, αk

})
,

where BR(·, ·) denotes the Bregman distance with respect to the convex functional
R, see for instance [4].
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2.2. Convergence analysis taking into account surface perturbations. In
the following we study Tikhonov regularization, consisting in minimizing the func-
tional Tα,yδ in (2), where F : U1 → U2 is an operator between function spaces

Ui := Xi(Mi) := {xi :Mi → Rri} , for ri ∈ N+, and i = 1, 2,

of functions defined on surfaces Mi, i = 1, 2, respectively. We consider families
of surfaces {Mi,σ}σ>0 approximating the surfaces Mi,0 := Mi, i = 1, 2. In what
follows we use the following abbreviations:

(7) Ui,σ := Xi(Mi,σ) , ‖·‖i,σ := ‖·‖Ui,σ , i = 1, 2, σ > 0 ,

where we delete the superscript 0 in case σ = 0. That is ‖·‖1 = ‖·‖1,0. We need a
few assumptions on the approximating surfaces.

Assumption 2.3. Let {Mi,σ}σ>0 be a sequence of surfaces approximating the sur-
faces Mi for i = 1, 2, then we assume the following properties and estimates hold:

• For every i = 1, 2 and every σ ≥ 0, every surface Mi,σ can be parametrized
by a patch

mi,σ : Ωi ⊂ Rdi →Mi,σ ⊂ Rdi+1 , σ ≥ 0,

with the same parameter domain Ωi, and mi,σ is a bijection.
• The operators

(8)
Ti,σ : Ui → Ui,σ

xi 7→ xi ◦mi ◦ (mi,σ)−1

and the inverse

(9)
(Ti,σ)−1 : Ui,σ → Ui

xi,σ 7→ xi,σ ◦mi,σ ◦m−1
i

are uniformly bounded. Here by bounded we mean that there exists a real
constant C such that

(10) ‖Ti,σxi‖i,σ ≤ C ‖xi‖i and
∥∥(Ti,σ)−1xi,σ

∥∥
i
≤ C ‖xi,σ‖i,σ .

• Let the family of operators Fσ : U1,σ → U2,σ, σ > 0 and the operator F : U1 →
U2 satisfy

(11) ρ(σ) :=
∥∥(T2,σ)−1FσT1,σ − F

∥∥→ 0 for σ → 0.

• Let Rσ : U1,σ → [0,∞] with σ > 0 be the family of regularization functionals,
then there exists CM ∈ R such that

(12) |Rσ(T1,σu)−R(u)| ≤ CMγ1(σ),

holds uniformly for all u ∈ AM ⊂ U1, with AM := {x1 ∈ U1 : R(x1) ≤M} .
• There exists an R-minimizing solution u† of (1).
• yσ,y

δ
σ ∈ U2,σ satisfy

(13)
∥∥yσ − yδσ

∥∥
2,σ

= O(δ) and
∥∥(T2,σ)−1yσ − y

∥∥
2

= O(γ2(σ)) ,

where γ2(σ)→ 0 for σ → 0.

Remark 2.4 (On Assumption 2.3). For surfaces which can not be parametrized
by a single domain (such as a sphere), we assume that the domain can be covered
by patches, and the above assumption has to be satisfied on every patch.
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Remark 2.5. (3), (10) and (13) actually implies that

(14) max
{∥∥(T2,σ)−1yδσ − y

∥∥
2
,
∥∥yδσ − (T2,σ)y

∥∥
2,σ

}
= O(γ2(σ) + δ).

For given data yδσ we consider the regularization strategy consisting in minimiza-
tion of the Tikhonov functional for uσ ∈ U1,σ,

(15) Tα,σ,yδσ (uσ) :=
∥∥Fσuσ − yδσ

∥∥2

2,σ
+ αRσ(uσ).

Theorem 2.6. Let the Assumptions 2.1, 2.3 hold. Moreover, assume that α :=
α(σ, δ)→ 0 for σ → 0, and δ → 0 and that

(16)
ρ2

α
→ 0,

γ2
2

α
→ 0,

δ2

α
→ 0 and γ1 → 0, for σ, δ → 0.

Let (uk := uαk,σk,δk) be a sequence of minimizers of Tk := Tαk,σk,yk , defined in
(15), with yk := yδkσk satisfying (13). In addition we denote by

(17) ǔk = T−1
1,kuk ∈ U1

the pullback of uk onto M1, and Ti,k := Ti,σk for i = 1, 2 and k ∈ N.
• We use the abbreviations ρk := ρ(σk), γi,k := γi(σk) for i = 1, 2 and αk :=
α(σk, δk). Then the limit of every convergent subsequence of (ǔk) is an R-
minimizing solution.

• Moreover, assuming the source condition (6) holds, then, the R-minimizing
solution has the convergence rate by Bregman-distance

BR(ǔk,u
†) = O

(
max

{
ρ2
k

αk
,
γ2

2,k

αk
,
δ2
k

αk
, γ1,k

})
.

Proof. • To prove the first item let uk denote the minimizer of Tk. Moreover,

we use the abbreviations Fk = Fσk , Rk = Rσk , and u†k = T1,ku
†.

Then, according to the definition of a minimizer, we have (18)

(18) ‖Fkuk − yk‖22,k + αkRk(uk) ≤
∥∥∥Fku†k − yk

∥∥∥2

2,k
+ αkRk(u†k).

Since the vector field u† solves Fu† = y, and (8) in Assumption 2.3 and
Equations (11), (14) hold, it follows that

(19)

∥∥∥Fku†k − yk

∥∥∥2

2,k
=
∥∥∥T2,kT

−1
2,k (Fku

†
k − yk)

∥∥∥2

2,k

≤ C
∥∥∥T−1

2,k (Fku
†
k − yk)

∥∥∥2

2

= C
∥∥∥T−1

2,kFkT1,ku
† − Fu† + y − T−1

2,kyk

∥∥∥2

2

= O(ρ2
k + γ2

2,k + δ2
k),

Applying (12), we find

(20)

∣∣∣∣Rk(u†k)−R(u†)

∣∣∣∣ = O(γ1,k).

Using the estimates (19) and (20) in (18) shows that

(21)
‖Fkuk − yk‖22,k + αk

∣∣Rk(uk)−R(u†)
∣∣

=O
(
max

{
ρ2
k, γ

2
2,k, δ

2
k, αkγ1,k

})
.
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From (16) and (21) it follows that {Rk(uk) : k ∈ N} is uniformly bounded,
and consequently it follows from (12) that

(22)

∣∣∣∣R(ǔk)−Rk(uk)

∣∣∣∣ = O(γ1,k).

Since ǔk := T−1
1,kuk, it follows from (9), (10), (21) and (22) that

(23)

∥∥∥T−1
2,kFkT1,kǔk − T−1

2,kyk

∥∥∥2

2
+ αk

(
R(ǔk)−R(u†)

)
≤C

(
‖Fkuk − yk‖22,k

)
+ αk

∣∣∣∣Rk(uk)−R(u†)

∣∣∣∣+ αk

∣∣∣∣R(ǔk)−Rk(uk)

∣∣∣∣
≤(1 + C)

(
‖Fkuk − yk‖22,k + αk

∣∣∣∣Rk(uk)−R(u†)

∣∣∣∣)+ αk

∣∣∣∣R(ǔk)−Rk(uk)

∣∣∣∣
=O

(
max

{
ρ2
k, γ

2
2,k, δ

2
k, αkγ1,k

})
.

From the assumptions on the parameters (16) it follows after division of the
inequality by αk and taking the limit k →∞ afterwards that

lim sup
k
R(ǔk) ≤ R(u†),

and consequently also

(24) lim
k

∥∥∥T−1
2,kFkT1,kǔk − T−1

2,kyk

∥∥∥2

2
= 0.

It follows then from (24) and (11) that ‖F ǔk‖ is uniformly bounded.
Similarly as in [26, Theorem 3.26] it can be seen that for some fixed α0,

there is N0 ∈ N+ the set {Tα0,y(ǔk) : k ≥ N0} is uniformly bounded. Then by
the weak sequential compactness of the level sets of Tα0,y (Assumption 2.1),
we have {ǔk} is bounded in U1. Thus there is a weakly convergent subsequence
of {ǔk}, for which we denote the weak limit by ū ∈ U1.

Using (24) it follows that

‖F ū− y‖22

=
∥∥∥F ū− T−1

2,kFkT1,kū + T−1
2,kFkT1,kū− T−1

2,kyk + T−1
2,kyk − y

∥∥∥2

2
→ 0 .

This in particular shows that ū ∈ U1 solves (1). The weakly lower semi-
continuity of the functional R(·) implies that

R(ū) ≤ lim inf
k
R(ǔk) ≤ lim sup

k
R(ǔk) ≤ R(u†),

which because u† is an R- minimizing solution tells us that R(ū) = R(u†),
and thus ū is also an R- minimizing solution of (1).
• To prove the convergence rate result we reconsider (23) and the family of

operators {T−1
2,kFkT1,k : k ∈ N}. Using (11) in Assumption 2.3, it follows that∥∥∥T−1

2,kFkT1,k − F
∥∥∥ = O (ρk) .

Moreover, from (14) it follows that∥∥∥T−1
2,kyk − y

∥∥∥
2

= O(γ2,k + δk).
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We can apply the results of [24, Theorem 2.6] with the triangle inequality to
taking care of some additional error terms on the right side of (23), then we
get

BR(ǔk,u
†) = O

(
max

{
ρ2
k

αk
,
γ2

2,k

αk
,
δ2
k

αk
, γ1,k

})
.

Remark 2.7. We note that if the parameters are chosen in the following way,
ρ(σ) = O(γ1(σ)) = O(γ2(σ)) = O(δ) (for instance by appropriate discretization)
and α(σ, δ) = O(δ) , then we derive the standard convergence rates

BR(ǔk,u
†) = O (δk) .

Especially, if we choose R(·) = ‖·‖21 , then we have

BR(ǔk,u
†) =

∥∥ǔk − u†
∥∥2

1
= O (δk) .

Theorem 2.6 is a generalization of Theorem 2.2. Actually Theorem 2.2 is a trivial
case of Theorem 2.6 when σ ≡ 0.

In the following, we shortly discuss a case example in which Ui (i = 1, 2) are the
Sobolev spaces on surfaces (see [13] for instance).

Example 2.8. Let Ui,σ := W ki,2(Mi,σ,Rri), for i = 1, 2, ki ∈ N and ri ∈ R+,

(25) mi,σ ∈W ki,∞(Ωi,Mi,σ) and m−1
i,σ ∈W

ki,∞(Mi,σ,Ωi).

We have Ti,σ and T−1
i,σ are bounded. Moreover, let

(26) γi(σ) := ‖mi,σ −mi‖Wki,∞(Ωi)

and assume that γi : R+ → R is uniformly bounded, monotonically increasing, and
satisfies the convergence γi(σ)→ 0 as σ → 0 . For a general operator equation (1) of
which the data satisfies (3), we consider its Tikhonov regularization approximation

(2) with R(·) = ‖·‖2U1 . Then (10), (12) and (13) are also fulfilled.

Remark 2.9. In particular if ki = 2 and mi,σ is a uniform cubic spline approxima-
tion with grid size h < 1 of mi which is C2-smooth, then the condition (25) holds
and the quantity in (26) can be estimated explicitly, see for instance [1], that is

(27) γi(h) := ‖mi,h −mi‖W 2,∞(Ωi)
= O(h).

Remark 2.10. Note the condition (11) has to be further checked for individual
operators F and Fσ. The source condition (6) may require more smoothness on the
non-disturbed surfaces M1 and M2. For example: if F : W 1,2(M1) → L2(M1) is
the embedding operator, and R(·) = |·|W 1,2(M1), then condition (6) reads as

−∆Mu† ∈ L2(M1),

where ∆M denotes the Laplace–Beltrami operator. It asks that m1 ∈ W 2,∞(Ω1),
which has one order regularity higher than W 1,∞(Ω1) given in (25).
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3. Application to recover vector fields in ambient spaces. In this section, we
are studying an ill-posed operator equation, of which the solution is a function with
range in a vector bundle over a surface. A typical case is like a tangent vector field
ũ :M→ TM (see Appendix A). As a consequence, in case of surface perturbations,
also the range of the function ũ is perturbed and we get the approximation

ũσ :Mσ → TMσ.

To take this into account we consider vector fields represented by the basis in the
ambient space Rd+1 of the surface M, which consist of vector valued functions
u :M→ Rd+1.

We start by introducing some appropriate function spaces. The relevant geomet-
ric notations are summarized in Table 2 from the Appendix A.

3.1. Spaces of functions with range in a vector bundle. Before introducing
the function spaces we outline a basic assumption first:

Assumption 3.1. Let M ∈ Rd+1 be a d-dimensional, differentiable surface, such
that the surface gradient (cf. Definition A.2) of the unit normal vector n of the
surface satisfies

(28) ‖∇Mn‖L∞(M) ≤ Cc,

for some appropriate constant Cc. Here

‖∇Mn‖L∞(M) := sup
x∈M

{|∇Mn(x)|}

and |·| denotes the Frobenius norm of a matrix.

In fact, (28) is a uniform bound on the extrinsic curvature of the surface M.
The surface gradient operator ∇M· should not be confused with the covariant de-

rivative ∇̃· (see Definition A.3 in Appendix). Note that the latter is only defined
for functions with range in the tangent bundle and does not involve the metric of
the surface. ∇Mn is sometimes referred as shape operator in the literature.

Definition 3.2. Let L2(M) denote the space of square integrable, scalar, vector,
and matrix valued functions on M. The inner products and norms are defined by

〈U1, U2〉L2(M) :=

∫
M
U1 · U2 ds(x), ‖U‖2L2(M) = 〈U,U〉L2(M) ,

respectively. Here s(x) denotes the d-dimensional surface measure. Note that if
U1, U2 are scalar valued functions, then · denotes multiplication of numbers and
for vectors and matrices · denotes component wise multiplication. |·| (without any
subscript) denotes the Euclidean norm of a vector or the Frobenius norm of a matrix.

We define the sets

(29)

H̃1
T (M) :=

{
ũ :M→ Rd+1 : ũ(x) ∈ TxM, ∀x ∈M, ‖ũ‖H̃1

T (M) <∞
}
,

H1
N (M) :=

{
n :M→ Rd+1 : n(x) ∈ NxM, ∀x ∈M, ‖n‖H1

N (M) <∞
}
,

H1(M) :=
{

u = ũ + n : ũ ∈ H̃1
T (M), n ∈ H1

N (M), ‖u‖H1(M) <∞
}
,

H1(M) :=
{

u :M→ Rd+1 : ‖u‖H1(M) <∞
}
,

where TxM and NxM are the tangent and normal spaces, respectively (see Appen-
dix A).

Inverse Problems and Imaging Volume 11, No. 2 (2017), X–XX
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The associated inner products and norms for

A ∈
{
H̃1
T (M) ,H1

N (M) ,H1(M) , H1(M)
}
,

respectively, are defined by

(30)
〈u1,u2〉A := 〈u1,u2〉L2(M) + 〈U1, U2〉L2(M) ,

‖u1‖2A := 〈u1,u1〉A and |u1|A := ‖U1‖L2(M) .

Note that

Ui =


Pτ∇Mui for ui ∈ A = H̃1

T (M),
Pn∇Mui for ui ∈ A = H1

N (M),
Pτ∇M(Pτui) + Pn∇M(Pnui) for ui ∈ A = H1(M),

∇Mui for ui ∈ A = H1(M),

i = 1, 2,

where the definitions of Pτ and Pn can be found in Appendix A (49).

In the following we prove that these spaces are in fact Hilbert spaces. Moreover,
we prove some equivalent relations to the standard Sobolev space H1(M) which is
another way to denote the space W 1,2(M,Rd+1) (c.f. Example 2.8).

Lemma 3.3. Let H1(M), H̃1
T (M) and H1

N (M) as defined in (29). Then H1(M)

is the direct sum of H̃1
T (M) and H1

N (M), that is,

H1(M) = H̃1
T (M)⊕H1

N (M).

Proof. First we prove that H̃1
T (M) +H1

N (M) = H1(M). By definition H̃1
T (M) +

H1
N (M) ⊂ H1(M). On the other hand Let ũ = Pτu and n = Pnu, then u = ũ+n,

and thus H1(M) ⊂ H̃1
T (M) +H1

N (M).

It remains to prove that H̃1
T (M) and H1

N (M) are orthogonal with respect to

‖·‖H1(M). For every ũ ∈ H̃1
T (M) and n ∈ H1

N (M), we have

〈ũ,n〉H1(M) =

〈
Pτ ũ(x),Pτn(x)︸ ︷︷ ︸

=0

〉
H̃1

T (M)

+

〈
Pnũ(x)︸ ︷︷ ︸

=0

,Pnn(x)

〉
H1

N (M)

.

Thus, also the orthogonality is proven.

In the following we prove auxiliary results, which show embeddings of the space
H1(M).

Lemma 3.4. Let Assumption 3.1 hold. Then the projection operators Pτ and Pn
are continuous from the standard Sobolev space H1(M) to H̃1

T (M) and H1
N (M),

and in particular satisfy:

(31) max
{
‖Pτu‖2H1(M) , ‖Pnu‖2H1(M)

}
≤ (1 + (1 + Cc)

2) |u|2H1(M) .

Proof. From the definition of (30) it follows that

|Pτu|H1(M) = ‖Pτ∇M(Pτu) + Pn∇M(PnPτu)‖L2(M) = ‖Pτ∇M(Pτu)‖L2(M) .

Then, by using Lemma A.5, and the triangle inequality it follows that

(32)
|Pτu|H1(M) =

∥∥Pτ∇Mu− (nTu)∇Mn
∥∥
L2(M)

≤‖Pτ∇Mu‖L2(M) +
∥∥(nTu)∇Mn

∥∥
L2(M)

.
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10 Guozhi Dong, Bert Jüttler, Otmar Scherzer and Thomas Takacs

Because, for x ∈M, the Frobenius-norm of (nT (x)u(x))∇Mn(x) satisfies∣∣(nT (x)u(x))∇Mn(x)
∣∣ =

∣∣nT (x)u(x)
∣∣ |∇Mn(x)| ,

it follows from (28) and Cauchy-Schwarz inequality on Rd+1 that

(33)

∥∥(nTu)∇Mn
∥∥2

L2(M)
=

∫
M

∣∣(nTu)∇Mn
∣∣2 ds(x)

≤ ‖∇Mn‖2L∞(M)

∫
M
|〈n,u〉|2 ds(x)

≤ C2
c

∫
M
|u|2 ds(x) .

Using (33) and (50) in (32) then shows that

|Pτu|H1(M) ≤ ‖∇Mu‖L2(M) + Cc ‖u‖L2(M) ≤ (1 + Cc) ‖u‖H1(M) .

From this it directly follows that

‖Pτu‖2H1(M) = ‖Pτu‖2L2(M) + |Pτu|2H1(M) ≤ (1 + (1 + Cc)
2) ‖u‖2H1(M) .

Moreover, from the definition of H1(M), (30), it follows that

(34) |Pnu|H1(M) = ‖Pn∇MPnu‖L2(M) .

Then, by using Lemma A.5, the triangle inequality, and the fact that the Frobenius
norm is sub-multiplicative it follows that

(35)

‖Pn∇MPnu‖L2(M) =
∥∥Pn∇Mu + nuT∇Mn

∥∥
L2(M)

≤ ‖Pn∇Mu‖L2(M) +

√∫
M
|nuT∇Mn|2 ds(x)

≤ ‖Pn∇Mu‖L2(M) +

√∫
M
|nuT |2 |∇Mn|2 ds(x)

≤ ‖Pn∇Mu‖L2(M) + Cc

√∫
M
|nuT |2 ds(x) .

Since for a matrix nuT the spectral and the Frobenius norm are identical and satisfy∣∣nuT
∣∣ = |n| |u| = |u| [9], we get from (35)

(36) ‖Pn∇MPnu‖L2(M) ≤ ‖∇Mu‖L2(M) + Cc ‖u‖L2(M) .

Combining (34) and (36), it then follows that

|Pnu|H1(M) ≤ (1 + Cc) ‖u‖H1(M) .

In summary, we have

‖Pnu‖2H1(M) = ‖Pnu‖2L2(M) + |Pnu|2H1(M) ≤ (1 + (1 + Cc)
2) ‖u‖2H1(M) .

Moreover, we have the equivalence between H1(M) and H1(M).

Lemma 3.5. Let Assumption 3.1 hold. Then ‖·‖H1(M) and ‖·‖H1(M) (see (29))

are equivalent on H1(M).
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Proof. We first show that

‖u‖H1(M) ≤
√

2(1 + (1 + Cc)2) ‖u‖H1(M) , ∀u ∈ H1(M).

This follows from Assumption 3.1, Definition 3.2 and Lemma 3.4 together with

‖u‖2H1(M) = ‖Pτu‖2H1(M) + ‖Pnu‖2H1(M) ≤ 2(1 + (1 + Cc)
2) ‖u‖2H1(M) .

Now, we show that

‖u‖H1(M) ≤
√

(4C2
c + 2) ‖u‖H1(M) .

Since Pτu + Pnu = u, and by orthogonality of Pτu and Pnu in L2(M) it follows
that

‖u‖2L2(M) = ‖Pτu‖2L2(M) + ‖Pnu‖2L2(M) .

Then, from Lemma A.5, it follows that

Pτ∇M(Pτu) + Pn∇M(Pnu) = ∇Mu− nTu∇Mn+ nuT∇Mn.

and therefore from the definition of H1(M) (30) it follows that

|u|2H1(M) =
∥∥∇Mu− nTu∇Mn+ nuT∇Mn

∥∥2

L2(M)
.

Again by triangle inequality, and using the estimates used in (35) in Lemma 3.4, it
follows that

‖∇Mu‖L2(M) ≤
∥∥∇Mu− nTu∇Mn+ nuT∇Mn

∥∥
L2(M)

+
∥∥nTu∇Mn

∥∥+
∥∥nuT∇Mn

∥∥
L2(M)

≤ |u|H1(M) + 2Cc ‖u‖L2(M) .

Hence, ‖∇Mu‖2L2(M) ≤ |u|
2
H1(M) + 4C2

c ‖u‖
2
L2(M) , and we get the estimate

‖u‖2H1(M) ≤ (4C2
c + 2) ‖u‖2H1(M) .

Remark 3.6 (on Lemma 3.5). Note that the equivalence of the norms ‖·‖H1(M) and

‖·‖H1(M) of the spaces H1(M) and H1(M) is based on the uniform boundedness

of the curvature of M (cf. Assumption 3.1).
While Lemma 3.5 guarantees equivalence of the norms, this does not induce

equivalence of the seminorms |·|H1(M) and |·|H1(M).

With the discussion above, we can conclude that the spaces introduced in Defi-
nition 3.2 are actually Hilbert spaces.

Theorem 3.7. The spaces H1(M), H̃1
T (M) and H1

N (M) associated with the inner
products 〈·, ·〉H1(M), 〈·, ·〉H̃1

T (M) and 〈·, ·〉H1
N (M), respectively, are Hilbert spaces.

Proof. The first assertion follows by the equivalence of the Sobolev space H1(M)
andH1(M). The second and the third ones are fulfilled because they are orthogonal

subspaces ofH1(M) and complement each other there. Hence H̃1
T (M) andH1

N (M)
are closed subspaces and thus they are Hilbert spaces.
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Remark 3.8. We emphasize that all the norms in the Definition 3.2 are indepen-
dent of the parametrization. The independence follows by the invariance of the
surface gradient ∇M (cf. Lemma A.4), as well as the projection operators Pτ and
Pn, with respect to the parametrizations.

We also note that |ũ|H̃1
T (M) is a seminorm, which can be expressed via the

covariant derivative (cf. Definition A.3): According to (56), we have

|ũ|2H̃1
T (M) =

∫
M
|Pτ (x)∇Mũ(x)|2 ds(x)

=︸︷︷︸
(56)

∫
M

∣∣∣(∇̃ũ(x)(∂m(ζ))†)
∣∣∣2 ds(x)

=

∫
M

Tr

((
∇̃ũ(x)(∂m(ζ))†)

)(
∇̃ũ(x)(∂m(ζ))†)

)T)
ds(x)

=︸︷︷︸
(51)

∫
M

Tr

((
∇̃ũ(x)

)
g−1

(
∇̃ũ(x)

)T)
ds(x),

where Tr denotes the operator to extract the trace of a matrix.

3.2. Regularization theory for vector fields. We proceed to discuss the reg-
ularization theory with respect to the specific spaces X1(M1) = H1(M1) and
X2(M2) = L2(M2), which are useful for many applications. In practice, it is
common to consider the following type of regularization functional

(37) R(u) :=

∫
M1

R(Pτ∇MPτu + Pn∇MPnu)

where R(·) is a real, non-negative, local Lipschitz and convex function, and thus

R : H1(M1)→ [0,+∞]

is proper, convex and weakly lower semi-continuous. Since the spaces are fixed, we
can have a precise smoothness characterization on surfaces M1,σ and M2,σ.

Corollary 3.9. For every i = 1, 2, and every σ ≥ 0, let (25) and (26) hold for
k1 = 2, and k2 = 0, and let the regularization functional R be given as in (37), then
the estimates (8)–(10), (12) and (13) hold for H1(M1,σ) and L2(M2,σ), as well the
curvature estimate (28) holds for M1,σ.

Remark 3.10. We point out that in order to have compatibility between the
smoothness of surfaces and the regularity of the spaces, we ask the parametrization
map m1,σ ∈ W 2,∞(Ω1) on the surfaces for spaces H1(M1,σ), but only ask m1,σ ∈
W 1,∞(Ω1) for spaces H1(M1,σ) (c.f. Example 2.8).

In company with Assumption 2.1 and Corollary 3.9, we can apply the results
from Theorem 2.2 and Theorem 2.6 to the regularization of problem (1) associated
with vector fields represented in ambient coordinates.

3.3. Recovering tangent vector fields. We restrict ourselves to solving problem

(1), where the operator F̃ is applied to functions with range in the tangent bundle
only. We rewrite (1) as (38) in this particular case

(38) F̃ ũ = y, for ũ ∈ Ũ1.

The ambient approach requires to extend the operator F̃ and the associated Hilbert

space Ũ1 to the space U1 which is for vector fields represented in ambient coordinates.
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For the sake of simplicity, we select the concrete representation

Ũ1 = H̃1
T (M1) with R̃(·) = |·|2H̃1

T (M1) ,R(·) = |·|2H1(M1) , and U2 = L2(M2).

For all ũ ∈ H̃1
T (M1) we have Pnũ = 0, hence it follows that

|ũ|2H̃1
T (M1) =

∫
M
|Pτ (x)∇MPτ (x)u(x)|2 ds(x) = |ũ|2H1(M1) .

Note that |·|2H1(M1) is well-defined on both H1(M1) and H̃1
T (M1), and thus it can

be considered as an extension of the functional |·|2H̃1
T (M1) to ambient space.

In the following we define an ambient operator F of F̃ and the associated ambient
operator equation, respectively.

Definition 3.11. The ambient operator F : H1(M1) → L2(M2) is a bounded

linear operator which extends F̃ from H̃1
T (M1) to H1(M1). That is

Fu = F̃u for all u ∈ H̃1
T (M1).

We consider solving the system of equations

(39)

(
F

Pn

)
u =

(
y

0

)
.

We call (39) the ambient operator equation for tangent vector fields. The second
equation of the system ensures that u is tangential.

Tikhonov regularization for solving the ambient operator equation (39) consists
in minimization of the energy functional

(40) Tα,yδ(u) :=
∥∥Fu− yδ

∥∥2

L2(M2)
+ ‖Pnu‖2L2(M1) + α |u|2H1(M1) .

Lemma 3.12. Assume that D̃(F̃ ) = H̃1
T (M1) and that Assumptions 2.1 and 3.1

hold for (38). Let F be the extended operator introduced in Definition 3.11. Then
the following assertions hold:

1. |·|2H1(M1) : H1(M1) → [0,+∞) is a proper, convex, and weakly lower-semi

continuous functional satisfying D := D(|·|2H1(M1)) ∩ D(F ) = H1(M1).

2. ũ0 ∈ H̃1
T (M1) is a |·|2H̃1

T (M1) seminorm minimizing solution of (1) if and

only if it is a |·|2H1(M1) seminorm minimizing solution of (39).

To prove convergence of the regularization method we still need the following
compactness results.

Lemma 3.13. Let the same assumptions as in Lemma 3.12 hold. Then, for every
α, θ > 0, the sets

Mα,y(θ) :=
{
u ∈ H1(M1) : Tα,y(u) ≤ θ

}
are weakly sequentially compact in H1(M1).

Proof. For every u ∈ H1(M1), by Definition 3.2 and Lemma 3.3, we have

u = Pτu + Pnu = ũ + n,
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where ũ ∈ H̃1
T (M1) and n ∈ H1

N (M1). By Definition 3.11, the operator F fulfils∥∥∥Fu− F̃ ũ
∥∥∥2

L2(M2)
= ‖Fn‖2L2(M2). Now, we use the Peter–Paul inequality with

ε > 0 and get∥∥∥F̃ ũ− y
∥∥∥2

L2(M2)
=
∥∥∥F̃ ũ− Fu + Fu− y

∥∥∥2

L2(M2)

≤ (1 + ε) ‖Fn‖2L2(M2) + (1 +
1

ε
) ‖Fu− y‖2L2(M2) ,

and consequently it follows that

(41)

Tα,y(u)

= ‖Fu− y‖2L2(M2) + ‖Pnu‖2L2(M1) + α |u|2H1(M1)

≥ ε

1 + ε

∥∥∥F̃ ũ− y
∥∥∥2

L2(M2)
− ε ‖Fn‖2L2(M2) + ‖Pnu‖2L2(M1) + α |u|2H1(M1) .

Since |u|2H1(M1) = |ũ|2H̃1
T (M1) + |n|2H1

N (M1), and let

T̃α,y(ũ) :=
∥∥∥F̃ ũ− y

∥∥∥2

L2(M2)
+ α |ũ|2H̃1

T (M1) ,

it follows from (41) that

Tα,y(u) ≥ ε

1 + ε
T̃α,y(ũ) +

α

1 + ε
|ũ|2H̃1

T (M1)

+ ‖n‖2L2(M1) − ε ‖Fn‖2L2(M2) + α |n|2H1
N (M1) .

Choosing ε = min
{

α
2‖F‖2 ,

1
2‖F‖2

}
, we get

‖n‖2L2(M1) − ε ‖Fn‖2L2(M2) + α |n|2H1
N (M1)

≥2ε ‖F‖2 ‖n‖2H1(M1) − ε ‖F‖
2 ‖n‖2H1(M1) ,

and subsequently, we have

Tα,y(u) ≥ ε

1 + ε
T̃α,y(ũ) +

α

1 + ε
|ũ|2H̃1

T (M1) + ε ‖F‖2 ‖n‖2H1(M1) .

This estimate shows that every level set of Tα,y is uniformly bounded inH1(M1) and
thus has a weakly convergent subsequence in H1(M1). Because of the weak-lower
semi-continuity of the norms and seminorms and the boundedness of F it follows
that the limit is also an element of the level set, which gives the assertion.

The conditions in Assumption 2.3 and 3.1 are satisfied by Corollary 3.9, except
the estimate (11) on operators.

Lemma 3.14. Let (11) hold for the operator F in (39) for every σ ≥ 0, and let
(25) and (26) hold for k1 = 2, k2 = 0, define

ρa(σ) :=

∥∥∥∥∥
(
T−1

2,σFσT2,σ

T−1
1,σPnσT1,σ

)
−
(
F

Pn

)∥∥∥∥∥ .
Then we have the following estimates for the operator system

(
F
Pn

)
in (39),

ρa(σ)→ 0 for σ → 0,

and in particular
ρa(σ) = O(ρ(σ) + γ1(σ)).
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Lemma 3.12 and 3.13 guarantee that Assumption 2.1 is satisfied for the ambient
operator equation (39). Assumptions 2.3 and 3.1 are verified as well because of
Corollary 3.9, Lemma 3.14. Then we can extend Theorem 2.2 and Theorem 2.6
for (39), the ambient operator equation for tangent vector fields, with exact and
disturbed surfaces respectively.

4. Examples. In the following we present examples of applying Tikhonov regular-
ization for an ill-posed problem and an image problem of which the solutions are
vector fields defined on surfaces.

4.1. Magnetization reconstruction. We consider a modelling for an inverse
problem of reconstructing the Earth’s magnetizations from measurement of the
magnetic potential (see [8] for a recent reference), which consists in solving the
operator equation

(42) y = Fu where Fu :=
1

4π

∫
S3
1

〈
u(x),∇y

1

|x− y|

〉
ds(x).

Here M1 = S3
1 denotes the surface of the Earth, u : S3

1 → R3 denotes the vectorial
magnetization of the Earth and y : S3

2 ⊂ R3 → R denotes the magnetic potential
data on the (satellite) orbit M2 = S3

2 . Moreover, 〈·, ·〉 denotes the Euclidean inner
product in R3 and ∇y denotes the gradient in Euclidean space with respect to y.
We assume that the interior of the satellite orbit strictly contains S3

1 .
For the sake of simplicity of presentation we assume a 2 dimensional setting, that

u, y are constants in one Euler angle of S3
1 and S3

2 respectively. Then Equation
(42) simplifies to

(43) y = Fu where Fu :=

∫
S1

〈u(x),∇y log(|y − x|)〉 ds(x),

where S1 and S2 denote the rectifiable, planar curves, which are the restrictions of
S3

1 and S3
2 to the 2 dimensional Euclidean plane and 〈·, ·〉 denotes the Euclidean

inner product in R2. For simplicity, we ignore a constant ( 1
2π ) multiplication with

the integral in (43). In the left image of Figure 1, the geometry of the experiment is
sketched. We plot simulated data y according to some test data u†, and some noisy
data, yδ, which is obtained by adding Gaussian noise to y. As a case example, we
assume that the lodestones are distributed only on a part of the upper half of the
unit sphere S+

1 which simulates the earth. We denote functions in H1(S1), which
have support on the upper hemi-sphere, by H1(S+

1 ). This is numerically convenient,
since this assumption allows to parametrize all functions with just one patch. We
consider now F as the operator

F : H1(S+
1 )→ L2(S2).

Let us define

Ĉ := sup
y∈S2

{
sup
x∈S+

1

|∇y(log(|y − x|))|

}
,

and we know that it is finite since S2 and S1 have a positive distance. Then, we
have

‖F‖ ≤
√
|S2|

∣∣S+
1

∣∣Ĉ,
Inverse Problems and Imaging Volume 11, No. 2 (2017), X–XX
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Figure 1. The left image illustrates the problem setting. The
right image shows some noisy magnetic potential data (with
NSR=0.5) corresponding to the magnetization u† =
[40x3

1x2,−40x4
1]T .

because of

‖Fu‖2L2(S2) =

∫
S2

(∫
S+
1

〈u(x),∇y(log(|y − x|))〉 ds(x)

)2

ds(y)

≤ Ĉ2 |S2|
∣∣S+

1

∣∣ ∫
S+
1

|u(x)|2 ds(x).

We point out that, in general, the 2-dimensional function u in (43) cannot be
uniquely reconstructed from a 1-dimensional equation. If we restrict attention to
tangential fields, that is u† is tangential to S1, then the dimensions match, and
one obtains a unique solution. Here and in the later we will restrict to this case.
Motivated by this, we consider regularization by the Tikhonov functional

(44) min
u∈H1(S+

1 )

∥∥Fu− yδ
∥∥2

L2(S2)
+
∥∥nTu

∥∥2

L2(S1)
+ α |u|2H1(S1) .

On a one dimensional curve, using Definition 3.2 the explicit form of the regular-
ization functional becomes

|u|2H1(S1) =

∫
S1

(∂s〈u, n〉)2 + (∂s〈u, τ〉)2ds(x),

where ∂s denotes the derivative along the curve S1 with respect to arclength, and
τ is then a unit tangent vector field of S1.

Numerical tests. In our numerical test example we take S+
1 from the upper half

part of a circle of radius 1 and let S2 be an ellipse with short radius 2 and long
radius 3. Let S+

1 be parametrized as the function graph [x1, x2]T = [t,
√

1− t2]T ,
where t ∈ [−0.9, 0.9]. We use the uniform cubic B-splines to approximate S+

1 and
note it as S+

1 [h1]. S2 is approximated piecewise linearly by polygons S2[h2]. We
first test an example of direct reconstruction without regularization, and the results
(in Figure 2) show that the problem is highly ill-posed and the solution by a least
square inversion completely losses the expected information.
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Figure 2. A direct reconstruction without regularization.

Taking into account the discretization of the surfaces, we have the functional
(44) in an approximated form∥∥Fhuh − yδ

∥∥2

L2(S2[h2])
+
∥∥nThuh

∥∥2

L2(S1[h1])
+ α |uh|2H1(S1[h1]) .

The corresponding optimality condition is

(45) F ?hFhuh + nhn
T
huh + α

(
τh∂

2
sh
〈u, τh〉+ nh∂

2
sh
〈u, nh〉

)
= F ?hyδ,

where τh and nh denotes the unit tangent and the unit normal vector field on S+
1 [h1]

respectively, and F ?h is the dual operator of Fh in L2 sense, that is

F ?hy =

∫
S2[h2]

y(y)
y − x
|y − x|2

dsh(y).

In the implementation, we use linear finite element methods for solving the prob-
lem (45). In the first example, we reconstruct the magnetization from the noisy data
produced from a tangent vector field u† = [40x3

1x2,−40x4
1]T with [x1, x2]T ∈ S+

1 the
coordinates in ambient space. The results are presented in Figure 3, where we show
a selection of plots by varying the noise level δ and the parameter α, as well as the
discretization scale h. The parameters are chosen to satisfy δk = C1αk = C2hk with
C1 and C2 are constants, such that the assumption (16) is fulfilled. The numerical
results in Figure 3 are in accordance with the first statement of Theorem 2.6.

Another set of tests is made to distinguish the behaviours of the two semi-norms
which are defined in (29) for regularization. In this example, we set the ideal solution
to be u†(x) = [10x2 + 5x1, 5x2 − 10x1]T with [x1, x2]T ∈ S+

1 , that is a vector field
composed with constant amplitudes on both tangent and normal fields of S+

1 , and
we let the noise signal ratio be NSR = 0.5 in the data. Note that in this example,
we do not enforce the tangential constraint, hence we approximate the solution by
the minimizer of ∥∥Fu− yδ

∥∥2

L2(S2)
+ α |u|2H1(S1) .

The numerical results are presented in Figure 4, where the results regularized by
using the square of H1(S1) semi-norm (46) are also provided for comparison

(46) R(u) = |u|2H1(S1) .

We visualize for the regularization parameters which give the best approximation
of the solutions. We find that in this particular example, it is not possible to find
a good reconstruction by minimizing with the functional (46).
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Figure 3. The results obtained by minimizing the Tikhonov func-
tional to approximate u† = [40x3

1x2,−40x4
1]T , [x1, x2]T ∈ S+

1 with
a decreasing level of noise, for decreasing regularization parameters
and discretization sizes.
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Figure 4. The above two images plot the reconstructed vector
field with the squared H1(S1)-seminorm in the ambient space coor-
dinates. The below ones are results with ordinary squared H1(S1)-
seminorm (46). Here u†(x) = [10x2 +5x1, 5x2−10x1]T = 10τ+5n.

4.2. Convergence rates for vector field denoising. We consider denoising of
a 2 dimensional vector field yδ = uδ defined on a 1 dimensional curve S. In this
example, we have the coincidence of the two surfaces, that is M1 =M2 = S, and
F : H1(S)→ L2(S) is the embedding operator.

Let (Sh)h≥0 and (uδh)h≥0 be the sequences of the approximating curves of S and
data defined on Sh, respectively, Tikhonov regularization consists in minimizing the
functional

min
uh∈H1(Sh)

∥∥uh − uδ
∥∥2

L2(Sh)
+ α |uh|2H1(Sh) .

In our tests S is the graph of a sine function [x1, x2]T = [t, sin(t)]T with t ∈
[0, 2π) (cf. Figure 5). Sh is the approximation of uniform cubic B-splines. In this
way, Sh is a C2 approximation which satisfies Corollary 3.9.

We test for the synthetic solution

u†(x) =8(x2)τ + 4 cos(x1)n

=4

 2x2 cos(x1)−cos(x1)√
1+cos2(x1)

2x2+cos2(x1)√
1+cos2(x1)

 for x = [x1, x2]T ∈ S.

In this particular example the source condition (6) reads as follows:(
τ∂2

s (8x2)) + n∂2
s (4 cos(x1))

)
∈ L2(S),

which is easy to verify.
For the implementation, we approximate u by piecewise linear functions with

a uniform step size hu. We denote the discretization size of Sh by hs. Then Sh
contributes a surface disturbance to S with an error bound of the order of γ(hs)
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according to our assumption. The results are shown in Table 1, where we selectively
show the residuals computed in the experiments. We halve all the parameters for
the selected steps, including the regularization parameter αk, the noise level δk and

the discretization sizes hs,k and hu,k. The parameters then satisfy
δ2k
αk

= O(δk),

and the order of O(γk) is very close to the order of O(αk) in the tests, that is
γ2
k

αk
= O(γk), γk = O(δk). We find that the numerical rates coincide with the results

obtained in the second statement of Theorem 2.6∣∣ǔk − u†
∣∣2 = O(δk).

Figure 5. Approximation of curves by different scales of discretization.

Table 1. Convergence rates of vector field denoising on curves

NSR(
‖δ‖L2

‖u†‖L2
) 1 0.5 0.25 0.125 0.625

α 0.04 0.02 0.01 0.005 0.0025
hs,1 = 0.5π γ1 = 1.8371 hu,1 = 0.02π∣∣ǔ1 − u†

∣∣2 366.3082 228.1245 133.0704 77.8783 48.6980
hs,2 = 0.25π γ2 = 0.8211 hu,2 = 0.01π∣∣ǔ2 − u†

∣∣2 347.8737 200.5511 110.7511 62.4273 37.5464
hs,3 = 0.125π γ3 = 0.3866 hu,3 = 0.005π∣∣ǔ3 − u†

∣∣2 276.7971 166.7043 94.3003 54.0387 33.1077
hs,4 = 0.0625π γ4 = 0.1922 hu,4 = 0.0025π∣∣ǔ4 − u†

∣∣2 242.3850 150.7489 90.4440 55.0508 34.8112
hs,5 = 0.03125π γ5 = 0.0971 hu,5 = 0.00125π∣∣ǔ5 − u†

∣∣2 268.2314 158.8666 90.0663 52.4830 32.7122
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5. Conclusion. In this paper we have studied Tikhonov regularization for solving
ill–posed operator equations where the solutions are functions defined on surfaces,
and especially we emphasize on the functions with range in vector bundles. Such
problems appear in a variety of applications such as recovering magnetization from
magnetic potential, vector fields denoising on surfaces and so on. We extended
the existing theory on approximation of infinite dimensional Tikhonov regularized
solutions for ill–posed operator equations to the surface setting. The theory has
been generalized to the case of vector fields, where they are represented by vector
valued functions associated to the coordinates in ambient spaces of the surfaces. The
additional features of this theory are that it allows to take into account perturbations
of the surface and the vector bundle, and it provides an analysis on the convergence
and convergence rates which may give an optimal regularization parameter choice.
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Appendix A. Background on surfaces and vector fields. Throughout this
paper we use some geometrical notations which are collected in Table 2.

Table 2. Notation corresponding to the geometry

Notation Remark Notation Remark
M a parametrizable surface g metric tensor
m mapping m : Ω→M ∂m Jacobian of m
TM tangent vector bundle NM normal vector bundle
Pτ tangent projection Pn normal projection
n unit normal vector g(·, ·) inner product on TM
∂im tangent basis vector

Let (M, g) be a d-dimensional smooth, oriented, connected and compact surface
in Rd+1, which has bounded curvature, and is associated with the Riemannian met-
ric g. To simplify the representation we assume that the surface M is parametriz-
able, that is M⊆ Rd+1 can be represented by a map m : Ω→ Rd+1,

M = m(Ω),

where Ω ⊂ Rd and m : Ω → M is a regular parametrization. In particular we
assume that m is bijective and the inverse m−1 : M → Ω is also a regular map.
TxM, NxM denote the tangent and normal vector spaces at x ∈ M, respectively.
Then the tangent and normal bundle are defined by

TM =
⋃

x∈M,

{(x,v) : v ∈ TxM}

and

NM =
⋃

x∈M,

{(x,v) : v ∈ NxM} ,
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respectively. We denote by

∂m(ζ) = [∂1m, ∂2m, · · · , ∂dm](ζ) ∈ R(d+1)×d

the Jacobian of the parametrization at x = m(ζ) ∈ M. The parameters in Ω are
denoted by ζ. The derivatives with respect to these parameters are always denoted
by ∂. The metric tensor g is related to the parametrization m by

(47) g(ζ) = (∂m(ζ))T∂m(ζ) ∈ Rd×d

on M at x = m(ζ). We call a vector field a tangent vector field if ṽ : M→ Rd+1

with range in the tangent bundle TM, that is, ṽ(x) ∈ TxM for all x ∈ M. Every
tangent vector ṽ(x) ∈ TxM can be represented in terms of the tangential basis
(∂im(ζ))i=1,2,··· ,d, at each x = m(ζ), via

(48) ṽ(x) = ∂m(ζ)(v̂1(ζ), · · · , v̂d(ζ))T ∈ R(d+1)×1.

For two tangent vector field ṽ(x) and ũ(x), using (48), we have the relation

g(ṽ, ũ) := (v̂1(ζ), · · · , v̂d(ζ)) (∂m(ζ))
T
∂m(ζ)︸ ︷︷ ︸

=g(ζ)

(û1(ζ), · · · , ûd(ζ))T

= ṽT ũ.

We denote by n(x) = (n1(x), n2(x), · · · , nd+1(x))T ∈ Rd+1 the unit normal vector
ofM at x ∈M with fixed orientation, and by Pτ and Pn the projections onto TM,
NM at a point x ∈M, respectively. They are represented by matrices
(49)

Pn(x) = n(x)n(x)T ∈ R(d+1)×(d+1) and Pτ (x) = I − Pn(x) ∈ R(d+1)×(d+1),

where I is the (d+ 1)× (d+ 1) identity matrix. Because Pτ and Pn are orthogonal
projections on the surface they are satisfying the pointwise estimate

max {|Pτu| , |Pnu|} ≤ |u| .

In Figure 6 we give a schematic representation of the surfaceM, its parametrization
m over the coordinate domain Ω, as well as the vector spaces TxM and NxM.

m M

NxM

TxM
x

ζ
Ω

Figure 6. Geometry mapping and vector spaces

Lemma A.1. Let A ∈ R(d+1)×(d+1), then for every x ∈M

(50) |Pτ (x)A| ≤ |A| , and |Pn(x)A| ≤ |A|

where |A| denotes the Frobenius norm.
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Proof. For every matrix A, |A|2 = Tr(ATA), and because Pτ (x) and Pn(x) are
orthogonal projections, we have

|A|2 = |Pτ (x)A+ Pn(x)A|2

= Tr
(
(Pτ (x)A+ Pn(x)A)T (Pτ (x)A+ Pn(x)A)

)
= Tr

(
(Pτ (x)A)TPτ (x)A+ (Pn(x)A)T (Pn(x)A)

)
= Tr

(
(Pτ (x)A)TPτ (x)A

)
+ Tr

(
(Pn(x)A)T (Pn(x)A)

)
= |Pτ (x)A|2 + |Pn(x)A|2 .

Moreover, we have the relation between the parametrization and the projection

Pτ (x) = ∂m(ζ)g−1(ζ)(∂m(ζ))T

for x = m(ζ). We denote by

(51) (∂m(ζ))† = g−1(ζ)(∂m)T (ζ) ∈ Rd×(d+1),

the Moore-Penrose inverse of the matrix ∂m(ζ) ∈ R(d+1)×d, which satisfies

(∂m(ζ))†∂m(ζ) = id(ζ) ∈ Rd×d and ∂m(ζ)(∂m(ζ))† = Pτ (m(ζ)) ∈ R(d+1)×(d+1).

Definition A.2. For a scalar field v :M→ R, we define its surface gradient at a
point x = m(ζ) by

(52) ∇Mv(x) :=
(
∂(v ◦m) (∂m)†

)
◦m−1(x) ∈ R1×(d+1).

The surface gradient fulfills the relation

(53) ∇Mv(m(ζ)) ∂m(ζ) = ∂(v ◦m)(ζ) ∈ R1×d.

Given a vector valued function v : M → Rd+1, the definition of the gradient with
respect to the surface ∇M consists in taking the gradient of each scalar component
vi, i.e., for x = m(ζ) we have
(54)

∇Mv(x) :=

 ∇Mv1(x)
· · ·

∇Mvd+1(x)

 =
(
∂(v ◦m)(ζ)(∂m(ζ))†

)
◦m−1(x) ∈ R(d+1)×(d+1).

Every vector field v : M→ Rd+1 can be decomposed into the two vector fields
Pτv and Pnv which have ranges in TxM and NxM respectively for all x ∈M.

In the following we recall the definition of the covariant derivative of a tangent
vector field ṽ :M→ TM (see [19, 5]). Equation (48) states that

ṽ(m(ζ)) = ∂m(ζ)(v̂1(ζ), · · · , v̂d(ζ))T =

d∑
k=1

v̂k(ζ)∂km(ζ),

where v̂k : Ω → R denotes the local coordinate representation with respect to the
basis (∂km)k=1,2,··· ,d.

Definition A.3 (refering to [5, 6]). The covariant derivative in direction k with

respect to tangent basis ∂m, (∇̃kṽ)k=1,2,··· ,d, is defined by the orthogonal projection
of

∂k(ṽ ◦m)(ζ) =

d∑
i=1

∂kv̂i(ζ)∂im(ζ) +

d∑
i=1

v̂i(ζ)∂ikm(ζ)
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into the tangent space. That is, for x = m(ζ), the covariant derivative is given by

(55) ∇̃ṽ(m(ζ)) = Pτ (m(ζ))[∂1(ṽ ◦m)(ζ), · · · , ∂d(ṽ ◦m)(ζ)].

In particular for a tangent vector field ṽ at x = m(ζ) it follows from (55) and
(54) that

(56) ∇̃ṽ(x)(∂m(ζ))† = Pτ (x)∇Mṽ(m(ζ)).

Moreover, for an arbitrary vector field v :M→ Rd+1 we have

∇̃(Pτv)(x)(∂m(ζ))† = Pτ (x)∇M(Pτv)(x).

To conclude the appendix, we present a few auxiliary results, which are used to
characterize spaces in Section 3.

Lemma A.4. The gradient operator ∇M is independent of the parameterization,
and fulfils standard rules of differentiation, such as the product rule

1. Let v, w :M→ R be differentiable, then

∇M(vw) = v∇Mw + w∇Mv.
2. Moreover, let v,w, z :M→ Rd+1, then

∇M(vTw) = vT∇Mw + wT∇Mv,

∇M(vw) = w∇Mv + v∇Mw,

∇M((vTw)z) = zvT∇Mw + zwT∇Mv + (vTw)∇Mz.

Lemma A.5. Let n(x) = (n1(x), · · · , nd+1(x))T the unit normal vector field on
M, and let v :M→ Rd+1 be a differentiable vector field, then

1. The following formulas hold

nT∇Mn = 0, Pτ∇Mn = ∇Mn and Pτn = 0 ,

and
Pτ∇M(Pτv) = Pτ∇Mv − (nTv)∇Mn,
Pn∇M(Pnv) = Pn∇Mv + nvT∇Mn.

2. Moreover, the seminorm can be represented by

|v|2H1(M) =
∥∥∇Mv − (nTv)∇Mn+ nvT∇Mn

∥∥2

L2(M)
.

Proof. For the first item, since n is a unit normal vector field,

nT (x)n(x) = 1, ∀x ∈M.

Then from Lemma A.4 it follows that

2nT (x)∇Mn(x) = ∇M(nT (x)n(x)) = 0.

Moreover, Pτ (x) = I − n(x)nT (x), and thus from the previous it follows that

Pτ (x)∇Mn(x) = I∇Mn(x)− n(x)nT (x)∇Mn(x) = ∇Mn(x).

We apply the product rules in Lemma A.4 and properties of n derived above, which
show that

Pτ∇M(Pτv) = Pτ∇M(v − (nTv)n)

= Pτ (∇Mv − nnT∇Mv − nvT∇Mn− (nTv)∇Mn)

= Pτ∇Mv − (nTv)∇Mn,
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and
Pn∇M(Pnv) = Pn∇M((nTv)n)

= Pn(nnT∇Mv + nvT∇Mn+ (nTv)∇Mn)

= Pn∇Mv + nvT∇Mn.
Adding the two identities, and using the orthogonality of Pτ and Pn on L2(M), we
get the statement of the second item from Definition 3.2:∥∥∇Mv − (nTv)∇Mn+ nvT∇Mn

∥∥2

L2(M)

= ‖Pτ∇M(Pτv) + Pn∇M(Pnv)‖2L2(M)

= ‖Pτ∇M(Pτv)‖2L2(M) + ‖Pn∇M(Pnv)‖2L2(M)

= |v|2H1(M) .

This concludes the proof.
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