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In this work we consider the inverse electromagnetic scattering problem for
inhomogeneous anisotropic media placed in an Optical Coherence Tomography
(OCT) system.

OCT is a non-invasive imaging technique producing high-resolution images of
biological tissues. It is based on low (time) coherence interferometry and it is
capable of imaging micro-structures within a few micrometers resolution. Stan-
dard OCT operates using broadband and continuous wave light in the visible and
near-infrared spectrum. Images are obtained by measuring the time delay and
the intensity of back-scattered light from the sample under investigation. There
also exist contrast-enhanced OCT techniques like polarisation-sensitive OCT (PS-
OCT) which allows for simultaneously detecting different polarisation states of the
back-scattered light [2].

We model the propagation of electromagnetic waves through the inhomoge-
neous anisotropic medium using Maxwell’s equations [1]. The sample is hereby
considered as a linear dielectric non-magnetic medium. Moreover, we assume that
it is weakly scattering, meaning that the electromagnetic field inside the medium
is sufficiently well described by a first order Born approximation.

The optical properties of the medium are then characterised by the electric sus-
ceptibility x : R x R? — R3*3, the quantity to be recovered, where the causality
requires that x(t,2) = 0 for t < 0. The measurements M are given as a combi-
nation of the back-scattered field by the sample and the back-reflected field from
a reference mirror. In an OCT system, the detector is placed in a distance much
bigger than the size of the medium, therefore we consider as measurement data
the far field approximation of the electromagnetic field.

Then, the direct problem is modelled as an integral operator F mapping the
susceptibility x to the measurement data M. The inverse problem we are interested
in is to solve the operator equation

Fx=M
for x, given measurements for different positions of the mirror and different in-
cident polarisation vectors. Under some restrictions on the OCT setup [3] and

assuming that the incoming plane wave E(®) propagates in the direction —es, we
can formulate the inverse problem as the reconstruction of x from the expressions

(1) MM = ;[0 x (0 x X(w, 2(0 +e3)p)];, G =12,

where H; are some explicitly known, well-posed operators, p € R? x {0} is the
polarisation of the initial illumination, w € R\ {0} is the frequency and ¥ € 52
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is the direction from the origin (where the sample is located) to a detector point.
Here x denotes the Fourier transform of x with respect to time and space.

In the special case of an isotropic medium, meaning that x is a multiple of the
unit matrix, it remains the problem to reconstruct the four dimensional suscep-
tibility from the three dimensional measurement data. We propose an iterative
scheme, assuming a certain discretisation of y with respect to the detection points
and its support, that provides us with the values of a limited angle Radon trans-
form. For non-dispersive media, where the temporal Fourier transform y of x
does not depend on frequency, the equation (1) determines the spatial Fourier
transform of x in a cone. Thus, the problem reduces to the inversion of the three-
dimensional Fourier transform with limited data and there exist several algorithms
for recovering the scalar susceptibility under these assumptions.

For the most general case of a matrix
valued susceptibility (non-symmetric),
using the discretisation of x we show
« that three incident polarisation vectors
9+ E3 uniquely determine the Radon trans-

form of the projection of y over planes
orthogonal to the vector 9 + e3, see Fig-
ure 1. To be able to recover the Fourier
transform of y we have to repeat the ex-
periment for different orientations of the
1, T2 sample. More precisely, we have to tilt
slightly the sample three times for every

incident polarisation.
The above analysis concerns the study
of standard OCT where the sample is il-
FicURrE 1 luminated by light with fixed polarisa-

tion (usually linear).

On the other hand, in PS-OCT the interferometer with the addition of polarizers
and quarter-wave plates change the polarisation state of light to produce circularly
polarized light incident on the sample. The output signal now is split into its hor-
izontal and vertical components to be measured at two different photo detectors.
In this setting, we consider an orthotropic non-dispersive medium where the sus-
ceptibility is now a symmetric matrix with only four unknowns and its temporal
Fourier transform is frequency independent.

From [1] we know that the scattered field can be written as a linear integral
operator G applied to the product of the temporal Fourier transforms § and E(©)
of the susceptibility y and the incident field E(©, respectively. The kernel of the
operator G is the Green tensor related to Maxwell’s equations in the frequency
domain. This relation is known as Lippmann—Schwinger equation. The kth order
Born approximation E®) is defined by

x3
Detector

€3

supp x(t, )

E® = FO 4 glxE*-Y] keN.



We consider the second order Born approximation together with the far field ap-
proximation, that affects only the Green tensor resulting to an operator G*°, which
leads to
B = BO + G2 [R(E® + GIREO)).
We assume that the variations of x are small compared to the constant back-
ground value X (which is given), meaning ¥ = Yo + €X1, for some small € > 0.
Equating the first order terms we consider only the term

G [ (B + Glxo BN + G [2oG [0 B]
as the one that has the necessary information. Similar to the derivation of (1),

the inverse problem of determining x; from the OCT measurements, related to
the field £, reduces to the reconstruction of ¥; from the expressions

(2) pi[9 % (9 x (X1 + %K) + LIxalxo)p®))];, 7=12,

for some integral operators IC and L related to G and polarisation vectors p” and
p® describing the change of the polarisation state of light travelling in the reference
and sample arm, respectively. These changes can be easily modelled using Jones
matrices.

We show that two linear independent incident polarisations provide enough
information for recovering 1. Expression (2), for two incident polarisations of the
form p = e; and p = ey results in a system of Fredholm integral equations of the
second kind for the three (out of four) unknown components of x;. In addition,
the integral operator is compact. The fourth component is given as a solution of
a Fredholm integral equation of the first kind, where the right-hand side depends
on the three previously computed solutions.

As a future work we plan to consider the numerical implementation of the above
results for simulated and real data. Even though we have a theoretical result that
makes the reconstruction of x possible, we still have to tackle the ill-posedness of
the inverse problem. Recall that in a real world experiment we only have access to
noisy band-limited and limited-angle measurements due to the limited spectrum
of the light source and the size of the detector.
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