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the solution of linear ill-posed problems. Previously, linear convergence rates
with respect to the Bregman distance have been derived under the classical
assumption of a standard source condition. Using the method of variational
inequalities, we extend these results in this paper to convergence rates of lower
order, both for the case of an a priori parameter choice and an a posteriori choice
based on Morozov’s discrepancy principle. In addition, our approach allows
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with generalized source conditions of Hölder type.
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1. Introduction

We aim for the solution of the problem

inf
u∈X

J(u) s.t. Ku = g, (1)

where K:X → H is a linear and bounded mapping between a Banach space X and a
Hilbert space H and where J :X → R is convex and lower semi-continuous. We are
particularly interested in the case when the right hand side in the linear constraint is
not at hand but only an approximation gδ such that∥∥g − gδ∥∥ ≤ δ (2)

for some δ > 0. A possible method for computing a stable approximation of solutions
of (1) is the augmented Lagrangian method (ALM), an iterative method that, for a
given initial value pδ0 ∈ H and for k = 1, 2, . . ., computes
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uδk ∈ argmin
u∈X

[
τk
2

∥∥Ku− gδ∥∥2
+ J(u)−

〈
pδk−1,Ku− gδ

〉]
(3a)

pδk = pδk−1 + τk(gδ −Kuδk). (3b)

Here, {τk}k∈N denotes a pre-defined sequence of positive parameters such that

tn :=

n∑
k=1

τk →∞ as n→∞.

The ALM was originally introduced in (Hestenes 1969, Powell 1969) (under the name
method of multipliers) as a solution method for problems of type (1) in Euclidean
space with exact right hand side g. Since then, the ALM was developed further in
various directions; see e.g. (Fortin & Glowinski 1983, Ito & Kunisch 2008) and the
references therein. In particular, the method has been generalized to Hilbert and also
Banach spaces (note that the infinite dimensional setting has already been shortly
discussed in (Hestenes 1969)).

In the context of inverse problems, the ALM was first considered for the special
case when X is a Hilbert space and J is a quadratic functional, i.e., J(u) = 1

2 ‖Lu‖
2

for a densely defined and closed linear operator L:D(L) ⊂ X → H̃, where H̃ is some
further Hilbert space (here we set J(u) = +∞ if u 6∈ D(L)). For this special case, it
is readily seen that the ALM can be rewritten into

uδk = argmin
u∈X

[
τk
∥∥Ku− gδ∥∥2

+
∥∥L(u− uδk−1)

∥∥2

H̃

]
. (4)

The analysis of iteration (4) dates back to the papers (Krasnosel′skĭı 1960, Krjanev
1973). The case when L ≡ Id is referred to as the iterated Tikhonov method and
has been studied in (Lardy 1975, Brill & Schock 1987, Hanke & Groetsch 1998, Engl
et al. 1996). The regularization scheme that results for K ≡ Id is termed iterated
Tikhonov–Morozov method and amounts to stably evaluate the (possibly unbounded)
operator L at g given only an approximation gδ that satisfies (2). For detailed analysis
see e.g. (Groetsch & Scherzer 2000, Groetsch 2007).

A generalization of the iteration in (4) for total-variation based image
reconstruction has been established in (Osher et al. 2005) under the name Bregman
iteration and convergence properties were studied in (Burger et al. 2007). In (Frick
& Scherzer 2010) it was pointed out that the Bregman iteration and the iterated
Tikhonov(–Morozov) method are special instances of the ALM as it is stated in (3a),
and an improved convergence analysis was developed. In (Frick et al. 2011), Morozov’s
discrepancy principle (Morozov 1967) was studied for the ALM. The application of the
ALM for the regularization of nonlinear operators has been considered in (Bachmayr
& Burger 2009, Jung et al. 2011).

Up to now, convergence rates for the ALM (in the context of inverse problems)
have only been derived under the assumption that the solutions u† of (1) satisfy the
standard source condition (Burger & Osher 2004)

K∗p† ∈ ∂J(u†) for some p† ∈ H. (5)

Here K∗:H → X∗ denotes the adjoint operator of K and ∂J(u†) is the subdifferential
of J at u†. This typically results in a convergence rate of δ with respect to the
Bregman distance (for a definition of the subdifferential and the Bregman distance,
see Section 2). In this paper we extend these results to convergence rates of lower
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order by replacing (5) by variational inequalities. The analysis will apply for both
a priori and a posteriori parameter selection rules, where the latter will be realized
by Morozov’s discrepancy principle. In addition, our approach allows the derivation
of convergence rates with respect to distance measures different from the Bregman
distance.

The paper is organized as follows: In Section 2 we state basic assumptions and
review tools from convex analysis that are essential for our analysis. In Section 3 we
establish variational inequalities and prove that these are sufficient for lower order
convergence rates for the ALM with suitable a priori stopping rules. In Section 4 we
prove the same convergence rates when Morozov’s discrepancy principle is employed
as an a posteriori stopping rule. In Section 5 we finally consider some examples that
clarify the connection of the variational inequalities in Section 3 and more classic
notions of source conditions, such as the standard source condition (5) or Hölder-
type conditions. Moreover, we show for the particular scenario of sparsity promoting
regularization how our approach can be used to derive convergence rates with respect
to the norm.

2. Assumptions and Mathematical Prerequisites

In this section we fix some basic assumptions as well as review basic notions and
facts from convex analysis. We start by delimiting minimal functional analytic
requirements.

Assumption 2.1. (i) X is a separable Banach space with topological dual X∗. We
denote the duality pairing of X and X∗ by 〈ξ, x〉X∗,X = ξ(x).

(ii) The operator K:X → H is linear and continuous.

(iii) The functional J :X → R := R ∪ {+∞} is convex, lower semicontinuous and
proper with nonempty domain D(J) = {u ∈ X : J(u) <∞}.

(iv) For each g ∈ H and c > 0 the set

Λ(g, c) =
{
u ∈ X : ‖Ku− g‖2 + J(u) ≤ c

}
is sequentially weakly pre-compact in X.

For our analysis we will make extensive use of tools from convex analysis (here,
we refer to (Aubin 1979, Ekeland & Temam 1976) as standard references). We will
henceforth denote by ∂J(u0) the subdifferential of J at u0 ∈ X, i.e., the set of all
ξ ∈ X∗ such that

J(u) ≥ J(u0) + 〈ξ, u− u0〉X∗,X , for all u ∈ X.
In this case, we call ξ a subgradient of J at u0. We denote by K∗:H → X∗ the adjoint
operator of K, where we identify the Hilbert space H with its dual H∗ by means of
Riesz’ representation theorem. Assumption 2.1 guarantees that solutions of (1) exist
for all g ∈ K(D(J)) and that the iteration (3a) is well defined. The proof is analogous
to (Frick & Scherzer 2010, Lem. 3.1); the only difference is that there also the space
X is assumed to be a Hilbert space.

Recall that the Legendre-Fenchel conjugate J∗:X∗ → R of J is defined by
J∗(x∗) = supx∈X 〈x∗, x〉X∗,X − J(x). The dual problem to (1) is then defined by
(see (Aubin 1979, Section 5.2.9))

inf
p∈H

[
J∗(K∗p)− 〈p, g〉

]
. (6)
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Sufficient and necessary conditions for guaranteeing the existence of a (constrained)
minimizer u† ∈ X of (1) and a minimizer p† ∈ H of (6) are the Karush-Kuhn-Tucker
conditions (see (Aubin 1979, Sections 5.2.4, 5.2.6)), which read

K∗p† ∈ ∂J(u†) and Ku† = g. (7)

From an inverse problems perspective, these conditions are understood as source
conditions (Burger & Osher 2004) that delimit a class of particular regular solutions
u† of (1) that can be reconstructed from noisy data at a certain rate depending on
the noise level δ. If the source condition (7) does not hold, then solutions of (1) may
still exist (e.g. if Assumption 2.1 holds) whereas (6) has no solutions. The value of
(6), though, will still be finite:

Lemma 2.2. Suppose that Assumption 2.1 holds and let u† ∈ X be a solution of (1).
Then

inf
p∈H

[
J∗(K∗p)− 〈p, g〉

]
= −J(u†).

Proof. Define a function Γ:X × H → R by setting Γ(u, p) = J(u) if Ku = g + p
and G(u, p) = +∞ otherwise. According to (Ekeland & Temam 1976, Chap III.
Prop. 2.1) the assertion holds, if the function p 7→ h(p) = infu∈X Γ(u, p) is finite
and lower semicontinuous at p = 0. Since p(0) = J(u†) < ∞ it remains to prove
lower semicontinuity. Therefore, let {pk}k∈N be a sequence in H such that pk → 0.
Without loss of generality, we may, after possibly passing to a subsequence, assume
that h(pk) <∞ for every k, which amounts to saying that the equation Ku = g + pk
has a solution uk ∈ X satisfying J(uk) <∞. In addition, because of Assumption 2.1,
we can choose uk such that the infimum in the definition of h is realized at uk, that
is, h(pk) = Γ(uk, pk).

Now, if J(uk) → ∞ as k → ∞, nothing remains to be proven. Thus we can
assume that there exists a subsequence of {uk′} such that supk′∈N J(uk′) < ∞. It
is not restrictive to assume that limk′→∞ J(uk′) = lim infk→∞ J(uk). Moreover, we

observe that ‖Kuk − g‖2 = ‖pk‖2 is bounded, since pk → 0. Thus it follows from
Assumption 2.1 that there exists a further subsequence {uk′′} such that uk′′ ⇀ û for
some û ∈ X. This implies that Kuk′′ ⇀ Kû = g, and the lower semicontinuity and
convexity of J finally proves that

lim inf
k→∞

h(pk) = lim
k′→∞

J(uk′) = lim inf
k′′→∞

J(uk′′) ≥ J(û) ≥ J(u†) = h(0).

A relation similar to the duality relation between the optimization problems (1)
and (6) can be established for the ALM: As first observed in (Rockafellar 1974), the
dual sequence

{
pδ0, p

δ
1, . . .

}
generated by the ALM can be characterized by the proximal

point method (PPM). To be more precise, for all k ≥ 1,

pδk = argmin
p∈H

[
1

2

∥∥p− pδk−1

∥∥2
+ τk

(
J∗(K∗p)−

〈
p, gδ

〉)]
. (8)

The PPM was introduced by Martinet in (Martinet 1970) for minimizing a convex
functional, which in the present situation is the dual functional (6). The sequence{
pδk
}

generated by the PPM is known to converge weakly to a solution of (6) if it

exists, i.e., when (7) holds. If this is not the case, then still J∗(K∗pδk) −
〈
pδk, g

δ
〉

converges to the value of the program (6) which, in the general case, may be −∞, of
course.
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3. Convergence Rates

The classical analysis of the ALM within the context of optimization assumes that
the right side of the equation Ku = g is given exactly, that is, δ = 0. Under this
assumption, the iterates of the ALM converge to the J-minimizing solution of Ku = g
as n→∞, provided there exists any solution u of this equation satisfying J(u) <∞;
see, for instance, the results in (Fortin & Glowinski 1983, Ito & Kunisch 2008).

Within the context of inverse problems, however, the right hand side is not known
exactly but only approximately with some known error bound δ > 0. That is, we are
given gδ ∈ H with

∥∥gδ − g∥∥ ≤ δ. Still, one wants to find an approximation of the
solution u† of the true equation Ku = g. In the case where the operator equation
is ill-posed this is only possible, if the iteration is stopped well before the iterates
converge. Moreover, the stopping index of the iteration has to depend on the noise
level δ. In this setting, one can prove the following convergence result:

Theorem 3.1. Assume that the equation Ku = g has a J-minimizing solution
u† ∈ D(J). If n = n(δ) is chosen in such a way that

lim
δ→0

δ2tn(δ) = 0 and lim
δ→0

tn(δ) = +∞ ,

then limδ→0

∥∥Kuδn(δ) − g
∥∥ = 0 and limδ→0 J(uδn(δ)) = J(u†). In particular, every

weak cluster point of the weakly compact set {uδn(δ)}δ>0 is a J-minimizing solution of
Ku = g.

Proof. See (Frick & Scherzer 2010, Theorem 5.3).

The previous result does not include any estimate of the speed of the convergence
of the approximate solutions uδn(δ) to J-minimizing solutions of Ku = g. In order to
obtain such an estimate, it is necessary to impose certain regularity conditions on the
true solution of the equation. It is well known that linear convergence rates (with
respect to the Bregman distance) for iterates of the ALM can be proven if the source
condition (7) holds (cf. (Burger et al. 2007, Frick & Scherzer 2010)). In this section
we prove lower order rates of convergence in the case, when the source condition (7)
does not hold. Instead, we impose weaker regularity conditions on solutions u† of (1)
in terms of variational inequalities. We formulate this in the following

Assumption 3.2. We are given an index function Φ: [0,∞) → [0,∞), i.e., a non-
negative continuous function that is strictly increasing and concave with Φ(0) = 0.
Moreover, D:X × X → [0,∞] satisfies D(u, u) = 0 whenever u ∈ X, and u† is a
solution of (1) is such that

D(u, u†) ≤ J(u)− J(u†) + Φ(‖Ku− g‖2) for all u ∈ X. (9)

We denote by Ψ the Legendre-Fenchel conjugate of Φ−1.

A typical choice is D(u, v) = βDξ
J(u, v), where β ∈ (0, 1] and

Dξ
J(u, v) = J(u)− J(v)− 〈ξ, u− v〉X∗,X (10)

is the Bregman-distance of u and v w.r.t. ξ ∈ ∂J(v). With this, (9) is equivalent to
the condition 〈

ξ†, u† − u
〉
X∗,X

≤ (1− β)Dξ†

J (u, u†) + Φ(‖Ku− g‖2) (11)
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for all u ∈ X. In this form, variational inequalities have been introduced in (Hofmann
et al. 2007, Scherzer et al. 2009) with Φ(s) =

√
s, and for general index functions

in (Boţ & Hofmann 2010, Grasmair 2010).
The following theorem asserts that the condition (9) in Assumption 3.2 imposes

sufficient smoothness on the true solution u† that the iterates of the ALM approach
u† with a certain rate (that depends on Φ).

Theorem 3.3. Let Assumptions 2.1 and 3.2 hold. Then, there exists a constant C > 0
such that

D(uδn, u
†) ≤ Ctn

(
Ψ

(
16

tn

)
+ δ2

)
(12)

and ∥∥Kuδn − gδ∥∥2 ≤ C
(

Ψ

(
16

tn

)
+ δ2

)
. (13)

In particular, if tn � 1
Ψ−1(δ2) , then

D(uδn, u
†) = O

(
δ2

Ψ−1(δ2)

)
and

∥∥Kuδn − g∥∥2
= O(δ2). (14)

Proof. The theorem is a consequence of the two Lemmas below. Combining the
estimates derived in Lemma 3.4 and Lemma 3.5, it follows that

D(uδn, u
†) ≤ C̃tn

(
Ψ

(
16

tn

)
+ δ2 +

1

2
Ψ

(
2

tn

))
for some C̃ > 0 and a similar estimte holds for

∥∥Kuδn − gδ∥∥2
. Now note that the fact

that Φ is an index function implies that Ψ = (Φ−1)∗ is convex, non-negative, and
Ψ(0) = 0. As a consequence, Ψ is non-decreasing and sub-additive on [0,+∞). Thus
the inequalities (12) and (13) follow with C = C̃ + 1/2. Finally, the estimate (14)
follows from the sub-additivity of Ψ.

Lemma 3.4. Let Assumptions 2.1 and 3.2 hold and define for p ∈ H, t > 0 and δ ≥ 0

ψ(p, t, δ) =

(
tΨ(16/t) + tδ2 + J∗(K∗p) + J(u†)− 〈p, g〉+

‖p‖2

2t

)
.

Then, there exists a constant C > 0 such that

D(uδn, u
†) ≤ Cψ(p, tn, δ) and

∥∥Kuδn − gδ∥∥2 ≤ Cψ(p, tn, δ)

tn
(15)

for all p ∈ H.

Proof. Without loss of generality we assume that pδ0 = 0 and we shall use the
abbreviation G(p, g) = J∗(K∗p) − 〈p, g〉. In (Güler 1991, Lem. 2.1) it was proved
that for all p ∈ V

tn
∥∥pδn − pδn−1

∥∥2

2τ2
n

≤ G(p, gδ)−G(pδn, g
δ)−

∥∥p− pδn∥∥2

2tn
+
‖p‖2

2tn
. (16)
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Since G(p, gδ) − G(pδn, g
δ) = G(p, g) − G(pδn, g) +

〈
p− pδn, g − gδ

〉
and pδn − pδn−1 =

τn(gδ −Kuδn), this implies that

tn
2

∥∥Kuδn − gδ∥∥2 ≤ G(p, g)−G(pδn, g)−
∥∥p− pδn∥∥2

2tn
+
‖p‖2

2tn
+
〈
p− pδn, g − gδ

〉
≤ G(p, g) + J(u†)−

∥∥p− pδn∥∥2

2tn
+
‖p‖2

2tn
+
〈
p− pδn, g − gδ

〉
, (17)

where the second inequality follows from Lemma 2.2. Setting p = pδn, this proves that

tn
2

∥∥Kuδn − gδ∥∥2 ≤ J∗(K∗pδn)−
〈
pδn, g

〉
+ J(u†) +

∥∥pδn∥∥2

2tn
.

Since K∗pδn ∈ ∂J(uδn), we observe that J∗(K∗pδn) +J(uδn) =
〈
K∗pδn, u

δ
n

〉
and conclude

that

tn
2

∥∥Kuδn − gδ∥∥2 ≤ J(u†)− J(uδn) +
〈
pδn,Ku

δ
n − g

〉
+

∥∥pδn∥∥2

2tn

= J(u†)− J(uδn) +
〈
pδn,Ku

δ
n − gδ

〉
+
〈
pδn, g

δ − g
〉

+

∥∥pδn∥∥2

2tn
.

Applying Young’s inequality 〈a, b〉 ≤ ‖a‖2 /2 + ‖b‖2 /2 first with a =
√

2/tnp
δ
n and

b = (Kuδn − gδ)
√
tn/2, and then with a = pδn/

√
tn and b =

√
tn(gδ − g), we obtain

tn
4

∥∥Kuδn − gδ∥∥2 ≤ J(u†)− J(uδn) +
〈
pδn, g

δ − g
〉

+
3
∥∥pδn∥∥2

2tn

≤ J(u†)− J(uδn) +
δ2tn

2
+

2
∥∥pδn∥∥2

tn
.

Summarizing, we find that∥∥Kuδn − gδ∥∥2 ≤ 4

tn

(
J(u†)− J(uδn)

)
+ 2δ2 +

8
∥∥pδn∥∥2

t2n
.

Now, we observe from (9) that J(u†) − J(uδn) ≤ −D(uδn, u
†) + Φ(

∥∥Kuδn − g∥∥2
).

Plugging this inequality into the above estimate yields∥∥Kuδn − gδ∥∥2
+

4

tn
D(uδn, u

†) ≤ 4

tn
Φ(
∥∥Kuδn − g∥∥2

) + 2δ2 +
8
∥∥pδn∥∥2

t2n
. (18)

Since Ψ is the Legendre-Fenchel conjugate of t 7→ Φ−1(t), i.e., Ψ(s) = supt≥0 st −
Φ−1(t), it follows that st ≤ Ψ(s)+Φ−1(t) for all s, t ≥ 0, and in particular, for t = Φ(r),

that sΦ(r) ≤ Ψ(s) + r for all s, r ≥ 0. Setting s = 16/tn and r =
∥∥Kuδn − gδ∥∥2

gives

4

tn
Φ(
∥∥Kuδn − g∥∥2

) =
1

4

16

tn
Φ(
∥∥Kuδn − g∥∥2

)

≤ 1

4
Ψ

(
16

tn

)
+

1

4

∥∥Kuδn − g∥∥2

≤ 1

4
Ψ

(
16

tn

)
+

1

2

∥∥Kuδn − gδ∥∥2
+
δ2

2
.
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Combining this with (18) yields

1

2

∥∥Kuδn − gδ∥∥2
+

4

tn
D(uδn, u

†) ≤ 1

4
Ψ

(
16

tn

)
+

5δ2

2
+

8
∥∥pδn∥∥2

t2n
. (19)

Finally, we observe again from (16) that for all p ∈ H∥∥p− pδn∥∥2

2t2n
≤ G(p, gδ)−G(pδn, g

δ)

tn
+
‖p‖2

2t2n

≤ G(p, g)−G(pδn, g)

tn
+

1

tn

〈
p− pδn, g − gδ

〉
+
‖p‖2

2t2n

≤ G(p, g)− infq∈V G(q, g)

tn
+

∥∥p− pδn∥∥2

4t2n
+ δ2 +

‖p‖2

2t2n
.

This shows that ∥∥pδn∥∥2

8t2n
≤
∥∥p− pδn∥∥2

4t2n
+
‖p‖2

4t2n
(20)

≤ G(p, g)− infq∈V G(q, g)

tn
+ δ2 +

3 ‖p‖2

4t2n
. (21)

Combining (20) with (19) and applying Lemma 2.2 finally gives

1

2

∥∥Kuδn − gδ∥∥2
+

4

tn
D(uδn, u

†) ≤ 1

4
Ψ

(
16

tn

)
+

5δ2

2
+

8
∥∥pδn∥∥2

t2n

≤ 1

4
Ψ

(
16

tn

)
+ 64

G(p, g)− infq∈V G(q, g)

tn
+

133δ2

2
+

48 ‖p‖2

t2n
.

Lemma 3.5. Let Assumptions 2.1 and 3.2 hold. Then,

inf
p∈H

[
J∗(K∗p) + J(u†)− 〈p, g〉+

‖p‖2

2t

]
≤ t

2
Ψ

(
2

t

)
.

Proof. Classical duality theory (see (Ekeland & Temam 1976, Chap III)) implies that

µ := inf
p∈H

[
J∗(K∗p) + J(u†)− 〈p, g〉+

‖p‖2

2t

]
= − inf

u∈X

[
t

2
‖Ku− g‖2 + J(u)− J(u†)

]
,

as the right hand side of this equation is the dual of the left hand side. Using the
variational inequality (9) and the non-negativity of D, we therefore find that

µ ≤ sup
u∈X

[
Φ
(
‖Ku− g‖2

)
−D(u, u†)− t

2
‖Ku− g‖2

]
≤ sup
u∈X

[
Φ
(
‖Ku− g‖2

)
− t

2
‖Ku− g‖2

]
.

Replacing ‖Ku− g‖2 by s ≥ 0 in the last term and using the definition of Ψ, we
obtain

µ ≤ sup
s≥0

[
Φ(s)− ts

2

]
=
t

2
sup
s≥0

[
2Φ(s)

t
− s
]

=
t

2
sup
s≥0

[
2s

t
− Φ−1(s)

]
=
t

2
Ψ

(
2

t

)
,
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which proves the assertion.

We close this section with a statement concerning the dual variables
{
pδ1, p

δ
2, . . .

}
generated by the ALM. It is well known (in the case when δ = 0) that these stay
bounded if and only if the source condition (7) holds. Assumption 3.2, however,
allows control of their growth, as the following result shows.

Corollary 3.6. Let Assumptions 2.1 and 3.2 hold. Then, there exists a constant
C > 0 such that∥∥pδn∥∥2 ≤ Ct2n

(
Ψ

(
2

tn

)
+ δ2

)
Proof. It follows from (20) that there exists a constant C > 0 such that∥∥pδn∥∥2 ≤ Ctn

(
J∗(K∗p) + J(u†)− 〈p, g〉+

‖p‖2

2tn
+ tnδ

2

)
for all p ∈ H. Applying Lemma 3.5 yields the desired estimate.

4. Morozov’s Discrepancy Principle

In this section we study Morozov’s discrepancy principle as an a posteriori stopping
rule for the ALM. To be more precise, if

{
uδ1, u

δ
2, . . .

}
is generated by the ALM,

Morozov’s rule suggests stopping the iteration at the index

n∗(δ) = min
{
n ∈ N :

∥∥Kuδn − gδ∥∥ ≤ ρδ} , (22)

where ρ > 1. In this section we prove convergence rates for the iterates uδn∗(δ) given
that Assumption 3.2 holds. Morozov’s principle for the case when the source condition
(7) holds was studied in (Frick et al. 2011). Theorem 4.2 below extends this result to
regularity classes that are delimited by the variational inequality in Assumption 3.2.
Additionally to these, we will assume

Assumption 4.1. Let Assumption 3.2 hold.

(i) The mapping s 7→ Φ(s)2/s is non-increasing.

(ii) The sequence of stepsizes {τ1, τ2, . . .} in the ALM is bounded.

Theorem 4.2. Let Assumptions 2.1 and 4.1 hold and assume that n∗(δ) is chosen
according to Morozov’s discrepancy principle (22) for some ρ > 1. Then there exists
a constant C > 0 independent of ρ such that

D(uδn∗(δ), u
†) ≤ C(ρ+ 1)2δ2

Ψ−1
(
(ρ2 − 1)δ2

) + C(ρ+ 1)2δ2 sup
k∈N

τk.

Remark 4.3. Assume that the variational inequality (9) is satisfied with Φ(s) = Csp

for some C > 0 and p > 0. Then, setting u = u† + tz for some z ∈ X and t > 0, the
non-negativity of D implies in particular the inequality

J(u†)− J(u† + tz) ≤ Ct2p ‖Kz‖2p .
Now assume that p > 1/2. Then we obtain, after dividing by t and considering the
limit t → 0+, that the directional derivative of J satisfies −J ′(u†)(z) ≤ 0. Because
z was arbitrary, this implies that u† minimizes the regularization term J . Thus the
variational inequality can hold in non-trivial situations, if and only if p ≤ 1/2.

Now note that the same condition is required for the function Φ(s)2/s = C2s2p−1

to be non-increasing. Therefore, in the case of a variational inequality of Hölder type,
Assumption 4.1 imposes no relevant further restrictions on the index function.
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Before we give the proof of Theorem 4.2, we state the following Lemma, which is
interesting in its own right.

Lemma 4.4. Let Assumptions 2.1 and 3.2 hold and assume that n∗(δ) is chosen
according to Morozov’s discrepancy principle (22). Then,

tn∗(δ) ≤
2

Ψ−1((ρ2 − 1)δ2)
+ τn∗(δ).

Proof. Without loss of generality we may assume that n∗(δ) > 1; otherwise the
assertion is trivial. Denote for the sake of simplicity n̄ := n∗(δ) − 1. Then it follows

from (22) that
∥∥Kuδn̄ − gδ∥∥2

> ρ2δ2. Plugging in this relation into (17) yields

ρ2tn̄δ
2

2
+

∥∥p− pδn̄∥∥2

2tn̄
<
tn̄
2

∥∥Kuδn̄ − gδ∥∥2
+

∥∥p− pδn̄∥∥2

2tn̄

≤ J∗(K∗p)− 〈p, g〉+ J(u†) +
‖p‖2

2tn̄
+
〈
p− pδn̄, g − gδ

〉
for every p ∈ H. Applying Young’s inequality

〈
p− pδn̄, g − gδ

〉
≤
∥∥p− pδn̄∥∥2

2tn̄
+
tn̄δ

2

2
,

we obtain with Lemma 3.5 the estimate

(ρ2 − 1)tn̄δ
2

2
≤ inf
p∈H

[
J∗(K∗p)− 〈p, g〉+ J(u†) +

‖p‖2

2tn̄

]
≤ tn̄

2
Ψ

(
2

tn̄

)
.

This proves that (ρ2 − 1)δ2 ≤ Ψ(2/tn̄). Now the assertion follows by applying the
monotonically increasing function Ψ−1 to both sides of this inequality and adding the
last step size τn∗(δ).

Next we need another lemma, which relates the condition on Φ in Assumption 4.1
to an equivalent condition on the function Ψ = (Φ−1)∗.

Lemma 4.5. Let Φ be an index function and Ψ the Fenchel conjugate of Φ−1. Then
the mapping s 7→ Φ(s)2/s is non-increasing, if and only if the mapping t 7→ t2Ψ(2/t)
is non-decreasing.

Proof. First note that, by means of the change of variables t 7→ 2/t and ignoring
the constant factor, the mapping t 7→ t2Ψ(2/t) is non-decreasing, if and only if the
mapping t 7→ H(t) := Ψ(t)/t2 is non-increasing. Because Ψ is convex and continuous,
this condition is satisfied, if and only if H ′(t) ≤ 0 for every t > 0 for which Ψ′(t)
exists. Now,

H ′(t) =
Ψ′(t)

t2
− 2Ψ(t)

t3
=

1

t3
(
tΨ′(t)− 2Ψ(t)

)
,

and therefore H ′(t) ≤ 0 if and only if tΨ′(t) − 2Ψ(t) ≤ 0. Now recall that Ψ is the
Fenchel conjugate of Φ−1 and therefore tΨ′(t) = Ψ(t) + Φ−1

(
Ψ′(t)

)
. Thus H ′(t) ≤ 0,

if and only if Φ−1
(
Ψ′(t)

)
−Ψ(t) ≤ 0.

Similarly, the mapping s 7→ Φ(s)2/s is non-increasing, if and only if the mapping
s 7→ H̃(s) := s2/Φ−1(s) is non-increasing, which in turn is equivalent to the condition

H̃ ′(s) =
2s

Φ−1(s)
− s2Φ−1′(s)

Φ−1(s)2
=
s
(
2Φ−1(s)− sΦ−1′(s)

)
Φ−1(s)2

≤ 0.
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Because of the equality sΦ−1′(s) = Φ−1(s) + Ψ
(
Φ−1′(s)

)
, this is the case, if and only

if Φ−1(s) − Ψ
(
Φ−1′(s)

)
≤ 0. The assertion now follows from the fact that s = Ψ′(t)

if and only if t = Φ−1′(s), which, again, is a consequence of the fact that Φ−1 and Ψ
are conjugate.

Proof of Theorem 4.2. Throughout the proof we use the abbreviation n = n∗(δ). First
observe that K∗pδn ∈ ∂J(uδn) and thus J(uδn) − J(u†) ≤

〈
pδn,Ku

δ
n − g

〉
. From the

discrepancy rule (22) it follows that∥∥Kuδn − g∥∥ ≤ ∥∥Kuδn − gδ∥∥+ δ ≤ (ρ+ 1)δ,

and hence the variational inequality (9) implies

D(uδn, u
†) ≤

∥∥pδn∥∥ (ρ+ 1)δ + Φ((ρ+ 1)2δ2). (23)

As in the proof of Lemma 3.4 we observe that for all s, r ≥ 0 one has sΦ(r) ≤ Ψ(s)+r.
Setting r = (ρ+ 1)2δ2 and s = Ψ−1((ρ2− 1)δ2), one finds, after dividing both sides of
the inequality by s, that

Φ
(
(ρ+ 1)2δ2

)
≤ (ρ2 − 1)δ2

Ψ−1((ρ2 − 1)δ2)
+

(ρ+ 1)2δ2

Ψ−1((ρ2 − 1)δ2)
=

2ρ(ρ+ 1)δ2

Ψ−1((ρ2 − 1)δ2)
,

which yields an estimate for the second term in (23). For estimating the first term,
we note that Corollary 3.6 implies the estimate∥∥pδn∥∥ ≤ C̃tn(Ψ

(
2

tn

)
+ δ2

)1/2

≤ C̃tnΨ

(
2

tn

)1/2

+ C̃tnδ

for some constant C̃ > 0. By assumption, the mapping x 7→ Φ(x)2/x is non-increasing,
and therefore, using Lemma 4.5, the mapping s 7→ s2Ψ(2/s) is non-decreasing. Thus
we obtain, after using the estimate for tn of Lemma 4.4 and the monotonicity of Ψ,∥∥pδn∥∥ ≤ C̃( 2

Ψ−1((ρ2 − 1)δ2)
+ τn

)
Ψ

(
2Ψ−1

(
(ρ2 − 1)δ2

)
2 + τnΨ−1

(
(ρ2 − 1)δ2

))1/2

+
2C̃δ

Ψ−1
(
(ρ2 − 1)δ2

) + C̃τnδ

≤ 2C̃(ρ+ 1)δ

Ψ−1
(
(ρ2 − 1)δ2

) + C̃τn(ρ+ 1)δ.

Consequently we have

D(uδn, u
†) ≤ 2C̃(ρ+ 1)2δ2

Ψ−1
(
(ρ2 − 1)δ2

) + C̃(ρ+ 1)2τnδ
2 +

2ρ(ρ+ 1)δ2

Ψ−1
(
(ρ2 − 1)δ2

)
≤ 2(C̃ + 1)(ρ+ 1)2δ2

Ψ−1
(
(ρ2 − 1)δ2

) + C̃(ρ+ 1)2δ2 sup
k
τk,

which proves the assertion with C := 2(C̃ + 1).
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5. Examples

In this section we discuss particular instances of the variational inequality (9) and
the implications of the general results in Sections 3 and 4 for these special scenarios.
The first two examples shed some light on the relation of variational inequalities and
more standard notions of source conditions: the KKT condition (7) and Hölder-type
conditions. The third example deals with sparsity promoting regularization, where
standard notions of source conditions together with an additional restricted injectivity
assumption allow the derivation of convergence rates with respect to the norm instead
of the Bregman distance.

5.1. Standard Source Condition

It is quite easy to see that the standard source condition (7) implies the variational
inequality (11). Indeed, assume that u† is a solution of (1) and that K∗p† ∈ ∂J(u†)
for some p† ∈ H. By defining ξ† = K∗p† one observes〈

ξ†, u† − u
〉
X∗,X

=
〈
p†, g −Ku

〉
≤
∥∥p†∥∥ ‖Ku− g‖ .

Setting β = 1 and Φ(t) =
∥∥p†∥∥ t1/2 gives (11).

The converse is in general not true, i.e., (11) with Φ(t) = γt1/2 (γ > 0) does not
imply the existence of a p† ∈ V such that K∗p† ∈ ∂J(u†). However, if (11) is replaced
by the stronger condition〈

ξ†, u† − u
〉
X∗,X

≤ (1− β)DJ(u, u†) + γ ‖Ku− g‖ , (24)

for all u ∈ X, then the two notions are equivalent. Here, DJ(u, v) = J(u) − J(v) −
J ′(v)(u− v) and J ′(v)(w) is the directional derivative of J at v in direction w:

J ′(v)(w) = lim
h→0+

1

h
(J(v + hw)− J(v)).

Note that for convex J , the directional derivative is well-defined for every v and
w (though it takes values in [−∞,∞]) and is positively one-homogeneous, i.e.
J ′(v)(tw) = tJ ′(v)(w) for all t > 0.

In order to see the aforementioned equivalence, let v ∈ X and set u = u† − tv in
(24) for some t > 0. Then,〈

ξ†, tv
〉
X∗,X

≤ (1− β)DJ(u† − tv, u†) + γ ‖tKv‖ .

Since the mapping w 7→ J ′(u†)(w) is positively one-homogeneous, this implies that〈
ξ†, v

〉
X∗,X

≤ (1− β)

(
J(u† − tv)− J(u†)

t
− J ′(u†)(−v)

)
+ γ ‖Kv‖ ,

for all v ∈ X and t > 0. Letting t→ 0+ this shows that
〈
ξ†, v

〉
X∗,X

≤ γ ‖Kv‖ for all

v ∈ X and hence K∗p† = ξ† for some p† ∈ H according to (Scherzer et al. 2009, Lem.
8.21).

In the particular case where the mapping J is Gâteaux differentiable at u†, the
subdifferential ∂J(u†) contains a single element ξ†, which coincides with the directional
derivative, that is,

〈
ξ†, v

〉
= J ′(u†)(v) for every v ∈ X. Thus, in this case, the source

condition is equivalent with the variational inequality.
If Φ(t) = γt1/2 then the Fenchel conjugate Ψ of Φ−1 reads as Ψ(t) = γ/(2

√
2)t2.

Hence it follows from Theorem 3.3 that there exists a constant C > 0 such that

DK∗p†

J (uδn, u
†) ≤ Cδ
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given the a priori stopping rule tn � δ−1. This is the well known convergence
rate result for the standard source condition (see (Burger et al. 2007, Frick &
Scherzer 2010)). We note that the results in (Frick & Scherzer 2010) are slightly
stronger, as they give δ-rates for the symmetric Bregman distance (see also (Frick
et al. 2011)). If Morozov’s discrepancy principle (22) is applied as an a posteriori
stopping rule, we obtain from Theorem 4.2 that

DK∗p†

J (uδn∗(δ), u
†) ≤ C

√
(ρ+ 1)3

ρ− 1
δ + C(ρ+ 1)2δ2 sup

k∈N
τk.

This coincides with the results in (Frick et al. 2011, Thm. 4.3), where Morozov’s
discrepancy rule for the standard source condition was studied.

5.2. Hölder-type Conditions

In this section we study the relationship between the variational inequality (11) and
Hölder-type source conditions for the iteration (4).

We first consider the case of the iterated Tikhonov method, i.e., L = Id and thus
J(u) = 1

2 ‖u‖
2
. Then, a solution u† of (1) is said to satisfy a Hölder condition with

exponent 0 ≤ ν < 1
2 , if (K∗K)νp† = u† = ∂J(u†). If u† satisfies a Hölder condition

with exponent ν, then (11) holds with Du†

J (u, u†) = 1
2

∥∥u− u†∥∥2
and Φ(s) � s

2ν
1+2ν . To

see this, observe that the interpolation inequality (cf. (Engl et al. 1996, p.47)) implies〈
u†, u† − u

〉
≤
∥∥p†∥∥∥∥(K∗K)ν(u† − u)

∥∥
≤
∥∥p†∥∥∥∥∥(K∗K)

1
2 (u† − u)

∥∥∥2ν ∥∥u† − u∥∥1−2ν

= 2
1
2−ν

∥∥p†∥∥ (‖Ku− g‖2)νDu†

J (u, u†)
1−2ν

2 .

Using Young’s inequality ab ≤ ap/p + bq/q with q = 2/(1 − 2ν) and p = 2/(1 + 2ν)
shows for all η > 0(
‖Ku− g‖2

)ν
Du†

J (u, u†)
1−2ν

2 =
1

η

(
‖Ku− g‖2

)ν
ηDu†

J (u, u†)
1−2ν

2

=
1 + 2ν

2η
2

(1+2ν)

(‖Ku− g‖2)
2ν

1+2ν +
η

2
(1−2ν) (1− 2ν)

2
Du†

J (u, u†).

Choosing η such that 1− β = η
2

1−2ν

∥∥p†∥∥ ( 1−2ν
2 )2

1−2ν
2 < 1 results in (11) after setting

Φ(s) = cs
2ν

1+2ν with c = 1+2ν
2η2/(1+2ν)

∥∥p†∥∥ 2
1−2ν

2 .

In case of the iterated Tikhonov-Morozov method, we consider (4) with K = Id
and L:D(L) ⊂ X → H̃ being a densely defined, closed linear operator. Recall that
in this case L̂ = (Id + LL∗)−1 and L̃ = (Id + L∗L)−1 are self-adjoint and bounded
linear operators (cf. (Groetsch 2007, Chap. 2.4)). A solution u† of (1) is said to satisfy
a Hölder condition with exponent 0 ≤ ν ≤ 1

2 if Lu† = L̂νω† for some ω† ∈ H̃. We

show that this condition implies (9) when D(u, u†) equals γ
2

∥∥Lu− Lu†∥∥2
(for some

γ ∈ (0, 1)) whenever u ∈ D(L) and +∞ else. To see this, recall that J(u) = ∞ if
u 6∈ D(L). Thus (9) is equivalent to〈

Lu†, Lu† − Lu
〉
≤ (1− γ)

∥∥Lu− Lu†∥∥2
+ Φ(

∥∥u− u†∥∥2
) (25)
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for all u ∈ D(L). Setting Lu† = L̂νω† shows together with the interpolation inequality
and (Groetsch 2007, Lem. 2.10) that for all u ∈ D(L)〈

Lu†, Lu† − Lu
〉

=
〈
ω†, L̂ν(Lu† − Lu)

〉
≤
∥∥ω†∥∥ ∥∥∥L̂ 1

2 (Lu† − Lu)
∥∥∥2ν ∥∥Lu† − Lu∥∥1−2ν

≤
∥∥ω†∥∥∥∥LL̃ 1

2

∥∥2ν ∥∥u† − u∥∥2ν ∥∥Lu† − Lu∥∥1−2ν
.

With the same arguments as in the case of the iterated Tikhonov method above, we

conclude that (25) holds with Φ(s) = c̃s
2ν

2ν+1 for some constant c̃ > 0.
Now let X again be a general Banach space and J :X → R be convex such that

Assumptions 2.1 are satisfied. As revealed by the calculations above, the variational

inequality (9) with Φ(s) � s
2ν

1+2ν can be seen as a generalized Hölder condition. Note,
that in this case the Legendre conjugate Ψ of Φ−1 behaves as Ψ(t) � t1+2ν and thus
Theorem 3.3 amounts to saying that there exists a constant C > 0 such that

D(uδn, u
†) ≤ Cδ

4ν
1+2ν

if tn � δ
−2

1+2ν . Morozov’s discrepancy principle (22) then shows that

D(uδn∗(δ), u
†) ≤ C

(
(ρ+ 1)1+4ν

ρ− 1

) 1
1+2ν

δ
4ν

1+2ν + C(ρ+ 1)2δ2 sup
k∈N

τk.

These results coincide with the lower order rates for the iterated Tikhonov method
(Hanke & Groetsch 1998) and iterated Tikhonov-Morozov method (Groetsch 2007).

5.3. Sparsity Promoting Regularization

We now discuss the application of the results derived in this paper to sparsity
promoting regularization. To that end, we assume that X is a Hilbert space with
orthonormal basis {φi : i ∈ N}, and we consider the regularization term J(u) :=∑
i |〈φi, u〉|

q
for some 1 ≤ q < 2 (see (Daubechies et al. 2004)). In (Grasmair

et al. 2008), it has been shown that, for Tikhonov regularization, this setting allows the
derivation of convergence rates of order O(δq) with respect to the norm, if u† satisfies
the standard source condition K∗p† ∈ ∂J(u†) for some p† ∈ H, and, additionally, a
restricted injectivity condition holds. In the following, we will generalize these results
to the Augmented Lagrangian Method and source conditions of Hölder type.

Assume that there exists 0 < ν ≤ 1/2 such that (K∗K)νp† = ξ† ∈ ∂J(u†) and
that supp(u†) := {i ∈ N : 〈φi, u〉 6= 0} is finite. In case q > 1 assume in addition
that the restriction of K to span

{
φi : i ∈ supp(x†)

}
, and in case q = 1 assume that

the restriction of K to span
{
φi :

∣∣〈φi, ξ†〉∣∣ < 1
}

is injective. We will show in the
following that, under these assumptions, there exists a constant C > 0 such that (9)

holds with D(u, u†) = C
∥∥u† − u∥∥q and Φ(s) � s

qν
q−1+2ν in case q > 1, and with

D(u, u†) = C
∥∥u† − u∥∥ and Φ(s) � s 1

2 for q = 1.
It has been shown in (Grasmair et al. 2008, Proofs of Thms. 13, 15) that the

given assumptions imply the existence of constants C1, C2 > 0 such that

C1

∥∥u† − u∥∥q ≤ C2 ‖Ku− g‖q + J(u)− J(u†)−
〈
ξ†, u− u†

〉
for all u ∈ X. Applying the interpolation inequality to

〈
ξ†, u− u†

〉
, we obtain,

similarly as in Section 5.2, the estimate

C1

∥∥u† − u∥∥q ≤ C2 ‖Ku− g‖q + J(u)− J(u†) +
∥∥p†∥∥ ‖Ku− g‖2ν ∥∥u† − u∥∥1−2ν

.
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Now Young’s inequality with p = q/(1− 2ν) and p∗ = q/(q − 1 + 2ν) shows that[
C1 −

∥∥p†∥∥ 1− 2ν

q
η

q
1−2ν

] ∥∥u† − u∥∥q ≤ C2 ‖Ku− g‖q + J(u)− J(u†)

+
∥∥p†∥∥ q − 1 + 2ν

q
η

q
q−1+2ν ‖Ku− g‖

2νq
q−1+2ν .

Choosing η > 0 such that C = C1 −
∥∥p†∥∥ 1−2ν

q η
q

1−2ν > 0 and setting

Φ(s) = C2s
q
2 +

∥∥p†∥∥ q − 1 + 2ν

q
η

q
q−1+2ν s

2νq
q−1+2ν ,

we obtain the variational inequality (9). Because 2νq
q−1−2ν ≤ q, the asymptotic

behaviour of Φ for s → 0 is governed by its second term, which shows that
Φ(s) � s

qν
q−1+2ν . Moreover, in the special case q = 1, the term s

qν
q−1+2ν reduces to

s
1
2 independent of the type of the source condition. For the function Ψ, we obtain

the asymptotic behaviour Ψ(s) � s
q−1+2ν

q−1+(2−q)ν . Thus, Theorem 3.3 shows that for

tn � δ−2
q−1+(2−q)ν
q−1+2ν we have the estimate∥∥uδn − u†∥∥ ≤ Cδ 2ν

q−1+2ν

for δ > 0 sufficiently small, and a similar estimate for Morozov’s discrepancy principle.

Remark 5.1. In (Grasmair et al. 2011), it has been shown for Tikhonov regularization
with J(u) =

∑
i |〈φi, u〉|, which is the special case of the ALM with a single iteration

step, that a linear convergence rate with respect to the norm is equivalent to the usual
source condition. Thus the results above imply that, in the case q = 1, the Hölder
type source condition (K∗K)νp† ∈ ∂J(u†) in fact already implies the standard source
condition K∗p̃† ∈ ∂J(u†) for some different source element p̃†.
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