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Abstract

The goal of this paper is the formulation of an abstract setting that can
be used for the derivation of linear convergence rates for a large class of
sparsity promoting regularisation functionals for the solution of ill-posed
linear operator equations. Examples where the proposed setting applies
include joint sparsity and group sparsity, but also (possibly higher order)
discrete total variation regularisation. In all these cases, a range condition
together with some kind of restricted injectivity imply linear convergence
rates. That is, the error in the approximate solution, measured in terms
of the regularisation functional, is of the same order as the noise level.

1 Introduction

Recently, sparsity promoting regularisation methods for the solution of ill-posed
linear operator equations of the form

Ax = y (1)

have become popular (see for instance [12, 17]). There one assumes that the
true solution x† of (1) is sparse with respect to some basis or frame (eλ)λ∈Λ of
the domain of the operator A to be inverted. In order to obtain a stable, sparse
approximation of x† in presence of noisy data yδ satisfying ‖y − yδ‖ ≤ δ, one
may then minimise the Tikhonov functional

Tα,yδ(x) := ‖Ax− y‖2 + α
∑
λ∈Λ

|〈eλ, x〉| (2)

for some suitable regularisation parameter α > 0 depending on δ.
One interesting feature of the sparsity promoting regularisation method (2)

is that, under some additional assumptions, the accuracy of the regularised
solutions xδα, that is, the minimisers of Tα,yδ , is of the same order as the noise
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level δ (see [20, 22, 23]). Similarly, there are results in the context of compressed
sensing that yield conditions that guarantee that the residual method∑

λ∈Λ

|〈eλ, x〉| → min subject to ‖Ax− yδ‖ ≤ δ

implies linear estimates ‖xδα − x†‖ = O(δ) (see [6, 7, 10, 13, 14, 21, 23]). In
constrast, for quadratic Tikhonov regularisation, the best possible rate is ‖xδα−
x†‖ = O(δ2/3) unless the operator A has finite rank (see [28]).

This paper extends the results on linear convergence rates for sparsity pro-
moting regularisation to more general situations that are not covered by the
existing theory. One generalisation is concerned with group sparsity. There
one assumes that the indices λ can be assigned to different groups, and one
wants the number of groups containing non-zero coefficients to be small, while
no sparsity is required within the groups. As another example, discrete total
variation regularisation is studied, which can be interpreted as regularisation
promoting sparsity of the discrete gradient. Also there, linear convergence rates
are possible under suitable assumptions.

In Section 2 we prove a result on linear convergence rates in a quite ab-
stract setting (see Theorem 2.6). From Section 3 onwards, we consider a setting
that can be directly applied to group sparsity and discrete total variation reg-
ularisation. First, we prove the well-posedness of sparse regularisation in this
setting, which is especially important for discrete total variation regularisation,
where the regularisation functional itself is not coercive, and thus the existence
of regularised solution can only be guaranteed by suitable assumptions on the
operator A. Having assured the well-posedness of the regularisation method, we
then apply the convergence rates result of Section 2 (see Theorem 4.4). Finally,
we discuss in Sections 5–7, the application to group sparsity, joint sparsity and
discrete total variation regularisation.

2 Linear Convergence Rates

In this article we consider the solution of an ill-posed linear operator equation

Ax = y ,

where A : X → Y is a bounded linear operator between two Banach spaces X
and Y , by means of Tikhonov regularisation with a convex and positively ho-
mogeneous regularisation term R : X → [0,+∞]. That is, we solve the equation
Ax = y approximately by minimising, for some regularisation parameter α > 0,
the Tikhonov functional

Tα,y(x) := ‖Ax− y‖2 + αR(x) .

We assume in the following that y ∈ Y is fixed and denote by x† any R-
minimising solution of the equation Ax = y, that is,

x† ∈ arg min
{
R(x) : Ax = y

}
.

In addition, we denote by xδα any regularised solution of the equation Ax = yδ

with regularisation parameter α > 0, where the right hand side is allowed to
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differ from the true data y by at most δ > 0. More precisely, we assume that
xδα ∈ X is any element satisfying

xδα ∈ arg min
{
Tα,yδ(x) : x ∈ X

}
for some yδ ∈ Y with ‖yδ − y‖ ≤ δ .

The question of convergence rates is then concerned with quantifying the differ-
ence between xδα and x† for small noise level δ and a regularisation parameter
α adapted to δ.

Assumption 2.1. We assume that the following conditions are satisfied:

1. The Tikhonov functional Tα,ỹ is coercive for every α > 0 and ỹ ∈ Y in the
sense that its lower level sets are weakly pre-compact in X.

2. The spaces X and Y are Banach spaces and the mapping A : X → Y is
bounded linear.

3. The functional R : X → [0,+∞] is convex, lower semicontinuous, and
positively homogeneous, that is, R(0) = 0 and R(tx) = tR(x) for every
x ∈ X and t > 0. �

Remark 2.2. In what follows, the coercivity of Tα,ỹ is never needed explicitly,
but it is essential nevertheless. It implies that the functional Tα,ỹ attains its
minimum and therefore Tikhonov regularisation is well-defined: The convexity
and lower semi-continuity of R imply that R is weakly lower semi-continuous.
Also, the mapping x 7→ ‖Ax− ỹ‖2 is weakly lower semi-continuous, because A is
bounded. Thus Tα,ỹ is weakly lower semi-continuous. Therefore, the coercivity
of Tα,ỹ allows the application of the direct method in the calculus of variations
(see for instance [11, Chpt. 1]), which proves the existence of a minimiser. �

Starting with the pioneering paper by Burger and Osher [5], convergence
rates for convex regularisation methods on Banach spaces have typically been
derived with respect to the Bregman distance, which measures the distance
between R and an affine approximation to R at the true solution x†. It is
defined, for ξ ∈ ∂R(x†), as

Dξ(x̃;x†) := R(x̃)−R(x†)− 〈ξ, x̃− x†〉 .

In the case of positively homogeneous regularisation terms, the Bregman dis-
tance assumes a very simple form:

Lemma 2.3. Let x ∈ X and ξ ∈ X∗. Then ξ ∈ ∂R(x), if and only if ξ ∈ ∂R(0)
and R(x) = 〈ξ, x〉. In particular,

Dξ(x̃;x) = R(x̃)− 〈ξ, x̃〉

for every x̃ ∈ X.

Proof. Assume that ξ ∈ ∂R(x). Then

R(x̃) ≥ R(x) + 〈ξ, x̃− x〉 (3)

for every x̃ ∈ X. Choosing x̃ = 0, we obtain R(x) ≤ 〈ξ, x〉. Conversely, if x̃ =
2x, the positive homogeneity of R implies the inequality R(x) ≥ 〈ξ, x〉, proving
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that, in fact, equality holds. Thus (3) simplifies to the inequality R(x̃) ≥ 〈ξ, x̃〉
for every x̃ ∈ X, which implies that ξ ∈ ∂R(0).

Now assume that ξ ∈ ∂R(0) and R(x) = 〈ξ, x〉. Then

R(x̃) ≥ 〈ξ, x̃〉 = 〈ξ, x̃〉+R(x)− 〈ξ, x〉 = R(x) + 〈ξ, x̃− x〉

for every x̃ ∈ X, which shows that ξ ∈ ∂R(x). �

Using this result, the convergence rates in terms of the Bregman distance
can be written as follows:

Lemma 2.4. Assume that x† satisfies a range condition with ξ ∈ RanA∗ ∩
∂R(x†). Then we have for a parameter choice α ∼ δ that

R(xδα)− 〈ξ, xδα〉 = O(δ) and ‖A(xδα − x†)‖ = O(δ)

as δ → 0.

Proof. The assertion follows from Lemma 2.3 and standard results on regulari-
sation in Banach spaces (see [24, 30]). �

We will now use Lemma 2.4 for deriving convergence rates not with respect
to the Bregman distance but with respect to the regularisation functional R
itself. Denote to that end for ξ ∈ X∗ the set Kξ ⊂ X defined by

Kξ :=
{
x ∈ X : ξ ∈ ∂R(x)

}
.

Lemma 2.5. If ξ 6∈ ∂R(0), then Kξ = ∅. Conversely, if ξ ∈ ∂R(0), then

x ∈ Kξ ⇐⇒ 〈ξ, x〉 = R(x) . (4)

In this case, Kξ is a non-empty convex and closed cone.

Proof. Lemma 2.3 implies that ∂R(x) ⊂ ∂R(0) for every x ∈ X, which in turn
implies that Kξ = ∅ whenever ξ 6∈ ∂R(0). Conversely, if ξ ∈ ∂R(0), then we
obtain from Lemma 2.3 that ξ ∈ ∂R(x) if and only if R(x) = 〈ξ, x〉, proving (4).

Now assume that ξ ∈ ∂R(0) (which implies that 0 ∈ Kξ). Then in particular
R(x) ≥ 〈ξ, x〉 for every x ∈ X. Thus it is also possible to write

Kξ =
{
x ∈ X : R(x)− 〈ξ, x〉 ≤ 0

}
.

Because R is lower semi-continuous, it follows that Kξ is a closed set. Moreover,
the positive homogeneity of R and (4) directly show that Kξ is a cone. In order
to show that Kξ is convex, let x, x̃ ∈ Kξ and 0 < λ < 1. Then

R
(
λx+ (1− λ)x̃

)
≥
〈
ξ, λx+ (1− λ)x̃

〉
= R(λx) +R

(
(1− λ)x̃

)
=

1

2

(
R(2λx) +R(2(1− λ)x̃)

)
≥ R

(
λx+ (1− λ)x̃

)
,

which shows that

R
(
λx+ (1− λ)x̃

)
=
〈
ξ, λx+ (1− λ)x̃

〉
and therefore λx+ (1− λ)x̃ ∈ Kξ, proving the assertion. �
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In particular, this last result shows that for ξ ∈ R(x†) we have

Kξ =
{
x ∈ X : Dξ(x;x†) = 0

}
.

In other words, the cone Kξ consists precisely of those elements in X that
cannot be distinguished by means of the Bregman distance Dξ. Thus, using
the preceding result, one sees that all the information about the behaviour of
possible regularised solutions in Kξ as the noise level δ and the regularisation
parameter α tend to zero is contained in the second term ‖A(xδα − x†)‖. In
order to derive stronger convergence rates, it is therefore necessary to introduce
additional postulates concerning the separation properties of the operator A on
the set Kξ. In the results on linear convergence rates for sparse regularisation
derived in [20, 23], this separation was obtained by requiring a restricted injec-
tivity condition to hold on the support of the element x†. The following result
replaces the set where injectivity of A should hold by the (possibly enlarged)
cone Kξ.

In addition, we need that the regularisation term R grows sufficiently fast
away from Kξ. This can be formulated as a condition on the behaviour of the
sub-differential R(0) on the normal cone of Kξ. Here we define the normal cone
N (K) of a set K ⊂ X as

N (K) :=
{
ζ ∈ X∗ : 〈ζ, x〉 ≤ 0 for all x ∈ K

}
⊂ X∗ .

Similarly, if Ξ ⊂ X∗, we define

N (Ξ) :=
{
x ∈ X : 〈ζ, x〉 ≤ 0 for all ζ ∈ Ξ

}
⊂ X .

Theorem 2.6. Assume that x† satisfies the range condition with ξ ∈ RanA∗ ∩
∂R(x†). Assume moreover that there exists a locally compact, closed and convex
cone K̃ and some C0 > 0 such that the following hold:

Kξ ⊂ K̃ ⊂ x† + Dom(R) , (5)

‖A(x̃− x†)‖ ≥ C0‖x̃− x†‖ for all x̃ ∈ K̃ , (6)

c0 := sup
{
c ≥ 0 : (ξ + c ∂R(0) ∩N (K̃)) ⊂ ∂R(0)

}
> 0 . (7)

Then we have for a parameter choice α ∼ δ that

R(xδα − x†) = O(δ) as δ → 0 .

Proof. We show in the following that there exists constants C1, C2 > 0 such
that

R(x− x†) ≤ C1‖A(x− x†)‖+ C2

(
R(x)− 〈ξ, x〉

)
(8)

for every x ∈ X. Then the assertion will follow from Lemma 2.4.
Note first that the homogeneity of R implies its sub-additivity, and therefore

R(x− x†) ≤ inf
{
R(x− x̃) +R(x̃− x†) : x̃ ∈ K̃

}
.

Now note that (6) together with the facts that K̃ is locally compact and K̃ ⊂
x† + Dom(R) implies that there exists a constant C1 > 0 such that

R(x̃− x†) ≤ C1‖A(x̃− x†)‖ for all x̃ ∈ K̃ .
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Moreover, the coercivity and positive homogeneity of R imply the existence of
C̃(1) > 0 such that

‖A(x̃− x†)‖ ≤ ‖A(x− x†)‖+ ‖A‖‖x̃− x‖ ≤ ‖A(x− x†)‖+ C̃(1)‖A‖R(x− x̃) .

Thus, with C̃(2) := (1 + C1C̃
(1)‖A‖) it follows that

R(x− x†) ≤ C1‖A(x− x†)‖+ C̃(2) inf
{
R(x− x̃) : x̃ ∈ K̃

}
.

Now we apply standard results from convex analysis to see that we have for
every c > 0 that

inf
{
R(x− x̃) : x̃ ∈ K̃

}
= − inf

{
−〈η, x〉+R∗(η) : η ∈ N (K̃)

}
= − inf

{
−〈η, x〉 : η ∈ N (K̃) ∩ ∂R(0)

}
= sup

{
〈η, x〉 : η ∈ N (K̃) ∩ ∂R(0)

}
= sup

{
〈cξ + η, x〉 : η ∈ N (K̃) ∩ ∂R(0)

}
− c〈ξ, x〉

= c sup
{
〈ξ + η, x〉 : η ∈ c∂R(0) ∩N (K̃)

}
− c〈ξ, x〉 .

(9)

Now note that, for ξ + η ∈ ∂R(0) we have that 〈ξ + η, x〉 ≤ R(x). Because
the definition of c0 implies that ξ + (c0/2)∂R(0) ∩ N (K̃) ⊂ ∂R(0), we obtain
from (9) that

inf
{
R(x− x̃) : x̃ ∈ K̃

}
≤ c0

2

(
R(x)− 〈ξ, x〉

)
.

This proves the assertion with C2 = C̃(2)c0/2. �

Remark 2.7. Note that (6) holds if K̃ is finite dimensional and the restriction
of A to the subspace spanned by K̃ is injective. This is precisely the situation
that will be considered in Section 4 below. �

Remark 2.8. In the setting of standard `1-regularisation, we have X = `2(Λ) for
some countable index set Λ and R(x) =

∑
λ|xλ|. Then we have ξ ∈ ∂R(x†) ⊂

`2(Λ), if and only if ξλ = sgn(xλ) for xλ 6= 0, ξλ ∈ [−1, 1] for xλ = 0, and∑
λ ξ

2
λ < +∞. Moreover,

Kξ =
{
x ∈ `2(Λ) : xλ ≥ 0 if ξλ = 1, xλ ≤ 0 if ξλ = −1, and xλ = 0 else

}
,

which is a locally compact cone, because the condition
∑
λ ξ

2
λ < +∞ implies

that Ω :=
{
λ ∈ Λ : |ξλ| < 1

}
is a finite set. Now let K̃ be the finite dimensional

vector space K̃ := spanKξ ' `2(Ω). Then N (K̃) ' `2(Λ\Ω). Because ∂R(0) ={
ζ ∈ X : |ζλ| ≤ 1 for all λ ∈ Λ

}
, it follows that c0 defined in (7) satisfies

c0 = sup
{
c ≥ 0 : |ξλ|+c ≤ 1 for all λ ∈ Λ\Ω

}
= 1−max

{
|ξλ| : λ ∈ Λ\Ω

}
> 0 .

In particular, the condition (7) naturally holds for standard `1-regularisation.
Also note that the same term 1 −max

{
|ξλ| : λ ∈ Λ \ Ω

}
appears in the proof

for the linear convergence of `1-regularisation (see [20, Proof of Thm. 15]). �
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3 Well-posedness

From now on we consider the setting where the regularisation term R is the
composition of a linear mapping L and a regularisation functional on the range
of L. More precisely, we assume that L : D ⊂ X → Z is a linear mapping
between a subspace D of X and a Banach space Z, that S : Z → [0,+∞] is
some mapping, and

R(x) =

{
S(Lx) if x ∈ D ,

+∞ else.
(10)

Before applying the convergence rates result Theorem 2.6, we first have to as-
sert that the conditions of Assumption 2.1 hold. A particular problem is the
coercivity of the functional Tα,ỹ, which will necessarily fail if the mapping L is
not injective, unless the operator A behaves well on the kernel of L.

For instance, in the case of l-th order total variation regularisation on a
bounded domain Ω, the kernel of L consists precisely of the polynomials of
degree smaller than l. The coercivity of Tα,ỹ then requires that the operator
A does not annihilate these polynomials (see [1, 2, 9] for first order and [30,
Prop. 3.70] for higher order regularisation). An analogous condition can also be
used in the abstract setting, as the following results show. Very similar results
have also been derived in [4].

Also, the coercivity of Tα,ỹ almost immediately implies that Tikhonov regu-
larisation with the regularisation term R is a well-posed regularisation method
in the sense of [16, 30, 33]. That is, the functional Tα,ỹ has a minimiser that
depends, for fixed parameter α > 0, continuously on the data ỹ, and converges
to a true solution when the error in the right hand side ỹ and the regularisation
parameter α both converge to zero in a suitable manner.

Assumption 3.1. We assume that the following conditions are satisfied:

1. The functional R has the form described in (10).

2. The Banach space X is reflexive.

3. There exists a closed subspace W ⊂ X such that X = W ⊕KerL and the
restriction of R to the Banach space W is coercive.

4. The mapping A : X → Y is bounded linear.

5. The restriction of A to KerL is boundedly invertible.

6. The mapping R is weakly lower semi-continuous. �

Note that we waive for the moment the assumption that the operator R (or
S) is positively homogeneous.

Proposition 3.2. Let Assumption 3.1 hold. Then, for every α > 0 and y ∈ Y ,
the functional Tα,y is coercive.

Proof. Note first that the reflexivity of X implies that the mapping Tα,y is
coercive, if and only if its lower level sets are bounded in X.

Since the restriction of A to KerL is invertible, there exists C1 > 0 such
that C1‖Ax‖ ≥ ‖x‖ for all x ∈ KerL. Now let P : X → X be the projection
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onto KerL along W . That is, if x ∈ X is decomposed as x = xL + xW with
xL ∈ KerL and xW ∈ W , then Px = xL. Denote moreover for simplicity
P ′ := Id−P .

Let now α > 0, y ∈ Y , and t > 0 be fixed. Because the restriction of R to
W is coercive, and R(x) = R(P ′x) for every x ∈ X, there exists C2 > 0 such
that

‖P ′x‖ ≤ C2 whenever x ∈ X satisfies αR(x) ≤ t .

Assume that x ∈ X satisfies Tα,y(x) ≤ t. Then in particular αR(x) ≤ t and
consequently ‖P ′x‖ ≤ C2. Thus

‖x‖ = ‖Px+ P ′x‖
≤ ‖Px‖+ ‖P ′x‖
≤ C1‖APx‖+ C2

= C1‖Ax−AP ′x‖+ C2

≤ C1

(
‖Ax− y + y‖+ ‖A‖‖P ′x‖

)
+ C2

≤ C1

(√
t+ ‖y‖+ C2‖A‖

)
+ C2 .

This proves the coercivity of Tα,y. �

Remark 3.3. The assumption that KerL is closed is satisfied as soon as the
mapping L has a closed graph. Moreover, the decomposition X = W ⊕ KerL
is always possible if X is a Hilbert space or if KerL is finite dimensional. In
the latter case, the assumption that the restriction of A to KerL is invertible
reduces to the assumption that KerL ∩KerA = {0}. �

Remark 3.4. Assume that X and Z are reflexive, that L has a closed graph,
and that the mapping S : Z → [0,+∞] is weakly lower semi-continuous and
coercive. Then also the mapping R is weakly lower semi-continuous (see for
instance [21, Prop. 3.3]). �

Remark 3.5. Assume that L has a closed graph, and that RanL is closed. Then
it follows that RanL and X/KerL are isomorphic Banach spaces. Now assume
that in addition RanL is complemented in X by the closed linear space W .
Then it follows that W and X/KerL, and therefore also W and RanL are
isomorphic. Consequently, under this assumptions the restriction of R to W is
coercive, if and only if the restriction of S to RanL is coercive. In particular,
the coercivity of R follows from the coercivity of S (on the whole space Z). �

For the next result recall that the functional Tα,y satisfies the Radon–Riesz
property, if the weak convergence of a sequence (xk)k∈N ⊂ X to x ∈ X together
with the convergence Tα,y(xk)→ Tα,y(x) implies that (xk)k∈N converges strongly
to x (see [27]).

Proposition 3.6. Let Assumption 3.1 hold. In addition, assume that Tα,y sat-
isfies the Radon–Riesz property. Then Tikhonov regularisation with R is stable
and convergent.

Proof. This is along the lines of the proofs of Theorems 3.23 and 3.26 in [30].�
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In the next result, it is shown that the Radon–Riesz property of Tα,y holds,
if Y is sufficiently regular and the functional S has the Radon–Riesz property.
While not applicable to continuous total variation regularisation, the result can
be used for proving the stability and convergence of discrete gradient based
regularisation methods.

Lemma 3.7. Let Assumption 3.1 hold. In addition, assume that Y is a uni-
formly convex Banach space, that Z is reflexive, that RanL is closed and that
S is coercive and satisfies the Radon–Riesz property. Then the functional Tα,y
satisfies the Radon–Riesz property.

Proof. Let (xk)k∈N ⊂ X be any sequence weakly converging to some x ∈ X such
that Tα,y(xk) → Tα,y(x) < ∞. Because the mappings R and x 7→ ‖Ax − y‖2
are weakly lower semi-continuous, it follows that also R(xk)→ R(x) <∞ and
‖Axk − y‖2 → ‖Ax− y‖2.

Because the mapping A is bounded linear, it maps weakly convergent se-
quences to weakly convergent sequences, which implies that Axk ⇀ Ax. The
uniform convexity of Y implies that the norm on Y satisfies the Radon–Riesz
property (see [27, Thm. 5.2.18]). Thus the assumptions Axk ⇀ Ax and ‖Axk−
y‖ → ‖Ax− y‖ together imply that Axk → Ax.

Since S is coercive and Z is reflexive, it follows that the sequence (Lxk)k∈N ⊂
Z is weakly pre-compact. Moreover the graph of L is closed and hence also
weakly closed. Consequently, the sequence (Lxk) converges weakly to Lx. The
assumption that S satisfies the Radon–Riesz property implies therefore that
Lxk → Lx.

The assumption that RanL is closed implies that the restriction of L to W
(where X = KerL ⊕ W ) has a continuous inverse L−1

W : RanL → W ⊂ X.
Denote now by P the projection onto KerL along W and P ′ = Id−P . Then in
particular L−1

W L = P ′. Thus the convergence Lxk → Lx and the continuity of
L−1
W on RanL imply that P ′xk → P ′x.

Now the continuity of A implies that also AP ′xk → AP ′x. Together with
the convergence Axk → Ax, we therefore have that APxk → APx. Because
the restriction of A to KerL is boundedly invertible, this in turn implies that
Pxk → Px. Therefore, xk = Pxk + (Id−P )xk → Px + (Id−P )x = x, which
proves the assertion. �

4 Rates for Sparsity Regularisation

We now apply the results of the previous sections in order to derive convergence
rates results for sparsity regularisation. We assume to that end that the target
space Z of L has a structure similar to that of an `2-space and that the pos-
itively homogeneous functional R acts separately on the different components
of Z. More precisely, we assume that (Vλ)λ∈Λ is a countable family of finite
dimensional normed vector spaces and

Z =
{
z = (zλ)λ∈Λ : zλ ∈ Vλ,

∑
λ∈Λ

|zλ|2 < +∞
}
. (11)
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Moreover, we assume that we are given a family of convex, positively homoge-
neous functionals φλ : Vλ → [0,+∞] and that

S(z) =
∑
λ∈Λ

φλ(zλ) . (12)

Note that we do not require that the spaces Vλ are isomorphic, but also in case
they are, the norms on Vλ may be different for each index λ.

Assumption 4.1. Assume that the following conditions hold:

1. The space X is a reflexive Banach space, Y is a uniformly convex Banach
space, and Z as given in (11).

2. The operator A : X → Y is bounded linear.

3. The regularisation term R has the form given by (10) and (12).

4. The mapping L : D ⊂ X → Z has a closed graph, closed range, and KerL
is finite dimensional.

5. We have KerA ∩KerL = {0}.

6. The functions φλ are lower semi-continuous, convex, and positively homo-
geneous. In addition, the domain of each function φλ is symmetric, that
is, if φλ(zλ) < +∞, then also φλ(−zλ) < +∞.

7. There exists d > 0 such that φλ(v) ≥ d|v| for every λ ∈ Λ and v ∈ Vλ. �

Lemma 4.2. Let Assumption 4.1 hold. Then Tikhonov regularisation with R
is well-posed, stable, and convergent.

Proof. Similarly as in [19], one can show that S is weakly lower semi-continuous
and coercive, and satisfies the Radon–Riesz property. Thus Remarks 3.3–3.5
show that Assumption 3.1 holds. Moreover, the assumptions of Lemma 3.7 hold,
and thus the functional R satisfies the Radon–Riesz property. The assertion is
therefore a consequence of Propositions 3.2 and 3.6. �

Remark 4.3. The well-posedness, stability, and convergence do not rely on the
convexity and positive homogeneity of the regularisation term R. They remain
to hold, if we replace the functional S of (12) by a functional of the form

S(z) =
∑
λ∈Λ

ψλ(zλ) ,

where the functions ψλ : Vλ → [0,+∞] are lower semi-continuous satisfying
ψ(0) = 0, lim|t|→∞ ψ(t) = +∞, and ψ(t) ≥ C|t|2/(1 + |t|2) for all t ∈ Vλ, where
the constant C > 0 is independent of λ. Then, similarly as in [19], one can show
that S is weakly lower semi-continuous and coercive, and satisfies the Radon–
Riesz property. Thus, Propositions 3.2 and 3.6 are again applicable. Note that
here we do not require that the functions φλ are convex. �
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For the derivation of linear convergence rates, it is necessary to describe the
sub-differential of the regularisation functional R. We have the inclusion

∂R(x†) ⊃ L∗∂S(Lx†) . (13)

Moreover,

∂S(Lx†)

=
{
ω = (ωλ)λ∈Λ : ωλ ∈ ∂φλ((Lx†)λ) for all λ ∈ Λ and

∑
λ∈Λ

|ωλ|2∗ < +∞
}
.

Here |ωλ|∗ denotes the norm on the dual V ∗λ of Vλ. Note that we need not have
equality in (13), as we have not assumed that the mapping L is bounded and S
continuous.

Now define for every λ ∈ Λ

∂φλ(0) :=
{
w ∈ ∂φλ(0) : (1 + ε)w 6∈ ∂φλ(0) for every ε > 0

}
,

which, because φ is lower semi-continuous, positively homogeneous and coercive,
is precisely the relative boundary of ∂φ(0). Because of the estimate φλ(v) ≥ d|v|
for every λ ∈ Λ and v ∈ Vλ, this implies that |w|∗ ≥ 1/d whenever w ∈ ∂φλ(0).
Note moreover that ∂φ(0) can equivalently be written as

∂φλ(0) =
⋃

v∈Vλ\{0}

∂φλ(v) . (14)

Now define for ω ∈ Z∗ the index set

Λω :=
{
λ ∈ Λ : ωλ 6∈ ∂φλ(0)

}
and the space

Zω :=
{
z = (zλ)λ∈Λ ∈ Z : zλ = 0 whenever λ ∈ Λω

}
.

Because |ωλ|∗ ≥ 1/d whenever ωλ ∈ ∂φλ(0) and ω ∈ Z∗, implying that∑
λ|ωλ|2∗ < +∞, it follows that Λ \ Λω is a finite set and, consequently, Zω

a finite dimensional subspace of Z.

Theorem 4.4. Let Assumption 4.1 hold. Assume that there exists a source
element ω = (ωλ)λ∈Λ ∈ Z∗ such that ωλ ∈ ∂φλ

(
(Lx†)λ

)
for every λ ∈ Λ and

RanA∗ ∩ L∗ω 6= ∅. Assume moreover that the restriction of A to the preimage
L−1Zω of Zω is injective. Then we have for a parameter choice α ∼ δ that

R(xδα − x†) = O(δ) as δ → 0 .

Proof. This result follows by applying Theorem 2.6 with K̃ = (L−1Zω)∩DomR.
To that end note first that the definition of ω implies that L∗ω ∈ ∂R(x†).
Moerover, the finite dimension of Zω and the assumption that dim(KerL) < +∞
imply that L−1Zω is a finite dimensional subspace of X. In view of Remark 2.7,
this shows (6).

Next we verify that (L−1Zω)∩DomR contains the cone KL∗ω generated by
the sub-gradient element L∗ω ∈ ∂R(x†). That is, we show that

KL∗ω :=
{
x ∈ X : L∗ω ∈ ∂R(x)

}
⊂ (L−1Zω) ∩DomR . (15)

11



Note first that by definition KL∗ω ⊂ DomR ⊂ D. Moreover, the symmetry of
the domains of the functions φλ implies that also −x† ∈ DomR, and therefore
DomR = x†+ DomR. Therefore (15) is equivalent to the inclusion L(KL∗ω) ⊂
Zω. Now recall that x ∈ KL∗ω, if and only if 〈L∗ω, x〉 = R(x). This, however,
is equivalent to the equation 〈ω,Lx〉 = S(Lx), which in turn implies that ω ∈
∂S(Lx). Let now λ ∈ Λ be such that ωλ 6∈ ∂φλ(0). Then (14) and the fact that
ωλ ∈ ∂φλ((Lx)λ) imply that (Lx)λ = 0, which proves (15).

In order to be able to apply Theorem 2.6, it remains to show (7). To that
end, define for λ ∈ Λ

ελ := sup
{
ε ≥ 0 : (ωλ + ελ∂φλ(0)) ⊂ ∂φλ(0)

}
.

Then we have λ ∈ Λω if and only if ελ = 0. Now assume that λ 6∈ Λω is such
that |ωλ|∗ ≤ 1/(2d). Then we also have that 2ωλ ∈ ∂φλ(0). Consequently, the
convexity of ∂φλ(0) implies that ωλ + 1

2∂φλ(0) ⊂ ∂φλ(0), showing that, in this
case, ελ ≥ 1/2. Because |ωλ|∗ > 1/(2d) for at most finitely many λ ∈ Λ, this
implies that the set of indices λ satisfying 0 < ελ < 1/2 is finite. Therefore

c̃0 := inf
{
ελ : λ 6∈ Λω

}
> 0 .

Noting that

N (Zω) =
{
z = (zλ)λ∈Λ ∈ Z : zλ = 0 whenever λ 6∈ Λω

}
,

we see that

c̃0 = max
{
c ≥ 0 : (ω + c∂S(0) ∩N (Zω)) ⊂ ∂S(0)

}
. (16)

Let ξ ∈ N (L−1Zω) ∩ RanL∗ and let η ∈ Z∗ be such that L∗η = ξ. Then
0 = 〈ξ, x̃〉 = 〈L∗η, x̃〉 = 〈η, Lx̃〉 for every x̃ ∈ L−1Zω, showing that η ∈ N (Zω ∩
RanL). Now note that

N (Zω ∩ RanL) = N (Zω)⊕ (Z∗ω ∩N (RanL)) = N (Zω)⊕ (Z∗ω ∩KerL∗) .

This shows that there exists η̃ ∈ N (Zω) such that L∗η̃ = ξ and consequently
N (L−1Zω) ∩ RanL∗ ⊂ L∗(N (Zω) ∩ D′), where D′ := DomL∗. We therefore
obtain from (16) that

L∗ω + c̃0L
∗(∂S(0) ∩D′) ∩N (L−1Zω) ⊂ L∗(∂S(0) ∩D′) ⊂ ∂R(0) . (17)

Next we show that C := L∗(∂S(0) ∩ D′) ∩ N (L−1Zω) is a dense subset of
∂R(0)∩N (L−1(Zω)). Assume to the contrary that ξ ∈ ∂R(0)∩N (L−1(Zω))\C.
Then there exists x ∈ X such that

R(x) ≥ 〈ξ, x〉 > sup
{
〈ζ, x〉 : ζ ∈ C

}
= sup

{
〈L∗η, x〉 : η ∈ ∂S(0) ∩D′ ∩N (Zω)

}
. (18)

Note moreover that we may assume without loss of generality that x ∈ L−1(Zω),
as ξ ∈ N (L−1(Zω)). Thus 〈η, Lx〉 = 0 for every η ∈ N (Zω), implying that

sup
{
〈L∗η, x〉 : η ∈ ∂S(0) ∩D′ ∩N (Zω)

}
= sup

{
〈η, Lx〉 : η ∈ ∂S(0) ∩D′ ∩N (Zω)

}
= sup

{
〈η, Lx〉 : η ∈ ∂S(0) ∩D′

}
= S(Lx) .
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Because S(Lx) = R(x), this contradicts (18), and therefore C ⊂ ∂R(0) ∩
N (L−1(Zω)) is dense. Consequently (17) and the fact that ∂R(0) is closed
imply that also

L∗ω + c̃0∂R(0) ∩N (L−1(Zω)) ⊂ ∂R(0) .

Since c̃0 > 0, this shows that the assumptions of Theorem 2.6 are satisfied,
which therefore proves the assertion. �

5 Joint Sparsity

In this section, we apply Theorem 4.4 for deriving convergence rates for sparse
regularisation of vector valued data. In the standard, scalar valued case, sparse
regularisation tries to reconstruct sequences with a small (finite) number of
non-zero coefficients. In the setting of joint sparsity, the goal is in principle
the same, but the coefficients of the sequences are themselves vectors and one
does not require sparsity of every single coefficient vector. In contrast, one
typically wants to obtain sparse sequences of dense vectors. A standard method
for obtaining such results is the usage of a regularisation term that consists
of the sum of the Euclidean norms of the coefficient vectors (see for instance
[3, 18, 29, 32]). Below, we also consider the setting where different norms than
only the Euclidean one are used for the penalisation of the coefficient vectors.

We assume that the space X is a vector valued `2-space, that is,

X =
{
x = (xλ)λ∈Λ : xλ ∈ Rn,

∑
λ∈Λ

|xλ|2 < +∞
}

for some n ∈ N and a countable index set Λ. Here |xλ| denotes the Euclidean
norm of the vector xλ ∈ Rn. Moreover, we assume that the regarisation term
R is defined by some convex and positively homogeneous function φ : Rn →
[0,+∞] with symmetric domain satisfying φ(v) = 0 if and only if v = 0 via

R(x) =
∑
λ

φ(xλ) for x = (xλ)λ∈Λ with xλ ∈ Rn .

Then

∂R(x†) =
{
ξ = (ξλ)λ∈Λ : ξλ ∈ ∂φ(x†λ) for all λ ∈ Λ and

∑
λ∈Λ

|ξλ|2 < +∞
}
.

Now define as in Section 4

∂φ(0) :=
{
ξ ∈ ∂φ(0) : (1 + ε)ω 6∈ ∂φ(0) for every ε > 0

}
.

and
Λξ :=

{
λ ∈ Λ : ξλ ∈ ∂φ(0)

}
for ξ ∈ X.

Proposition 5.1. Assume that there exists ξ ∈ ∂R(x†)∩RanA∗ such that the
restriction of A to

`2(Λξ;Rn) :=
{
x = (xλ)λ∈Λ ∈ X : xλ = 0 for λ 6∈ Λω

}
13



is injective. Then we have for a parameter choice α ∼ δ that

R(xδα − x†) = O(δ) as δ → 0 .

In particular, ‖xδα − x†‖ = O(δ).

Proof. This is a special case of Theorem 4.4 with Z = X and L = Id: X → Z.
Note that the coercivity condition φ(v) ≥ d|v| for some d > 0 follows from the
assumption that 0 is the unique minimiser of φ. �

Remark 5.2. The convergence result of Proposition 5.1 can easily be extended
to regularisation terms R of the form

R(x) =
∑
λ∈Λ

φλ(xλ) ,

where the convex and positively homogenous functions φλ with symmetric do-
mains in addition depend on the index λ. There one only has the additional
requirement that the family of functions (φλ)λ∈Λ has to be equicoercive, that
is, there exists some d > 0 such that φλ(v) ≥ d|v| for all v ∈ Rn and λ ∈ Λ.

A similar extension is possible for the setting where the dimension of the
coefficients of x = (xλ)λ∈Λ depends on the index λ. That is,

X =
{
x = (xλ)λ∈Λ : xλ ∈ Vλ,

∑
λ∈Λ

|xλ|2Vλ
<∞

}
,

where (Vλ)λ∈Λ is a family of finite dimensional vector spaces. Note that we do
not need any uniform bound on the dimension of the spaces; it is possible that
supλ dim(Vλ) = +∞, as long as the dimension of each space Vλ is finite. �

6 Group Sparsity

We now return to the case of scalar valued data, but assume that the underlying
index set has some known structure that allows us to assign the indices to
different groups, and we have the a–priori knowledge that only a small number
of groups contribute to the data. Then, similarly as for joint sparsity, it makes
sense to penalise the Euclidean norms within each group and then sum over
all the different groups (see for instance [15, 31]). Formally, we can model this
situation by assuming that X = `2(Σ) for some countable index set Σ and that
we are given another countable index set Λ and a mapping π : Λ→ 2Σ assigning
to each λ ∈ Λ a group of indices in Σ. Then we would choose the regularisation
term

R(x) =
∑
λ∈Λ

( ∑
σ∈π(λ)

x2
σ

)1/2

.

In case the groups are disjoint, that is, π(λ) ∩ π(λ′) = ∅ whenever λ 6= λ′,
this setting is equivalent to that of joint sparsity considered in the second part
of Remark 5.2. There are, however, distinct differences when the groups are
allowed to overlap. Such overlapping groups have been recently used in [25, 26].

We say that the group assignment π is locally finite, if

• for every λ ∈ Λ the set π(λ) is finite, and
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• for every σ ∈ Σ the set π−1(σ) =
{
λ ∈ Λ : σ ∈ π(λ)

}
is finite.

Proposition 6.1. Assume that π is locally finite and π−1(σ) 6= ∅ for every
σ ∈ Σ. Assume moreover that there exist ωλ,σ ∈ R, λ ∈ Λ, σ ∈ π(λ), such that

ωλ,σ = x†σ

( ∑
τ∈π(λ)

x†τ
2
)−1/2

whenever σ ∈ π(λ) and there exists τ ∈ π(λ) such that x†τ 6= 0,∑
τ∈π(λ)

ω2
λ,τ ≤ 1

whenever λ ∈ Λ is such that x†σ = 0 for every σ ∈ π−1(λ), and∑
λ∈Λ

∑
σ∈π(λ)

ω2
λ,σ < +∞ .

Define ξ ∈ `2(Σ) by

ξσ :=
∑

λ∈π−1(σ)

ωλ,σ ,

and denote

Σω :=
{
σ ∈ Σ : σ ∈ π(λ) for some λ ∈ Λ such that

∑
τ∈π(λ)

ω2
λ,τ = 1

}
.

If ξ ∈ Ran(A∗) and the restriction of A to

`2(Σω) :=
{
x = (xσ)σ∈Σ ∈ `2(Σ) : xσ = 0 for all σ 6∈ Σω

}
is injective, then

R(xδα − x†) = O(δ) as δ → 0 .

In particular, ‖xδα − x†‖ = O(δ).

Proof. Define

Z :=
{
z = (zλ)λ∈Λ : zλ ∈ R|π(λ)|,

∑
λ∈Λ

|zλ|2 <∞
}
,

let
D :=

{
x = (xσ)σ∈Σ :

∑
λ∈Λ

∑
σ∈π(λ)

x2
σ < +∞

}
,

and define the possibly unbounded mapping L : D ⊂ X → Z by (Lx)λ =
(xσ)σ∈π(λ). Because π−1(σ) 6= ∅ for every σ ∈ Σ, the mapping L is injective.
Moreover, it is easy to see that L has a closed graph and a closed range.

The assumptions on ω imply that ω ∈ Z∗ and L∗ω ∈ ∂R(x†). Finally, the
injectivity of A on `2(Σω) directly translates to the injectivity condition required
in Theorem 4.4. Thus said theorem is applicable to this situation, and the linear
convergence rate follows. �

Remark 6.2. Though, strictly speaking, the local finiteness of the assignment π
is not required for the convergence rates result, it makes sense to postulate it
nevertheless. One the one hand, it ensures that every finite sequence x ∈ `2(Σ)
is contained in the domain of R. On the other hand, it guarantees that the
sub-differential of R at each finite sequence is non-empty. In fact, these two
conditions together are equivalent to the local finiteness of π. �
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7 Discrete Total Variation Regularisation

The assumption of the finite dimension of the space in which the true solution
is supported indicates that it is not possible to apply Theorems 4.4 or 2.6 to
regularisation methods based on (possibly higher order) total variation. It does
not exclude the application to discretisations of total variation regularisation,
though.

Exemplarily, we will discuss the setting of first order discrete total variation
regularisation in the two-dimensional case. Here we assume that we are given
some uniform rectangular grid I ⊂ Z2 and define a discrete gradient ∇ : `2(I)→
`2(I;R2) by (cf. the discretisation of the total variation proposed in [8])

(∇u)i,j :=


(ui+1,j − ui,j ;ui,j+1 − ui,j) , if (i+ 1, j) ∈ I and (i, j + 1) ∈ I ,
(ui+1,j − ui,j ; 0) , if (i+ 1, j) ∈ I and (i, j + 1) 6∈ I ,
(0;ui,j+1 − ui,j) , if (i+ 1, j) 6∈ I and (i, j + 1) ∈ I ,
(0; 0) , if (i+ 1, j) 6∈ I and (i, j + 1) 6∈ I .

Moreover, we define

R(u) := ‖∇u‖ :=
∑

(i,j)∈I

|(∇u)i,j |

with |v| :=
√
v2

1 + v2
2 for v = (v1, v2) ∈ R2.

We assume in addition that the index set I is connected in the sense that
whenever (i, j), (̃ı, ̃) ∈ I, there exists a path

(
(i0, j0), (i1, j1), . . . , (in, jn)

)
⊂ I

with (i0, j0) = (i, j), (in, jn) = (̃ı, ̃), and |ik+1 − ik|+ |jk+1 − jk| = 1 for every
k. This assumption implies that Ker∇ consists either of all constant sequences
in case |I| < +∞, or Ker∇ = {0} if I is an infinite set. In particular, Ker∇ is
finite dimensional.

Finally, note that the adjoint of the discrete gradient is the discrete diver-
gence defined as (cf. [8]) ∇∗ = div : `2(I;R2)→ `2(I),

(div V )i,j =


V

(1)
i,j − V

(1)
i−1,j if (i± 1, j) ∈ I

V
(1)
i,j if (i− 1, j) 6∈ I
−V (1)

i−1,j if (i+ 1, j) 6∈ I
0 if (i± 1, j) 6∈ I

+


V

(2)
i,j − V

(2)
i,j−1 if (i, j ± 1) ∈ I

V
(2)
i,j if (i, j − 1) 6∈ I
−V (2)

i,j−1 if (i, j + 1) 6∈ I
0 if (i, j ± 1) 6∈ I

.

Proposition 7.1. Assume that there exists V = (Vi,j)(i,j)∈I ∈ `2(I;R2) such

that Vi,j = (∇u†)i,j/|(∇u†)i,j | whenever (∇u†)i,j 6= 0 and |Vi,j | ≤ 1 else, and
div V ∈ RanA∗. Denote J :=

{
(i, j) ∈ I : |Vi,j | < 1

}
. If the restriction of A to

S :=
{
u ∈ `2(I) : (∇u)i,j = 0 for every (i, j) ∈ J

}
is injective, then we have for a parameter choice α ∼ δ that

R(uδα − u†) = ‖∇(uδα − u†)‖ = O(δ) as δ → 0 .

Proof. This is a direct consequence of Theorem 4.4. �
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8 Conclusion

This paper introduces mathematical tools that can be used for extending exist-
ing results on linear convergence rates for Tikhonov regularisation with sparsity
promoting regularisation terms to more general settings. Exemplarily, these
tools are applied in three different settings—joint sparsity, group sparsity, and
discrete total variation regularisation—where, up to now, no comparable con-
vergence rates results have been derived.
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