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1. Introduction

In this paper, we study the convergence of certain nonlinear iterative reconstruction

methods for inverse problems in Banach spaces. We consider a class of inverse problems

defined by a nonlinear map from parameter or model functions to the data. The

parameter functions and data are contained in certain Banach spaces, or Hilbert

spaces, respectively. We explicitly construct sequences of parameter functions by a

Landweber iteration. Our analysis pertains to obtaining natural conditions for the

strong convergence of these sequences (locally) to the solutions in an appropriate

distance measure.

Our main result establishes convergence of the Landweber iteration if the inverse

problem ensures a Hölder stability estimate. Moreover, we prove monotonicity of

the residuals defined by the sequence induced by the iteration. We also obtain the

convergence rates without so-called source and nonlinearity conditions. The stability

condition is a natural one in the framework of iterative reconstruction.

Extensive research has been carried out to study convergence of the Landweber

iteration [25] and its modifications. In the case of model and data spaces being Hilbert,

see Hanke, Neubauer & Scherzer [18]. An overview of iterative methods for inverse

problems in Hilbert spaces can be found, for example, in Kaltenbacher, Neubauer &

Scherzer [21]. Schöpfer, Louis & Schuster [30] presented a nonlinear extension of the

Landweber method to Banach spaces using duality mappings. We use this iterative

method in the analysis presented here. Duality mappings also play a role in iterative

schemes for monotone and accretive operators (see Alber [2], Chidume & Zegeye [14]

and Zeidler [36, 37]). The model space needs to be smooth and uniformly convex,

however, the data space can be an arbitrary Banach space. Due to the geometrical

characteristics of Banach spaces other than Hilbert spaces, it is more appropriate to use

Bregman distances rather than Ljapunov functionals to prove convergence (Osher et al.

[27]). For convergence rates, see Hofmann et al. [20]. Schöpfer, Louis & Schuster [31]

furthermore considered the solution of convex split feasibility problems in Banach spaces

by cyclic projections. Under the so-called tangential cone condition, pertaining to the

nonlinear map modelling the data, convergence has been established; invoking a source

condition in a convergence rate result. Here, we build on the work of Kaltenbacher,

Schöpfer and Schuster [22] and revisit these conditions with a view to stability properties

of the inverse problem.

In many inverse problems one probes a medium, or an obstacle, with a particular

type of field and measures the response. From these measurements one aims to

determine the medium properties and/or (geometrical) structure. Typically, the physical

phenomenon is modeled by partial differential equations and the medium properties

by variable, and possibly singular, coefficients. The interaction of fields is usually

restricted to a bounded domain with boundary. Experiments can be carried out on

the boundary. The goal is thus to infer information on the coefficients in the interior of

the domain from the associated boundary measurements. The map, solving the partial
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differential equations, from coefficients or parameter functions to the measurements or

data is nonlinear. Its injectivity is studied in the analysis of inverse problems. As an

example, we discuss Electrical Impedance Tomography, where the Dirichlet-to-Neumann

map represents the data, and summarize the conditions leading to Lipschitz stability.

Traditionally, the Landweber iteration has been viewed as a fixed-point iteration.

However, in general, for inverse problems, the underlying fixed point operator is not

a contraction. There is an extensive literature of iterative methods for approximating

fixed points of non-expansive operators. Hanke, Neubauer & Scherzer [18] replace the

condition of non-expansive to a local tangential cone condition, which guarantees a local

result. In the finite-dimensional setting, in which, for example the model space is R
n,

non-convex constraint optimization problems admitting iterative solutions have been

studied by Curtis et al. [16]. Under certain assumptions, they obtain convergence to

stationary points of the associated feasibility problem. In the context of inverse problems

defined by partial differential equations, this setting is motivated by discretizing the

problems prior to studying the convergence (locally) of the iterations. Inequality

constraints are necessary to enforce locality. The non-convexity is addressed by Hessian

modifications based on inertia tests.

The paper is organized as follows. In the next section, we summarize certain

geometrical aspects of Banach spaces, including (uniform) smoothness and (uniform)

convexity, and their connection to duality mappings. Smoothness is naturally related to

Gâteaux differentiability. We also introduce the Bregman distance. We then define the

nonlinear Landweber iteration in Banach spaces. In Section 3 we introduce the basic

assumptions including Hölder stability and analyze the convergence of the Landweber

iteration in Hilbert spaces. In Section 4 we adapt these assumptions and generalize the

analysis of convergence of the Landweber iteration to Banach spaces. We also establish

the convergence rates. In Section 5 we give an example, namely, the reconstruction of

conductivity in Electrical Impedance Tomography, and show that our assumptions can

be satisfied.

2. Landweber iteration in Banach spaces

Let X and Y be both real Banach spaces. We consider the nonlinear operator equation

F (x) = y, x ∈ D(F ), y ∈ Y, (2.1)

with domain D(F ) ⊂ X. In applications, F : D(F ) → Y models the data. In the

inverse problem one is concerned with the question whether y determines x. We assume

that F is continuous, and that F is Fréchet differentiable, locally.

We couple the uniqueness and stability analysis of the inverse problem to a local

solution construction based on the Landweber iteration. Throughout this paper, we

assume that the data y in (2.1) is attainable, that is, that (2.1) has a solution x† (which

needs not to be unique).
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2.1. Duality mappings

The duals of X and Y are denoted by X∗ and Y ∗, respectively. Their norms are denoted

by ‖ · ‖. We denote the space of continuous linear operators X → Y by L(X, Y ). Let

A : D(A) ⊂ X → Y be continuous. Here D(A) denotes the domain of A. Let h ∈ D(A)

and k ∈ X and assume that h+ t(k − h) ∈ D(A) for all t ∈ (0, t0) for some t0, then we

denote by DA(h)(k) the directional derivative of A at h ∈ D(A) in direction k ∈ D(A),

that is,

DA(h)(k) := lim
t→0+

A(h+ tk)− A(h)

t
.

If DA(h) ∈ L(X, Y ), then DA(h) is called Gâteaux differentiable. If, in addition, the

convergence is uniform for all k ∈ Bt0 , then DA is Fréchet differentiable at h. For

x ∈ X and x∗ ∈ X∗, we write the dual pair as 〈x, x∗〉 = x∗(x). We write A∗ for the

dual operator A∗ ∈ L(Y ∗, X∗) and ‖A‖ = ‖A∗‖ for the operator norm of A. We let

1 < p, q < ∞ be conjugate exponents, that is,

1

p
+

1

q
= 1. (2.2)

For p > 1, the subdifferential mapping Jp = ∂fp : X → 2X
∗

of the convex functional

fp : x 7→ 1
p
‖x‖p defined by

Jp(x) = {x∗ ∈ X∗ | 〈x, x∗〉 = ‖x‖ ‖x∗‖ and ‖x∗‖ = ‖x‖p−1} (2.3)

is called the duality mapping of X with gauge function t 7→ tp−1. Generally, the duality

mapping is set-valued. In order to let Jp be single valued, we need to introduce the

notion of convexity and smoothness of Banach spaces.

One defines the convexity modulus δX of X by

δX(ǫ) = inf
x,x̃∈X

{1− ‖1
2
(x+ x̃)‖ | ‖x‖ = ‖x̃‖ = 1 and ‖x− x̃‖ ≥ ǫ} (2.4)

and the smoothness modulus ρX of X by

ρX(τ) = sup
x,x̃∈X

{1
2
(‖x+ τ x̃‖+ ‖x− τ x̃‖ − 2) | ‖x‖ = ‖x̃‖ = 1}. (2.5)

Definition 2.1 A Banach space X is said to be

(a) uniformly convex if δX(ǫ) > 0 for any ǫ ∈ (0, 2],

(b) uniformly smooth if limτ→0
ρX(τ)

τ
= 0,

(c) convex of power type p or p-convex if there exists a constant C > 0 such that

δX(ǫ) ≥ Cǫp,

(d) smooth of power type q or q-smooth if there exists a constant C > 0 such that

ρX(τ) ≤ Cτ q.

Example 2.2 (a) A Hilbert space X is 2-convex and 2-smooth and J2 : X → X is the

identity mapping.
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(b) Let Ω ⊂ R
n be an open domain. The Banach space Lp = Lp(Ω), p > 1 is uniformly

convex and uniformly smooth, and

δLp(ǫ) ≃
{

ǫ2, 1 < p < 2,

ǫp, 2 ≤ p < ∞;

ρLp(τ) ≃
{

τ p, 1 < p < 2,

τ 2, 2 ≤ p < ∞.

(c) For X = Lr(Rn), r > 1, we have

Jp : L
r(Rn) → Ls(Rn)

u(x) 7→ ‖u‖p−r
Lr |u(x)|r−2u(x),

where 1
r
+ 1

s
= 1.

For a detailed introduction to the geometry of Banach spaces and the duality

mapping, we refer to [15, 30]. We list the properties we need here in the following

theorem.

Theorem 2.3 Let p > 1. The following statements hold true:

(a) For every x ∈ X, the set Jp(x) is not empty and it is convex and weakly closed in

X∗.

(b) If a Banach space is uniformly convex, it is reflexive.

(c) A Banach space X is uniformly convex (resp. uniformly smooth) iff X∗ is uniformly

smooth (resp. uniformly convex).

(d) If a Banach space X is uniformly smooth, Jp(x) is single valued for all x ∈ X.

(e) If a Banach space X is uniformly smooth and uniformly convex, Jp(x) is bijective

and its inverse J−1
p : X∗ → X is given by J−1

p = J∗
q with J∗

q being the duality

mapping of X∗ with gauge function t 7→ tq−1, where 1 < p, q < ∞ are conjugate

exponents.

Throughout this paper, we assume that X is p-convex and q-smooth with p, q > 1,

hence it is uniformly smooth and uniformly convex. Furthermore, X is reflexive and

its dual X∗ has the same properties. Y is allowed to be an arbitrary Banach space; jp
will be a single-valued selection of the possibly set-valued duality mapping of Y with

gauge function t 7→ tp−1, p > 1. Further restrictions on X and Y will be indicated in

the respective theorems below.
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X

Jp

x̃x

∆p(x, x̃)

‖x− x̃‖

1
p
(‖Jp(x̃)‖ − ‖Jp(x)‖)

X∗

Figure 1. Bregman distance, ∆p.

2.2. Bregman distances

Due to the geometrical characteristics of Banach spaces different from those of Hilbert

spaces, it is often more appropriate to use the Bregman distance instead of the

conventional norm-based functionals ‖x − x̃‖p or ‖Jp(x) − Jp(x̃)‖p for convergence

analysis. This idea goes back to Bregman [11].

Definition 2.4 Let X be a uniformly smooth Banach space and p > 1. The Bregman

distance ∆p(x, ·) of the convex functional x 7→ 1
p
‖x‖p at x ∈ X is defined as

∆p(x, x̃) =
1

p
‖x̃‖p − 1

p
‖x‖p − 〈Jp(x), x̃− x〉, x̃ ∈ X, (2.6)

where Jp denotes the duality mapping of X with gauge function t 7→ tp−1.

In the following theorem, we summarize some facts concerning the Bregman

distance and the relationship between Bregman distance and the norm [1, 2, 12, 35].

Theorem 2.5 Let X be a uniformly smooth and uniformly convex Banach space. Then,

for all x, x̃ ∈ X, the following holds:

(a)

∆p(x, x̃) =
1

p
‖x̃‖p − 1

p
‖x‖p − 〈Jp(x), x̃〉+ ‖x‖p (2.7)

=
1

p
‖x̃‖p + 1

q
‖x‖p − 〈Jp(x), x̃〉.

(b) ∆p(x, x̃) ≥ 0 and ∆p(x, x̃) = 0 ⇔ x = x̃.

(c) ∆p is continuous in both arguments.

(d) The following statements are equivalent

(i) limn→∞ ‖xn − x‖ = 0,

(ii) limn→∞ ∆p(xn, x) = 0,
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(iii) limn→∞ ‖xn‖ = ‖x‖ and limn→∞〈Jp(xn), x〉 = 〈Jp(x), x〉.
(e) If X is p-convex, there exists a constant Cp > 0 such that

∆p(x, x̃) ≥
Cp

p
‖x− x̃‖p. (2.8)

(f) If X∗ is q-smooth, there exists a constant Gq > 0 such that

∆q(x
∗, x̃∗) ≤ Gq

q
‖x∗ − x̃∗‖q, (2.9)

for all x∗, x̃∗ ∈ X∗.

Remark 2.6 The Bregman distance ∆p is similar to a metric, but, in general, does not

satisfy the triangle inequality nor symmetry. In a Hilbert space, ∆2(x, x̃) =
1
2
‖x− x̃‖2.

2.3. Landweber iteration

In this subsection, we introduce an iterative method for minimizing the functional

Φ(x) =
1

p
‖F (x)− y‖p. (2.10)

The iterates {xk} are generated with the steepest descent flow given by

∂Φ(k)(xk) = DF (xk)
∗jp(F (xk)− y). (2.11)

To be more precisely, we study the iterative method in Banach spaces,

Jp(xk+1) = Jp(xk)− µDF (xk)
∗jp(F (xk)− y),

xk+1 = J∗
q (Jp(xk+1)),

(2.12)

where Jp : X → X∗, J∗
q : X∗ → X and jp : Y → Y ∗ denote duality mappings in

corresponding spaces. When X and Y are Hilbert spaces and p = 2, this reduces to the

Landweber iteration in Hilbert spaces

xk+1 = xk − µDF (xk)
∗(F (xk)− y). (2.13)

If F is a linear operator, the iteration (1.3) coincides with Landweber’s original

algorithm. We specify µ below. Equation (2.12) defines a sequence (xk).

If F (x†) = y, the so-called tangential cone condition [22],

‖F (x)−F (x̃)−DF (x)(x−x̃)‖ ≤ cTC ‖F (x)−F (x̃)‖ ∀x, x̃ ∈ B∆
ρ (x

†),(2.14)

for some 0 < cTC < 1, is crucial to obtain convergence of (xk) to x† [19, 20, 22];

B∆
ρ (x

†) = {x ∈ X | ∆p(x, x
†) ≤ ρ} ⊂ D(F ). A source condition controls the

convergence rate. Here, we study convergence and convergence rates in relation to a

single, alternative condition replacing the tangential cone and source conditions, namely,

Hölder type stability,

∆p(x, x̃) ≤ Cp
F‖F (x)− F (x̃)‖ 1+ε

2
p ∀x, x̃ ∈ B∆

ρ (x
†),

for some ε ∈ (0, 1]. With the Fréchet differentiability of F and the Lipschitz continuity

of DF , this condition implies the tangential cone condition, and, hence, convergence is

guaranteed; however, it also implies a certain convergence rate.
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3. Convergence rate and radius of convergence – Hilbert spaces

In this section, we assume that X and Y are Hilbert spaces. Then the mappings Jp, jp
and J∗

q are identity mappings. Let Bρ(x0) denote a closed ball centered at x0 with radius

ρ, such that B = Bρ′(x0) ⊂ D(F ), ρ′ > ρ. As before, let x† generate the data y, that is

F (x†) = y. (3.1)

We assume that x† ∈ Bρ(x0).

Assumption 3.1 (a) The Fréchet derivative, DF , of F is Lipschitz continuous locally

in B and

‖DF (x)−DF (x̃)‖ ≤ L‖x− x̃‖ ∀x, x̃ ∈ B. (3.2)

(b) F is weakly sequentially closed, that is,

xn ⇀ x,

F (xn) → y

}

⇒
{

x ∈ D(F ),

F (x) = y.

(c) The inversion has the uniform Hölder type stability, that is, there exists a constant,

CF > 0, such that

1√
2
‖x− x̃‖ ≤ CF‖F (x)− F (x̃)‖ 1+ε

2 ∀x, x̃ ∈ B (3.3)

for some ε ∈ (0, 1]

In the remainder of this section, we discuss the convergence criterion and

convergence rate for the Landweber iteration (2.13).

Theorem 3.2 Assume there exists a solution x† to (3.1) and that Assumption 3.1 holds.

Furthermore, assume that

‖DF (x)‖ ≤ L̂ ∀x ∈ B. (3.4)

Let the positive stepsize µ be such that

µ <
1

L̂2
,

µ(1− µL̂2) < 2
2

1+εC
4

1+ε

F

(3.5)

Let

ρ =
1

2
(2LL̂εC2

F )
−2/ε.

If

1

2
‖x0 − x†‖2 ≤ ρ, (3.6)
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then the iterates satisfy

1

2
‖xk − x†‖2 ≤ ρ, k = 1, 2, . . . (3.7)

and xk → x† as k → ∞. Moreover, let

c =
1

2
µ(1− µL̂2)C

− 4
1+ε

F ; (3.8)

from (3.5), it follows that 0 < c < 1. The convergence rate is given by

1

2
‖xk − x†‖2 ≤ ρ(1− c)k, (3.9)

if ε = 1. For ε ∈ (0, 1), the convergence rate is given by

1

2
‖xk − x†‖2 ≤

(

ck
1− ε

1 + ε
+ ρ−

1−ε
1+ε

)− 1+ε
1−ε

, k = 0, 1, . . . . (3.10)

The proof is a special case of the Banach space setting, cf. Theorem 4.5; see

Section 4. The convergence is sublinear if 0 < ε < 1 and the speed up as ε → 1

relates to the fact that it switches to a linear convergence.

For the critical index ε = 0, that is, the power in the right-hand side of the stability

inequality (3.3) equals to 1
2
, we need to invoke an assumption on the stability constant CF

to arrive at the convergence and convergence rate results. An interesting by-product is

that the convergence radius only depends on the radius within which the Hölder stability

(3.3) holds. Hence, if the forward operator F satisfies (3.3) globally, then we obtain a

global convergence and convergence rate result.

Theorem 3.3 Assume there exists a solution x† to (3.1) and that Assumption 3.1 holds

with ε = 0. Furthermore, assume that

‖DF (x)‖ ≤ L̂ ∀x ∈ B. (3.11)

Let the stability constant CF and the positive stepsize µ satisfy that

µL̂2 + 2LC2
F < 2. (3.12)

Then the iterates satisfy

xk → x† as k → ∞.

Moreover, let

c =
µ

4
(−2 + µL̂2 + 2LC2

F )C
−4
F . (3.13)

The convergence rate is given by

1

2
‖xk − x†‖2 ≤ (2‖x0 − x†‖−2 + ck)−1. (3.14)

The proof is again a special case of the Banach space setting, cf. Theorem 4.5; see

Section 4.
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Remark 3.4 The convergence radius condition (3.6) on the starting point x0 may be

replaced by a convergence radius condition on the starting simulated data F (x0),

‖F (x0)− y‖1+ε ≤ ρC−2
F . (3.15)

In fact, with the aid of the stability inequality (3.3), (3.6) follows from (3.15).

4. Convergence rate and radius of convergence – Banach spaces

In this section, we discuss the convergence and convergence rate of the Landweber

iteration (2.12) in Banach spaces. Let Bρ(x0) denote a closed ball centered at x0 with

radius ρ, and B = B∆
ρ (x

†) denote a ball with respect to the Bregman distance centered

at some solution x†. We assume that B∆
ρ (x

†) ⊂ D(F ).

Assumption 4.1 (a) The Fréchet derivative, DF , of F is Lipschitz continuous locally

in B and

‖DF (x)−DF (x̃)‖ ≤ L‖x− x̃‖ ∀x, x̃ ∈ B. (4.1)

(b) F is weakly sequentially closed, that is,

xn ⇀ x,

F (xn) → y

}

⇒
{

x ∈ D(F ),

F (x) = y.

(c) The inversion has the uniform Hölder type stability, that is, there exists a constant

CF > 0 such that

∆p(x, x̃) ≤ Cp
F‖F (x)− F (x̃)‖ 1+ε

2
p ∀x, x̃ ∈ B, (4.2)

for some ε ∈ (0, 1].

Remark 4.2 Note that the nonemptyness of the interior (with respect to norm) of D(F )

is sufficient for B ⊂ D(F ).

Remark 4.3 With the assumption that X is p-convex, (4.2) with (2.8) implies the

regular notion of Hölder stability in norm.

Remark 4.4 Under the Lipschitz type stability assumption, that is, (4.2) with ε = 1,

we have that

〈Jp(x†), x− x†〉 ≤ ‖x†‖p−1‖x− x†‖
≤ C∆p(x, x

†)1/p

≤ CCF‖F (x)− F (x†)‖, ∀x ∈ B
for some constant C > 0. It has been shown in [29] that this implies the source condition,

Jp(x
†) = DF (x†)∗ω

for some ω satisfying ‖ω‖ ≤ 1.
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Theorem 4.5 Let Y be a general Banach space, and X be a Banach space which is

p-convex and q-smooth with 1/p + 1/q = 1. Assume there exists a solution x† to (3.1)

and that Assumption 4.1 holds. Furthermore, assume that

‖DF (x)‖ ≤ L̂ ∀x ∈ B. (4.3)

Let the positive stepsize, µ, be such that

µq−1 <
q

2GqL̂q
,

µ

(

1

2
− GqL̂

q

q
µq−1

)

< C
2p
1+ε

F .
(4.4)

Let

ρ = L̂−p(LC2
F )

− p
ε

(

Cp

p

)1+ 2
ε

.

If

∆p(x0, x
†) ≤ ρ, (4.5)

then the iterates satisfy

∆p(xk, x
†) ≤ ρ, k = 1, 2, . . . (4.6)

and ∆p(xk, x
†) → 0 as k → ∞. Moreover, let

c = C
− 2p

1+ε

F

(

1

2
µ− Gq

q
µqL̂q

)

. (4.7)

The convergence rate is given by

∆p(xk, x
†) ≤ ρ(1− c)k, (4.8)

if ε = 1. For ε ∈ (0, 1), the convergence rate is given by

∆p(xk, x
†) ≤

(

ck
1− ε

1 + ε
+ ρ−

1−ε
1+ε

)− 1+ε
1−ε

, k = 0, 1, . . . . (4.9)

Proof Using (2.7) and (2.3), we obtain, for the sequence of residues,

∆p(xk+1, x
†)

= ∆p(xk, x
†) +

1

q
(‖xk+1‖p − ‖xk‖p)− 〈Jp(xk+1)− Jp(xk), x

†〉

= ∆p(xk, x
†) +

1

q
(‖Jp(xk+1)‖q − ‖Jp(xk)‖q)

−〈Jp(xk+1)− Jp(xk), x
†〉.

(4.10)

Applying (2.7) and (f) of Theorem 2.5 with x∗ = Jp(xk+1) and x̃∗ = Jp(xk), we get

1

q
(‖Jp(xk+1)‖q − ‖Jp(xk)‖q)

≤ Gq

q
‖Jp(xk+1)− Jp(xk)‖q + 〈Jp(xk+1)− Jp(xk), xk〉.

(4.11)
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Substituting (2.12) and using this inequality in (4.10) yields

∆p(xk+1, x
†)−∆p(xk, x

†)

≤ Gq

q
‖µDF (xk)

∗jp(F (xk)− y)‖q
− 〈µDF (xk)

∗jp(F (xk)− y), xk − x†〉.
(4.12)

We estimate each term in (4.12) separately. The first term satisfies the estimate

Gq

q
‖µDF (xk)

∗jp(F (xk)− y)‖q ≤ Gq

q
µqL̂q‖(F (xk)− y)‖p. (4.13)

For the second term, we have that

−〈µDF (xk)
∗jp(F (xk)− y), xk − x†〉

= −µ〈jp(F (xk)− y), DF (xk)(xk − x†)〉
= −µ(〈jp(F (xk)− y), F (xk)− y〉

−〈jp(F (xk)− y), F (xk)− y −DF (xk)(xk − x†)〉).

(4.14)

Note that, by the fundamental theorem of calculus for Fréchet derivative, we obtain

that

‖F (xk)− y −DF (xk)(xk − x†)‖ ≤ L

2
‖xk − x†‖2. (4.15)

Then, using (2.8) and stability (c) of Assumption 4.1, we have

−〈µDF (xk)
∗jp(F (xk)− y), xk − x†〉

= −µ‖F (xk)− y‖p
+µ〈jp(F (xk)− y), F (xk)− y −DF (xk)(xk − x†)〉

≤ −µ‖F (xk)− y‖p + µ

2
L‖(F (xk)− y)‖p−1‖xk − x†‖2

≤ −µ‖F (xk)− y‖p + µ

2
LC2

F

(

p

Cp

)2/p

‖F (xk)− y‖p+ε.

(4.16)

Combining these estimates and using the notation

γk = ∆p(xk, x
†),

we obtain

γk+1 − γk ≤
(

Gq

q
µqL̂q − 1

2
µ

)

‖F (xk)− y‖p

− 1

2
µ‖F (xk)− y‖p + µ

2
LC2

F

(

p

Cp

)2/p

‖F (xk)− y‖p+ε.

(4.17)

We claim that

γk+1 = ∆p(xk+1, x
†) ≤ ρ, (4.18)

which we prove by induction. Assume that

∆p(xm, x
†) ≤ ρ (4.19)

holds for m = 0, 1, . . . , k. With the mean value inequality, it follows that

‖F (xm)− y‖ε ≤ L̂ε

(

p

Cp

ρ

)
ε
p

=
1

LC2
F (p/Cp)2/p

, m = 0, 1, 2, . . . , k.(4.20)
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Therefore,

−1
2
µ‖F (xm)− y‖p + 1

2
µLC2

F (p/Cp)
2/p‖F (xm)− y‖p+ε ≤ 0, (4.21)

m = 0, 1, 2, . . . , k. Dropping this non-positive term, we obtain

γk+1 − γk ≤
(

Gq

q
µqL̂q − 1

2
µ

)

‖F (xk)− y‖p. (4.22)

Note that the term

(

Gq

q
µqL̂q − 1

2
µ

)

‖F (xk)− y‖p is non-positive. We obtain that

∆p(xk+1, x
†) ≤ ρ, (4.23)

which establishes the claim.

Now, we return to (4.22). By the Hölder type stability (4.2), we have that

γk+1 ≤ γk − cγ
2

1+ε

k (4.24)

Note that, by the conditions on µ, we have 0 < c. By letting k go to infinity on both

sides of the above inequality, we conclude that

γk → 0 as k → ∞.

In the remainder of the proof, we obtain the convergence rate. Note that, with the

choice (4.4) of µ,

0 < c < 1. (4.25)

With ε = 1, we have

γk+1 ≤ (1− c)γk (4.26)

which expresses the convergence rate (4.8).

For the convergence rate with ε ∈ (0, 1), from (4.24), we obtain that

γ
− 1−ε

1+ε

k+1 ≥ γ
− 1−ε

1+ε

k (1− cγ
1−ε
1+ε

k )−
1−ε
1+ε .

Noting that

(1− x)−
1−ε
1+ε ≥ 1 +

1− ε

1 + ε
x ∀x ∈ (0, 1),

we have that

γ
− 1−ε

1+ε

k+1 ≥ γ
− 1−ε

1+ε

k + c
1− ε

1 + ε
.

It follows that

γk ≤
(

ck
1− ε

1 + ε
+ γ

− 1−ε
1+ε

0

)− 1+ε
1−ε

≤
(

ck
1− ε

1 + ε
+ ρ−

1−ε
1+ε

)− 1+ε
1−ε

, k = 0, 1, . . . .

For the critical index ε = 0, we obtain
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Theorem 4.6 Let Y be a general Banach space, and X be a Banach space which is

p-convex and q-smooth with 1/p + 1/q = 1. Assume there exists a solution x† to (3.1)

and that Assumption 4.2 holds with ε = 0. Furthermore, assume that

‖DF (x)‖ ≤ L̂ ∀x ∈ B, (4.27)

and that the stability constant CF and the positive stepsize µ satisfy the inequality

µq−1 <
q

GqL̂q

(

1− 1

2
LC2

F

(

p

Cp

)
2
p

)

. (4.28)

Then the iterates satisfy

∆p(xk, x
†) → 0 as k → ∞.

Moreover, let

c = µ

(

Gq

q
µq−1L̂q − 1 +

1

2
LC2

F

(

p

Cp

)
2
p

)

C−2p
F . (4.29)

The convergence rate is given by

∆p(xk, x
†) ≤ (∆p(x0, x

†)−1 + ck)−1. (4.30)

Proof Using (4.17) in the proof of Theorem 4.5 subject to the substitution ε = 0, we

obtain that

γk+1 − γk ≤
(

Gq

q
µqL̂q − µ+

µ

2
LC2

F

(

p

Cp

)2/p
)

‖F (xk)− y‖p.

Note that, by (4.28), the right-hand side of the above inequality is non-positive and

0 < c < 1. Then, using the Hölder type stability (4.2) with ε = 0, we have that

γk+1 ≤ γk − cγ2
k . (4.31)

The convergence result and convergence rate (4.30) can be deduced by using the same

arguments as in the proof of Theorem 4.5.

Remark 4.7 The Hölder type stability condition (3.3) or (4.2) is implied by a lower

bound of the Fréchet derivative DF . More precisely, if, there exists a constant C such

that

‖DF (x)

(

x− x†

‖x− x†‖

)

‖ ≥ C‖x− x†‖1−α ∀x ∈ Br(x
†) ∩ D(F ),

for some α ∈ (0, 1] and r sufficiently small, then, by combining this and

‖F (x̃)− F (x)−DF (x)(x̃− x)‖ ≤ L

2
‖x̃− x‖2 ∀x, x̃ ∈ D(F )

we obtain that

‖x− x†‖ ≤ CF‖F (x)− F (x†)‖ 1
2−α ∀x ∈ Br(x

†) ∩ D(F ),
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for some constant CF depending on C and L. The ill-posedness of many inverse problems

indicates that in general it is impossible to obtain a lower bound for DF . If one

projects the forward operator F properly, an estimate for the lower bound of DF could

be obtained. Under various conditions, the lower bound for DF has been investigated in

the analysis of inverse problems. For example, see Calderón [13], Somersalo, Cheney &

Isaacson [32], and Dobson [17] for the electrical impedance tomography problem, Bao,

Chen & Ma [9] for the inverse medium problem associated with the Helmholtz equation,

and Ammari & Bao [7] for the inverse medium problem for electromagnetic waves.

5. Example: Electrical Impedance Tomography

In this section, we discuss Calderón’s inverse problem, which forms the mathematical

foundation of the Electrical Impedance Tomography (EIT) problem [13]. For a recent

review, we refer to Uhlmann [34]. We mention some key uniqueness results, namely,

by Kohn & Vogelius [23, 24], Sylvester & Uhlmann [33], and Astala & Päivärinta [8].

Here, we focus on results pertaining to stability; see Alessandrini [3, 4, 5]. In particular,

we relate to the work of Alessandrini & Vesella [6] and Beretta & Francini [10], who

establish a Lipschitz type stability estimate if the conductivity is piecewise constant

on a finite number of subdomains with jumps, for the real-valued and complex-valued

cases, respectively.

5.1. The Dirichlet-to-Neumann map

Let Ω ⊂ R
n be a bounded domain with smooth boundary. The electrical conductivity

of Ω is represented by a bounded and positive function γ(x). Given a potential

f ∈ H1/2(∂Ω) on the boundary, the induced potential u ∈ H1(Ω) solves the Dirichlet

problem
{

∇ · (γ∇u) = 0, in Ω

u = f, on ∂Ω.

The Dirichlet-to-Neumann map, or voltage-to-current map, is given by

Λγ(f) =

(

γ
∂u

∂ν

)∣

∣

∣

∣

∂Ω

,

where ν denotes the unit outer normal vector to ∂Ω.

The forward operator F is defined by

F : X ⊂ L∞
+ (Ω) → L(H1/2(∂Ω), H−1/2(∂Ω)),

γ 7→ Λγ.
(5.1)

The Fréchet derivative DF of F at γ = γ0 is given by

DF (γ0) : X ⊂ L∞(Ω) → L(H1/2(∂Ω), H−1/2(∂Ω))

δγ 7→ DF (γ0)(δγ),
(5.2)
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and DF (γ0)(δγ) is given by

〈DF (γ0)(δγ) f, g〉 =
∫

Ω

δγ∇u · ∇vdx, f, g ∈ H1/2(∂Ω) (5.3)

where
{

∇ · (γ0∇u) = ∇ · (γ0∇v) = 0, in Ω,

u = f, v = g on ∂Ω.

We note that L∞(Ω) is not a uniformly convex Banach space. Furthermore, to get the

Hölder type stability, the preimage space needs to be reduced. We specify the proper

space X in Subsection 5.3.

For n = 2, Astala and Päivärinta proved that Λγ uniquely determines γ under the

assumption that γ ∈ L∞(Ω). For n ≥ 3, Päivärinta, Panchenko and Uhlmann [28]

proved the uniqueness under the assumption that γ ∈ W 3/2,∞(Ω).

5.2. Lipschitz stability

It is possible to obtain Lipschitz type stability, essentially, by assuming that γ belongs

to a particular finite dimensional space.

We write x = (x′, xn) where x′ ∈ R
n−1 for n ≥ 2. With BR(x), B

′
R(x

′) and QR(x)

we denote respectively the open ball in R
n centered at x of radius R, the ball in R

n−1

centered at x′ of radius R and the cylinder B′
R(x

′)× (xn −R, xn +R). For simplicity of

notation, BR(0), B
′
R(0) and QR(0) are denoted by BR, B

′
R and QR.

Definition 5.1 Let Ω be a bounded domain in R
n. We say that ∂Ω is of Lipschitz

class with constants r0, L > 0 if, for any P ∈ ∂Ω, there exists a rigid transformation of

coordinates such that P = 0 and

Ω ∩Qr0 = {(x′, xn) ∈ Qr0 | xn > φ(x′)}
where φ is a Lipschitz continuous function on B′

r0
with φ(0) = 0 and

‖φ‖C0,1(B′

r0
) ≤ Lr0.

Definition 5.2 Let Ω be a bounded domain in R
n. Given α ∈ (0, 1), we say that

∂Ω is of C1,α class with constants r0, L > 0 if, for any P ∈ ∂Ω, there exists a rigid

transformation of coordinates such that P = 0 and

Ω ∩Qr0 = {(x′, xn) ∈ Qr0 | xn > φ(x′)}
where φ is a C1,α function on B′

r0
with φ(0) = |∇φ(0)| = 0 and

‖φ‖C1,α(B′

r0
) ≤ Lr0.
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Assumption 5.3 Ω ⊂ R
n is a bounded domain satisfying

|Ω| ≤ A|Br0|.
Here and in the sequel |Ω| denotes the Lebesgue measure of Ω. We assume that ∂Ω is

of Lipschitz class with constants r0 and L.

Assumption 5.4 The conductivity γ is a piecewise constant function of the form

γ(x) =
N
∑

j=1

γjχDj
(x),

satisfying the ellipticity condition

K−1 ≤ γ ≤ K

for some constant K, where γj, j = 1, . . . N are unknown real numbers and Dj are known

open sets in R
n.

Assumption 5.5 The Dj, j = 1, . . . , N are connected and pairwise non-overlapping

open sets such that ∪N
j=1Dj = Ω and ∂Dj are of C1,α class with constants r0 and L

for all j = 1, . . . , N. We also assume that there exists one region, say D1, such that

∂D1 ∩ ∂Ω contains an open portion Σ1 of C1,α class with constants r0 and L. For every

j ∈ {2, . . . , N} there exist j1, . . . , jM ∈ {1, . . . , N} such that

Dj1 = D1, DjM = Dj

and, for every k = 1, . . . ,M ,

∂Djk−1
∩ ∂Djk

contains a open portion Σk of C1,α class with constants r0 and L.

Alessandrini and Vessella [6] establish the following Lipschitz stability estimate

Theorem 5.6 Let Ω satisfy Assumption 5.3 and γ(k), k = 1, 2 be two real piecewise

constant functions satisfying Assumption 5.4 and Dj, j = 1, . . . , N satisfying

Assumption 5.5. Then there exists a constant C = C(n, r0, L, A, ,K,N) such that

‖γ(1) − γ(2)‖L∞(Ω) ≤ C‖Λγ(1) − Λγ(2)‖L(H1/2(∂Ω),H−1/2(∂Ω)). (5.4)
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5.3. Convergence

We verify that the assumptions of Section 4 can be satisfied. We specify our preimage

space as

X = span{χD1 , . . . , χDN
} (5.5)

equipped with Lp-norm, p > 1. With the aid of this particular basis of X, one can

show that F and DF are Lipschitz continuous. Moreover, assuming that γ1, γ2 satisfy

Assumption 5.4 and Ω satisfies Assumption 5.3, we have the following estimates:

‖F (γ1)− F (γ2)‖L(H1/2(Ω),H−1/2(Ω)) ≤ C‖γ1 − γ2‖Lp(Ω),

‖DF‖L(X,L(H1/2(Ω),H−1/2(Ω))) ≤ L̂,

‖DF (γ1)−DF (γ2)‖L(H1/2(Ω),H−1/2(Ω)) ≤ L‖γ1 − γ2‖Lp(Ω),

(5.6)

where C, L̂ and L depend on Ω, N and ellipticity constant K. Furthermore, since X is

finite dimensional, the weak topology is equivalent to the strong topology. Hence, F is

a weakly sequentially closed operator.

Let Ω satisfy Assumption 5.3, preimage space X be defined by (5.5) and F be

defined by (5.1). Assume that y = F (γ†) for some γ† ∈ X. Then Assumption 4.1 and

(4.3) of Theorem 4.5 are satisfied. Hence the Landweber iteration (2.12) converges with

convergence radius given by (4.5) and convergence rate given by (4.8). Convergence

of a regularized Newton method for a finite dimensional EIT problem was proven by

Lechleitner and Rieder [26]. Their analysis, however, is based on the tangential cone

condition.

6. Discussion

We discuss a Landweber iteration method for solving nonlinear operator equations in

both Hilbert and Banach spaces. Traditionally, the gradient-type methods are often

regarded as too slow for practical applications. Provided that the nonlinearity of the

forward operator obeys a Hölder type stability, we could prove the convergence and

give a sublinear convergence rate. With a Lipschitz type stability, the convergence

rate switches to a linear one. Based on these convergence rates, we anticipate that

this Landweber iteration is a valuable tool in solving inverse problems in both Hilbert

and Banach spaces. This also motivates the study of Hölder/Lipschitz type stability in

inverse problems to provide explicit reconstructions.
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