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CONVERGENCE OF LEVEL SETS IN TOTAL VARIATION
DENOISING THROUGH VARIATIONAL CURVATURES IN

UNBOUNDED DOMAINS\ast 

JOS\'E A. IGLESIAS\dagger AND GWENAEL MERCIER\ddagger 

Abstract. We present some results of geometric convergence of level sets for solutions of total
variation denoising as the regularization parameter tends to zero. The common feature among them
is that they make use of explicit constructions of variational mean curvatures for general sets of
finite perimeter. Consequently, no additional regularity of the level sets of the ideal data is assumed,
and in particular the subgradient of the total variation at it could be empty. In exchange, other
restrictions on the data or on the noise are required. We consider two cases: characteristic functions
with a parameter choice depending on the noise level, and noiseless generic data.
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1. Introduction and main results. We aim to provide a precise analysis of
the generalized Rudin--Osher--Fatemi denoising scheme based on total variation min-
imization in the low noise regime, in general dimension and with no source condition
assumptions. More precisely, given a real function \psi : \BbbR \rightarrow \BbbR , some ideal data to be
recovered f : \BbbR d \rightarrow \BbbR with compact support, an additive perturbation w, as well as a
regularization parameter \alpha > 0, we consider minimizers of

(1.1) inf
u\in BV(\BbbR d)

\int 
\BbbR d

\psi (u - f  - w) + \alpha TV(u).

We make the following assumptions on the function \psi appearing in the data term and
its Fenchel conjugate \psi \ast :

(A)
\psi is a strictly convex and even function with \psi (0) = 0,

\psi \ast is uniformly convex and | \psi (s)| \leqslant C| s| d/(d - 1) for some C > 0.

If 1 < p \leqslant 2 the functions t \mapsto \rightarrow | t| p/p satisfy these convexity properties [9, Ex. 5.3.10],
so the case p = d/(d - 1) satisfies all the conditions of assumption (A).

Remark 1.1. Since \psi is strictly convex, is even, and vanishes at zero, we have
that \psi (t) > 0 for t \not = 0. Moreover, \psi \ast being uniformly convex implies that \psi is
differentiable with \psi \prime uniformly continuous [9, Thm. 5.3.17, Prop. 4.2.14], in particular
\psi \in \scrC 1(\BbbR ). Moreover, strict convexity of \psi implies that \psi \ast is also differentiable [9,
Thm. 5.3.7]. We will use both of these properties in what follows.

We study the regime in which \alpha and w tend to zero simultaneously, for which
under natural assumptions it is easy to prove (see Proposition 1.7 below) that the
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1510 JOS\'E A. IGLESIAS AND GWENAEL MERCIER

unique minimizers u\alpha ,w of (1.1) converge to f in the strong L1
loc topology. In partic-

ular, if along a sequence the solutions u\alpha n,wn
have a common compact support, we

have, using Fubini's theorem [23, Thm. 2], for a.e. s > 0 that

(1.2)
\bigm| \bigm| \{ u\alpha n,wn

> s\} \Delta \{ f > s\} 
\bigm| \bigm| \rightarrow 0.

Moreover, this can in some cases be improved to convergence in Hausdorff distance,
which can be interpreted as geometric uniform convergence. This type of convergence
has been proved in [14] for classical Rudin--Osher--Fatemi denoising in the plane and in
[23, 22] for linear inverse problems, bounded domains, Banach space measurements,
and general dimensions. All of these results (with the exception of when explicit
dual certificates for u\alpha n,0 are known [14, sect. 8]) assume a source condition implying
\partial TV(f) \not = \emptyset when total variation is considered as a functional on Ld/(d - 1)(\BbbR d). On
the one hand this source condition guarantees, in particular, that the level sets of
the minimizers u\alpha ,w satisfy uniform density estimates independent of \alpha and w, as
long as these are related through an adequate parameter choice. On the other, this
subgradient condition excludes cases of interest where geometric convergence is still
expected, like the case when f is the indicatrix of a planar polygon [14, sect. 3.3].

Our main goal is to obtain this improved mode of convergence while assuming as
little regularity of \{ f > s\} as possible, and this is achieved in two different situations.
The first is when f is the characteristic function of a bounded finite perimeter set, and
admitting noisy measurements with a natural parameter choice. The second concerns
a generic class of bounded variation (BV) functions in which ``flat regions are con-
trolled"" and including piecewise constant functions, but with noiseless measurements.
The techniques used have as a central point the variational mean curvatures for gen-
eral finite perimeter sets introduced in [8, 6] which, through comparison arguments,
are used as a lower integrability replacement for the missing dual certificates for f .

1.1. Main results.

Theorem 1.2. Assume that f = 1D, the indicatrix of a bounded finite perimeter
set D \subset \BbbR d, and that the sequences \alpha n \rightarrow 0 and wn are such that there is some
constant C\psi ,d for which

(1.3)
\| wn\| Ld/(d - 1)(\BbbR d)

\alpha n
\leqslant C\psi ,d <

m\psi \ast (\Theta d)

\Theta d
,

where \Theta d denotes the isoperimetric constant in \BbbR d and m\psi \ast is the largest modulus
of uniform convexity (see Definition 1.6 below) for \psi \ast . Then we have, up to a not
relabeled subsequence, the convergence in Hausdorff distance

d\scrH (\partial \{ u\alpha n,wn
> s\} , \partial D) \rightarrow 0 for a.e. s \in (0, 1).

Theorem 1.3. Let f \in BV(\BbbR d) with bounded support. Denote Es\alpha = \{ u\alpha ,0 > s\} 
and Gs = \{ f > s\} if s > 0, and Es\alpha = \{ u\alpha ,0 < s\} and Gs = \{ f < s\} for s < 0.
Assume that s satisfies that | Es\alpha \Delta Gs| \rightarrow 0, and also

(1.4) lim
\nu \rightarrow 0

d\scrH 
\bigl( 
Gs, Gs+\nu 

\bigr) 
= 0, and lim

\nu \rightarrow 0
d\scrH 
\bigl( 
\BbbR d \setminus Gs,\BbbR d \setminus Gs+\nu 

\bigr) 
= 0.

Then in the absence of noise (w = 0) we have the convergence d\scrH (\partial Es\alpha , \partial G
s) \rightarrow 0.

Remark 1.4. Any piecewise constant function satisfies trivially (1.4) at all the
values that it does not attain, and therefore the conclusions of Theorem 1.3 are valid.
It also holds for almost every s under the source condition of [14, 22], a fact we prove
in Corollary 5.9. In contrast, Example 5.10 provides a function f for which the set of
values where (1.4) does not hold is of full measure.
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VARIATIONAL CURVATURES AND TV DENOISING 1511

1.2. Structure of the paper. We start with some preliminary results in sub-
section 1.3. Section 2 is dedicated to auxiliary results about convergence in Hausdorff
distance of bounded subsets of \BbbR d. In section 3 we are concerned with variational
mean curvatures, with the main goal of pinning down the construction of such a cur-
vature on the outside of any finite perimeter set, and also stating basic comparison
results. Section 4 aims at the proof of Theorem 1.2 using density estimates that
degenerate as the set D is approached and dual stability estimates with respect to
the noise, which are themselves proved in Appendices A and B. Then, section 5 is
devoted to the proof of Theorem 1.3 by approximation of finite perimeter sets with
the level sets of their optimal variational mean curvatures. Finally, in section 6 we
explore whether it is possible to recover uniform density estimates without the source
condition; it turns out that this is possible for indicatrices of some planar polygons.

1.3. Preliminaries. The total variation TV appearing in (1.1) is the norm of
the distributional derivative as a Radon measure, that is,

TV(u) := | Du| (\BbbR d) = sup

\biggl\{ \int 
\BbbR d

u div z dx

\bigm| \bigm| \bigm| \bigm| z \in \scrC \infty 
c (\BbbR d ; \BbbR d), \| z\| L\infty (\BbbR d) \leqslant 1

\biggr\} 
.

Correspondingly we say that u : \BbbR d \rightarrow \BbbR is of BV when it belongs to

BV(\BbbR d) :=
\bigl\{ 
u \in L1

loc(\BbbR d)
\bigm| \bigm| TV(u) < +\infty 

\bigr\} 
,

where we remark that we only require such functions to be locally summable. Likewise,
the space BVloc(\BbbR d) consists of those functions u \in L1

loc(\BbbR d) for which | Du| (K) < +\infty 
for each compact set K. A set E is called of finite perimeter whenever its indicatrix
1E is of BV, and the perimeter is defined as

Per(E) := TV(1E).

Since this notion is invariant with respect to zero Lebesgue measure modification of
E, we need a notion of boundary which satisfies this invariance as well. For this
purpose, we can take a representative of E for which the topological boundary equals
the support of the derivative of 1E , which can be described [29, Prop. 12.19] as

\partial E = SuppD1E =

\biggl\{ 
x \in \BbbR d

\bigm| \bigm| \bigm| \bigm| 0 < | E \cap B(x, r)| 
| B(x, r)| 

< 1 for all r > 0

\biggr\} 
,

and this choice will be assumed in all that follows. Notice that we might have | \partial E| > 0
(see [29, Ex. 12.25] for an example), so particular care is needed when combining topo-
logical and measure-theoretic arguments for this boundary. The topological interior

of a set E will be denoted by
\circ 
E, and E(1) denotes its subset of points of full density in

E. Moreover, convex hulls are denoted by ConvE and complements by Ec := \BbbR d \setminus E.

Definition 1.5. Taking into account the Sobolev embedding BV(\BbbR d)\cap L1(\BbbR d) \subset 
Ld/(d - 1)(\BbbR d), we think of TV as defined on Ld/(d - 1)(\BbbR d) and with value +\infty on
Ld/(d - 1)(\BbbR d) \setminus BV(\BbbR d). In this context, we speak of its subgradient at some function
u and denoted by \partial TV(u) to refer to the set of functions v \in Ld(\BbbR d) such that

(1.5) TV(\~u) - TV(u) \geqslant 
\int 
\BbbR d

v(\~u - u) dx for all \~u \in L
d

d - 1 (\BbbR d).

Let us note that by considering the functional in a larger space, we reduce the set of
possible subgradients and avoid using the dual of the nonreflexive space BV (\BbbR d).
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1512 JOS\'E A. IGLESIAS AND GWENAEL MERCIER

Definition 1.6. Let \psi : \BbbR \rightarrow \BbbR be a convex function. We say that \psi is uniformly
convex [9, Chap. 5.3] with modulus of uniform convexity h\psi > 0 when for all s, t \in \BbbR 
and 0 \leqslant \mu \leqslant 1 we have

\psi ((1 - \mu )s+ \mu t)) \leqslant (1 - \mu )\psi (s) + \mu \psi (t) - \mu (1 - \mu )h\psi (| s - t| ) .

Clearly there is a largest h\psi satisfying the last inequality, since it is stable under taking
the maximum over two such functions.

Moreover, the function \psi is said to be strictly convex when for all s, t \in \BbbR with
s \not = t and 0 < \mu < 1 we have

\psi ((1 - \mu )s+ \mu t)) < (1 - \mu )\psi (s) + \mu \psi (t),

this property being weaker than uniform convexity.

From strict convexity and general properties of the space BV(\BbbR d) one can deduce
the following basic result on existence and convergence of minimizers for (1.1).

Proposition 1.7. Assuming (A) and
\int 
\psi (w) < +\infty , the minimization problem

(1.1) admits a unique solution u\alpha ,w. Furthermore, if \alpha n \rightarrow 0 and wn are such that

(1.6)
1

\alpha n

\int 
\psi (wn) \leqslant C,

then u\alpha n,wn \rightarrow f weakly in Ld/(d - 1) and strongly in Lqloc for 1 \leqslant q < d/(d - 1).

Proof. Let uk be minimizing sequence for (1.1). Discarding some elements of the
sequence if necessary and using the symmetry of \psi we have the estimate

(1.7)
1

\alpha 

\int 
\psi (uk  - f  - w) + TV(uk) \leqslant 

1

\alpha 

\int 
\psi (w) + TV(f).

On the other hand we also have the Sobolev inequality [4, Thm. 3.47]

(1.8) \| uk  - ck\| Ld/(d - 1) \leqslant C TV(uk)

for some constants ck \in \BbbR . Noticing that \psi (t) > 0 for t \not = 0 and that
\int 
\psi (w) is

finite, we must have
\bigm| \bigm| \BbbR d \setminus \{ | w| \geqslant \varepsilon \} 

\bigm| \bigm| < +\infty for all \varepsilon > 0. Using then (1.7) we have
that

\int 
\psi (uk  - f  - w) is also finite, so (because f is compactly supported) the same

is true for \BbbR d \setminus \{ | uk| \geqslant \varepsilon \} , and since we are working with functions defined on all
of \BbbR d we conclude that ck = 0 for all k. Therefore, using weak-* compactness in
BV [4, Thm. 3.23] and weak compactness in Ld/(d - 1) we can extract a limit u\alpha ,w
in those topologies. Moreover, we have lower semicontinuity of total variation with
respect to L1

loc convergence [4, Rem. 3.5], while positivity and convexity of \psi imply
that the first term of (1.1) is also lower semicontinuous with respect to weak Ld/(d - 1)

convergence [17, Thm. 3.20], so u\alpha ,w must be a minimizer of (1.1), unique since \psi is
strictly convex.

In view of (1.7) and (1.6), one can apply the same compactness arguments to
u\alpha n,wn

to obtain a subsequence converging weakly in Ld/(d - 1) and strongly in Lqloc.
Moreover since \psi is strictly convex, \psi (0) = 0 and \psi (t) > 0 if t > 0 it must be
increasing on [0,+\infty ), so (1.6) implies that wn \rightarrow 0 in measure, which in turn implies
[20, Thm. 2.30] also wn(x) \rightarrow 0 for a.e. x, up to possibly taking a further subsequence.
Finally (1.7) also gives that

\int 
\psi (u\alpha n,wn

 - f  - wn) \rightarrow 0, so the limit must be f . Since
for any subsequence we are able to find a further subsequence converging to the fixed
limit f , the whole sequence u\alpha n,wn

must converge to it.
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VARIATIONAL CURVATURES AND TV DENOISING 1513

We recall that for any E,F with finite perimeter we have [4, Prop. 3.38(d)]

(1.9) Per(E \cap F ) + Per(E \cup F ) \leqslant Per(E) + Per(F )

and the isoperimetric inequality [4, Thm. 3.46]

(1.10) Per(F ) \geqslant \Theta dmin
\Bigl( 
| F | (d - 1)/d, | \BbbR d \setminus F | (d - 1)/d

\Bigr) 
with \Theta d =

Per(B(0, 1))

| B(0, 1)| (d - 1)/d
.

Below we study in detail problem (1.1) with f = 1D and w = 0, for which the
minimizer u\alpha := u\alpha ,0 has level sets Es\alpha := \{ u\alpha > s\} that minimize for a.e. s \in (0, 1)

E \mapsto \rightarrow Per(E) +
1

\alpha 

\int 
E

\psi \prime (s - f(x)) dx = Per(E) - \psi \prime (1 - s)

\alpha 
| E \cap D| + \psi \prime (s)

\alpha 
| E \setminus D| ,

as can be seen from (A.2), the coarea formula for BV functions [4, Thm. 3.40] and
the general layer cake formula [28, Thm. 1.13]. More generally we have the following.

Proposition 1.8. Let u minimize (1.1). Then for s \in (0,+\infty ) its upper level
sets Es := \{ u > s\} minimize, among sets of finite mass, the functional

E \mapsto \rightarrow Per(E) +
1

\alpha 

\int 
E

\psi \prime (s - f  - w),

and moreover we have

Per(Es) =
1

\alpha 

\int 
Es

\psi \prime (f + w  - s).

For s \in ( - \infty , 0) and the lower level sets \{ u < s\} analogous statements hold by
changing the sign on the integral terms.

Proof. The proof of the first statement can be found in [24, Prop. 2.3.14]. The
second is proved in [14, Prop. 3].

Remark 1.9. Note that if s < 0 it is necessary to work with the lower level sets
\{ u < s\} so that | \{ u < s\} | < +\infty , in which case the integral terms change sign. This
will be useful to keep in mind in some results below.

2. Density estimates and Hausdorff convergence. We begin with some
auxiliary results on convergence in the Hausdorff distance, defined for E,F \subset \BbbR d as

(2.1) d\scrH (E,F ) := max

\biggl\{ 
sup
x\in E

dist(x, F ), sup
y\in F

dist(y,E)

\biggr\} 
,

and its relation with L1 convergence when density estimates are available, which will
be used in the proof of the main results.

Definition 2.1. Let \{ E\gamma \} \gamma be a family of finite perimeter sets of uniformly
bounded measure, that is, there is M > 0 such that | E\gamma | < M for all \gamma . If there
are constants r0 > 0 and C \in (0, 1) such that for all \gamma and all x \in \partial E\gamma we have for
all r < r0 that

(2.2)
| E\gamma \cap B(x, r)| 

| B(x, r)| 
\geqslant C,
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1514 JOS\'E A. IGLESIAS AND GWENAEL MERCIER

we say that this family satisfies uniform inner density estimates with constant C at
scale r0. Similarly, if instead we have for r \leqslant r0

(2.3)
| B(x, r) \setminus E\gamma | 

| B(x, r)| 
\geqslant C

we say that this family satisfies uniform outer density estimates, again with constant
C at scale r0. When speaking of uniform density estimates, we understand that both
estimates hold with the same constants.

First, in [23, 22] the following result is claimed, although with some flaws in its
presentation.

Proposition 2.2. Assume we have \{ En\} n, E0 are subsets of \BbbR d satisfying uni-
form inner density estimates with some scale r0 and constant C, and such that
| En\Delta E0| \rightarrow 0. Then d\scrH (En, E0) \rightarrow 0.

Proof. First, we notice that if we have the estimate

(2.4) | En \cap B(x, r)| \geqslant C| B(x, r)| for x \in \partial En and r \leqslant r0,

then we also have

(2.5) | En \cap B(y, \~r)| \geqslant C

2d
| B(y, \~r)| for y \in En, and \~r \leqslant 2r0.

To see this, first set r = \~r/2. Then, if dist(y, \partial En) \geqslant r, the whole ball B(y, r) \subset En,
so that | En \cap B(y, \~r)| \geqslant | B(y, r)| = | B(y, \~r)| /2d > C| B(y, \~r)| /2d and (2.5) holds. If
0 \leqslant dist(y, \partial En) < r, then there is at least one boundary point xy \in \partial En for which
B(xy, r) \subset B(y, \~r), and applying (2.4) to xy and r we get (2.5).

With these facts, let us assume that there is \delta > 0 such that d\scrH (En, E0) > \delta for
infinitely many n, and derive a contradiction. Reducing \delta if necessary, we can assume
that \delta \leqslant 2r0. In view of the definition (2.1) we must then have a subsequence nk for
which either supx\in Enk

dist(x,E0) > \delta or supx\in E0
dist(x,Enk

) > \delta . For the first case,

we have a sequence of points xnk
\in Enk

for which dist(x,E0) > \delta . Then (2.5) applied
to Enk

and with \~r = \delta gives

| Enk
\Delta E0| \geqslant | Enk

\setminus E0| \geqslant | Enk
\cap B(xnk

, \delta )| \geqslant C

2d
\delta d| B(0, 1)| ,

a contradiction with | En\Delta E0| \rightarrow 0. For the second case, we obtain xnk
\in E0 for

which dist(xnk
, Enk

) > \delta . In this case, we use (2.5) for E0 to end up as before with

| Enk
\Delta E0| \geqslant | E0 \setminus Enk

| \geqslant | E0 \cap B(xnk
, \delta )| \geqslant C

2d
\delta d| B(0, 1)| ,

again a contradiction.

In Proposition 2.2 we only used the inner density estimates. However, for level
sets of total variation minimizers and imaging applications one is mostly interested in
convergence of their boundaries. The latter is not implied by the convergence of the
sets themselves, even under other modes of convergence assumed, as demonstrated in
the following example. We will see later that to obtain convergence of the boundaries,
the outer density estimates also need to be used.
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Example 2.3. Consider the unit square E0 := (0, 1)2 and a sequence obtained by
removing from it thin triangles:

En := (0, 1)2 \setminus Conv
\biggl( \biggl\{ \biggl( 

1

2
 - 1

n+ 2
, 0

\biggr) 
,

\biggl( 
1

2
+

1

n+ 2
, 0

\biggr) 
,

\biggl( 
1

2
,
1

2

\biggr) \biggr\} \biggr) 
,

which admits uniform inner density estimates, but with the outer densities not being
uniform at (1/2, 1/2). We have | En\Delta E0| \rightarrow 0 and D1En

\ast 
\rightharpoonup D1E0 . To see the latter,

just notice that D1En
= \nu En

\scrH 1 \partial \ast En and that each of the nonvanishing sides of
the triangle converge to the same vertical segment, but with opposite orientations.
Moreover, since En \subset E0 also

d\scrH (En, E0) = sup
x\in E0

dist(x,En) \leqslant 
1

n+ 2
\rightarrow 0, but d\scrH (\partial En, \partial E0) =

1

2
.

Remark 2.4. In general, the Hausdorff distances d\scrH (E,F ) and d\scrH (\partial E, \partial F ) are
not related. In [33, Thm. 14] it is proven that these are equal for bounded closed
convex sets, and in [33, Ex. 6 and 13] examples are given for pairs of planar sets
where both possible strict inequalities hold.

Under L1 convergence, the Hausdorff convergence of boundaries is in fact stronger.

Proposition 2.5. Assume that \{ En\} n, E0 are subsets of \BbbR d such that we have
the convergences

| En\Delta E0| \rightarrow 0 and d\scrH (\partial En, \partial E0) \rightarrow 0.

Then also d\scrH (En, E0) \rightarrow 0.

Proof. Assume that the hypotheses are satisfied but d\scrH (En, E0) \not \rightarrow 0. Then there
is \delta > 0 with d\scrH (Enk

, E0) > \delta for some subsequence nk. Removing leading terms if
needed, we can assume that

(2.6) d\scrH (\partial Enk
, \partial E0) <

\delta 

2
.

Now, we have

d\scrH (Enk
, E0) = max

\Biggl( 
sup
x\in Enk

dist(x,E0), sup
x\in E0

dist(x,Enk
)

\Biggr) 
> \delta ,

so at least one of the arguments in the supremum must be larger than \delta for infinitely
many k. Assume that it is the first one, and relabel the subsequence nk so that

sup
x\in Enk

dist(x,E0) > \delta ,

implying that there is a sequence xnk
\in Enk

for which dist(xnk
, E0) > \delta . In con-

sequence for all y \in E0, and in particular for all y \in \partial E0, we have | xnk
 - y| \geqslant \delta .

Therefore, for each k we must have dist(xnk
, \partial Enk

) \geqslant \delta /2, since otherwise (2.6) and
the triangle inequality would lead to a contradiction. Because of the last inequality,
the ball B(xnk

, \delta /3) cannot intersect \partial Enk
and in consequence also not \BbbR d \setminus Enk

,
which forces

B

\biggl( 
xnk

,
\delta 

3

\biggr) 
\subset Enk

and d (xnk
, E0) > \delta , so B

\biggl( 
xnk

,
\delta 

3

\biggr) 
\subset Enk

\setminus E0,

a contradiction with | En\Delta E0| \rightarrow 0. The other case is dealt with similarly.
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1516 JOS\'E A. IGLESIAS AND GWENAEL MERCIER

Proposition 2.6. Let E,F \subset \BbbR d. Then

(2.7) d\scrH (\partial E, \partial F ) \leqslant max (d\scrH (E,F ), d\scrH (Ec, F c)) .

Proof. We use the characterization (often used as a definition of d\scrH ; see, for
example, [30, sect. 4.C])

(2.8) d\scrH (A,B) = inf \{ r \geqslant 0 | A \subset UrB and B \subset UrA\} 

for the dilations UrA = \{ dist(\cdot , A) \leqslant r\} . Now, if the inequality to be proved failed,
denoting

r = max (d\scrH (E,F ), d\scrH (Ec, F c))

we would have that either Ur\partial F \setminus \partial E \not = \emptyset or Ur\partial E\setminus \partial F \not = \emptyset . Without loss of generality
assume that the first case holds, so that there is x \in \partial E for which dist(x, \partial F ) > r. If
x \in F c, by the properties of the boundary we can produce \^x \in E\setminus F with dist(\^x, \partial F ) >
r, which since \^x \in F c also implies

dist(\^x, F ) = dist(\^x, \partial F ) > r,

contradicting r \geqslant d\scrH (E,F ). Similarly, if x \in \{ dist(\cdot , \partial F ) > r\} \cap F , we can find
\v x \in Ec with dist(\v x, \partial F ) > r as well, and as before since \v x \in F \setminus E we have

dist(\v x, F c) = dist(\v x, \partial F ) > r,

a contradiction with r \geqslant d\scrH (Ec, F c).

Combining Propositions 2.5 and 2.6 we obtain the next theorem.

Theorem 2.7. Assume that \{ En\} n, E0 are subsets of \BbbR d such that | En\Delta E0| \rightarrow 
0. Then d\scrH (\partial En, \partial E0) \rightarrow 0 if and only if d\scrH (En, E0) \rightarrow 0 and d\scrH (Ecn, E

c
0) \rightarrow 0

simultaneously.

We can conclude Hausdorff convergence of the boundaries without the need of
derivatives, by using both density estimates.

Theorem 2.8. Assume \{ En\} n, E0 are subsets of \BbbR d satisfying uniform density
estimates with some scale r0 and constant C and such that | En\Delta E0| \rightarrow 0. Then

d\scrH (\partial En, \partial E0) \rightarrow 0.

Proof. We notice that

En\Delta E0 = (En \setminus E0) \cup (E0 \setminus En) = (En \cap Ec0) \cup (E0 \cap Ecn)
= (Ec0 \setminus Ecn) \cup (Ecn \setminus Ec0) = Eco\Delta E

c
n

and that by taking complements the roles of (2.2) and (2.3) are reversed. Therefore,
using both we can apply Proposition 2.2 for En and for Ecn so that d\scrH (En, E0) \rightarrow 0
and d\scrH (Ecn, E

c
0) \rightarrow 0. Proposition 2.6 gives then the conclusion.

As a direct consequence we get the following result, proved but not explicitly
stated in [14], which also applies to the cases treated in [23, 22].

Proposition 2.9. Assume we have \{ En\} n, E0 finite perimeter sets satisfying
uniform density estimates with some scale r0 and constant C and such that the char-
acteristic functions 1En

\ast 
\rightharpoonup 1E in BV. Then d\scrH (\partial En, \partial E0) \rightarrow 0.
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VARIATIONAL CURVATURES AND TV DENOISING 1517

3. A few results on variational mean curvatures. We now turn our atten-
tion to the weak notion of mean curvature for boundaries which will be our main tool
to describe the behavior of level sets of minimizers of (1.1).

Definition 3.1. We say that a set A \subset \BbbR d has a variational mean curvature
\kappa : \BbbR d \rightarrow \BbbR if it minimizes, among E \subset \BbbR d, the functional

(3.1) E \mapsto \rightarrow Per(E) - 
\int 
E

\kappa .

If the set A has a smooth boundary and \kappa is continuous, this minimization prop-
erty implies that the restriction of \kappa to the boundary \partial A is, up to a multiplicative
factor, the usual mean curvature of \partial A. To see this, just notice [29, Rem. 17.6] that
if \partial A is \scrC 2, the first variation of the perimeter along the flow generated by a vector
field V \in \scrC \infty 

c (\BbbR d;\BbbR d) is

(3.2)

\int 
\partial A

div\partial A V d\scrH d - 1 =

\int 
\partial A

(d - 1)HA V \cdot \nu A d\scrH d - 1

for div\partial A the surface divergence, \nu A the outward normal vector, and HA the usual
mean curvature of \partial A, while that of the integral term in (3.1) for continuous \kappa amounts
to

 - 
\int 
\partial A

\kappa V \cdot \nu A d\scrH d - 1,

from which we conclude by noticing that A is a minimizer of (3.1) and T is arbitrary.
Analogously, if we had u \in \scrC 2 a minimizer of (1.1) with w = 0 and f continuous, using
the implicit function theorem and Proposition 1.8, we would find for Es := \{ u > s\} 
thatHEs =  - \psi \prime (s - f)/\alpha . If additionally\nabla u(x) \not = 0 for all, x taking the first variation
of TV(u), which under this assumption is differentiable and equals

\int 
| \nabla u| , leads to

 - 1

\alpha 
\psi \prime \bigl( u(x) - f(x)

\bigr) 
= (d - 1)HEs(x) = div

\biggl( 
\nabla u(x)
| \nabla u(x)| 

\biggr) 
for x \in \partial Es, so u(x) = s.

We recall that there is a natural weak notion of mean curvature based on (3.2), the
distributional mean curvature, which can be defined not just for boundaries of finite
perimeter sets but also for most notions of nonregular surfaces (e.g., varifolds). The
distributional and variational mean curvatures coincide in the very regular case just
described, but it is not quite clear whether they do on less regular cases where both
are available; some positive results are given in [7].

From the definition one sees that variational mean curvatures for a given set, as
functions defined in \BbbR d, contain ``too much information"" and one cannot expect them
to be unique. In fact, if \kappa is a variational curvature for A, any other function \kappa \prime with
\kappa \prime \geqslant \kappa on A and \kappa \prime \leqslant \kappa on \BbbR d \setminus A is another variational mean curvature for A as well.

Remark 3.2. Using the coarea and layer cake formulas as for Proposition 1.8, it
is straightforward to check that if we have v \in \partial TV(f) for some f \in Ld/(d - 1) and
v \in Ld, almost all of the upper level sets of f at positive values are minimizers of (3.1)
with \kappa = v, making v a variational curvature for all of them. For negative values, one
switches to lower level sets and the curvature sign to  - v; cf. Remark 1.9.

Being a minimizer of (3.1) is stable by intersection and union, which in particular
enables speaking about maximal and minimal minimizers.
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1518 JOS\'E A. IGLESIAS AND GWENAEL MERCIER

Proposition 3.3. Let E1 and E2 be two minimizers of (3.1). Then E1\cap E2 and
E1 \cup E2 are also minimizers of (3.1). In particular if one has at least one minimizer
(possibly with inclusion constraints) of (3.1), then there are also a maximal minimizer
and a minimal one with respect to inclusion.

Proof. One can write, using the minimality of E1 and E2 and noting that E1\cap E2

as well as E1 \cup E2 are admissible for that problem,

(3.3) Per(E1 \cap E2) - 
\int 
E1\cap E2

\kappa \geqslant Per(E1) - 
\int 
E1

\kappa 

and

(3.4) Per(E1 \cup E2) - 
\int 
E1\cup E2

\kappa \geqslant Per(E2) - 
\int 
E2

\kappa .

Summing these inequalities and noticing that the volume terms exactly compensate,
we obtain

(3.5) Per(E1 \cap E2) + Per(E1 \cup E2) \geqslant Per(E1) + Per(E2).

Now, if either of the inequalities (3.3) or (3.4) was strict, we would also have a strict
inequality in (3.5). But this would be a contradiction with (1.9), so all of these
inequalities must be equalities.

We make extensive use of the following basic but fundamental comparison lemma
for variational mean curvatures.

Lemma 3.4. Assume that the finite perimeter sets E1 and E2 admit variational
mean curvatures \kappa 1 and \kappa 2, respectively, and such that \kappa 1 < \kappa 2 in E1 \setminus E2. Then
| E1 \setminus E2| = 0, that is, E1 \subseteq E2 up to Lebesgue measure zero.

Proof. We can write

Per(E1) - 
\int 
E1

\kappa 1 \leqslant Per(E1 \cap E2) - 
\int 
E1\cap E2

\kappa 1,

Per(E2) - 
\int 
E2

\kappa 2 \leqslant Per(E1 \cup E2) - 
\int 
E1\cup E2

\kappa 2.

Summing and using (1.9), we arrive at\int 
E1\setminus E2

\kappa 2 \leqslant 
\int 
E1\setminus E2

\kappa 1,

which implies the result.

We will repeatedly use the previous lemma to compare with balls.

Example 3.5. For x0 \in \BbbR d and r > 0, any function vB(x0,r) \in L1(\BbbR d) with

(3.6)

vB(x0,r) =
d

r
in B(x0, r), vB(x0,r) < 0 in \BbbR d \setminus B(x0, r), and\int 
\BbbR d\setminus B(x0,r)

vB(x0,r) =  - Per(B(x0, r))

is a variational mean curvature for B(x0, r). To check this, first we notice that

Per(B(x0, r)) - 
\int 
B(x0,r)

vB(x0,r)(x) dx = 0.
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Moreover, for any other finite perimeter set with | E| < \infty , we have by the isoperi-
metric inequality (1.10) that for arbitrary y \in \BbbR d

Per (B (y, rE)) \leqslant Per(E), with rE :=

\biggl( 
| E| 

| B(0, 1)| 

\biggr) 1/d

,

and clearly | B(y, rE) \cap B(x0, r)| is maximized by picking y = x0. If rE > r, then
Per(B(x0, rE)) > Per(B(x0, r0)) but\int 

B(x0,rE)

vB(x0,r)(x) dx <

\int 
B(x0,r)

vB(x0,r)(x) dx,

so E could not be a minimizer. If rE \leqslant r, then

Per(B(x0, rE)) =
\Bigl( rE
r

\Bigr) d - 1

Per(B(x0, r)) =
\Bigl( rE
r

\Bigr) d - 1
\int 
B(x0,r)

vB(x0,r)(x) dx

=
r

rE

\int 
B(x0,rE)

vB(x0,r)(x) dx \geqslant 
\int 
B(x0,rE)

vB(x0,r)(x) dx

with equality if and only if rE = r. The case in which | \BbbR d \setminus E| < +\infty , implying
that E must be of the form \BbbR d \setminus B(y, \~rE) for some \~rE > 0, is handled with similar
computations once we notice that condition (3.6) prevents the full space \BbbR d from
having negative energy.

Furthermore, Lemma 3.4 combines with the strict convexity of \psi to give a com-
parison principle for denoised solutions.

Proposition 3.6. Let g \leqslant f and uf\alpha ,0, u
g
\alpha ,0 be the corresponding minimizers of

(1.1) with w = 0. Then one has ug\alpha ,0 \leqslant uf\alpha ,0.

Proof. To simplify the notation we drop the subindices that remain arbitrary, but
fixed, in what follows. By Proposition 1.8, one can see that the level sets \{ uf \geqslant s\} 
and \{ ug \geqslant s\} are the maximal minimizers (with respect to inclusion) among E of,
respectively,

Per(E) +
1

\alpha 

\int 
E

\psi \prime (s - f), and Per(E) +
1

\alpha 

\int 
E

\psi \prime (s - g).

Since \psi is strictly convex, we then have, for s\prime < s,

\psi \prime (s - g) > \psi \prime (s\prime  - f),

which implies by Lemma 3.4 that | \{ ug \geqslant s\} \setminus \{ uf \geqslant s\prime \} | = 0. Since s\prime < s was
arbitrary and these sets are nested with respect to s\prime , we infer

| \{ ug \geqslant s\} \setminus \{ uf \geqslant s\} | =

\bigm| \bigm| \bigm| \bigm| \bigm| \bigcap 
n

\biggl( 
\{ ug \geqslant s\} \setminus 

\biggl\{ 
uf \geqslant s - 1

n

\biggr\} \biggr) \bigm| \bigm| \bigm| \bigm| \bigm| = 0.

Denoting the set

A :=
\bigcup 
s\in \BbbR 

\{ ug \geqslant s\} \setminus \{ uf \geqslant s\} =
\bigcup 
s\in \BbbR 

\{ ug \geqslant s\} \cap \{ uf < s\} ,
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1520 JOS\'E A. IGLESIAS AND GWENAEL MERCIER

we would like to see that | A| = 0 so that uf \geqslant ug almost everywhere. We cannot
immediately conclude since the union is over an uncountable index set. To proceed,
define

A\BbbQ :=
\bigcup 
r\in \BbbQ 

\{ ug \geqslant r\} \cap \{ uf < r\} 

with | A\BbbQ | = 0, and let x \in A \setminus A\BbbQ . Then there is some s0 \in \BbbR for which both
ug(x) \geqslant s0 and uf (x) < s0 hold. However, for all r \in \BbbQ we have either ug(x) < r or
uf (x) \geqslant r. Let \{ rn\} n \subset \BbbQ with rn < s0 and rn \rightarrow s0. If we had that ug(x) < rn for
some n, then ug(x) < rn < s0, a contradiction. So we must have uf (x) \geqslant rn for all
n, implying that uf (x) \geqslant s0, which is again a contradiction. Therefore A = A\BbbQ .

In consequence, we also have the following.

Corollary 3.7. If g has values in [a, b], then for every \alpha also ug\alpha ,0 has values in
[a, b].

Proof. Notice that to consider the minimization of (1.1) we do not require that
the data f (with w = 0) is in Ld/(d - 1)(\BbbR d). It is enough that there is a constant cf
such that f  - cf \in Ld/(d - 1)(\BbbR d) and the corresponding solution will also have this
property; see the usage of the Sobolev inequality (1.8) in the proof of Proposition 1.7.
This allows comparison with constant functions, which are invariant by minimizing
(1.1).

3.1. Construction of variational mean curvatures for bounded sets. A
natural question is whether a variational mean curvature can be found for a given set.
The following crucial result proven in [8, 6] provides a positive answer.

Theorem 3.8. Let D be a bounded set with finite perimeter. Then, D has at
least one variational mean curvature in L1(\BbbR d). In addition, there exists a variational
mean curvature \kappa D for D which minimizes the Lp(D) norm for all p > 1 among such
curvatures. There might be p > 1 for which this minimal norm is not finite.

The construction of \kappa D in [8, 6] involves choosing a positive function g \in L1(\BbbR d)
and minimizers of the problems

(3.7) min
E\subset D

Per(E) - \lambda 

\int 
E

g and

(3.8) min
F\subset \BbbR d\setminus D

Per(F ) - \lambda 

\int 
F

g.

Namely, for x \in D one defines

(3.9) \kappa D(x) := inf
\bigl\{ 
\lambda g(x)

\bigm| \bigm| \lambda > 0 and x \in E\lambda for E\lambda any minimizer of (3.7)
\bigr\} 
,

and for x \in \BbbR d \setminus D

(3.10) \kappa D(x) :=  - inf
\bigl\{ 
\lambda g(x)

\bigm| \bigm| \lambda > 0 and x \in F\lambda for F\lambda any minimizer of (3.8)
\bigr\} 
.

By definition \kappa D > 0 inD and \kappa D < 0 in \BbbR d\setminus D, consistent with the lack of uniqueness
for variational mean curvatures described above. In later sections of this article we
require a specific choice of g made precise in Definition 3.12. Moreover, the proof of
Proposition 3.3 is also valid with inclusion constraints, so one can speak of maximal
and minimal E\lambda and F\lambda . For completeness, we check that \kappa D is well defined.
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Proposition 3.9. The problems (3.7) and (3.8) admit at least one minimizer.
Moreover if for every compact set K \subset \BbbR d one can find cK such that

(3.11) g(x) \geqslant cK > 0 for a.e. x \in K,

then for almost every x \in D, we have that x \in E\lambda x for some \lambda x > 0 and E\lambda x a
minimizer of (3.7), and similarly for a.e. x \in \BbbR d \setminus D and a corresponding minimizer
of (3.8).

Proof. Let us focus first on minimizers of (3.8), for which we consider the equiv-
alent problem for the complement

min
E\supset D

Per(E) + \lambda 

\int 
E

g.

Let \{ En\} n be a minimizing sequence for this problem. The objective is nonnegative,
so comparing with any fixed nonempty set we have an upper bound for Per(En).
Since 1En

(x) \in \{ 0, 1\} and hence bounded in L1
loc, we can then apply compactness

in BVloc [4, Thm. 3.23] to obtain v \in BVloc(\BbbR d) such that 1En \rightarrow v in L1
loc and in

consequence also almost everywhere. Since Per(En) = | D1En | (\BbbR d) \leqslant C we have in
fact that v \in BV(\BbbR d), and since the convergence is in L1

loc strong, there must be a
finite perimeter set E0 for which v = 1E0

. Furthermore, by the lower semicontinuity of
the total variation [4, Rem. 3.5] with respect to L1

loc convergence and since g \in L1(\BbbR d),
using the dominated convergence theorem we have

Per(E0) \leqslant lim inf
n

Per(En) and

\int 
E0

g = lim inf
n

\int 
En

g,

so \BbbR d \setminus E0 is a minimizer of (3.8). For (3.7) one proceeds similarly, with the difference
that under the constraint E \subset D the fact that D is bounded allows us to obtain full
L1 convergence of a minimizing sequence \{ En\} n.

To see the second part, we treat the inside and outside problems separately. First,
notice that D is admissible in (3.7), so we have that

Per(E\lambda ) - \lambda 

\int 
E\lambda 

g \leqslant Per(D) - \lambda 

\int 
D

g,

or equivalently

\lambda 

\biggl( \int 
D

g  - 
\int 
E\lambda 

g

\biggr) 
\leqslant  - Per(E\lambda ) + Per(D) \leqslant Per(D),

where since g > 0 and E\lambda \subset D the left-hand side is positive, and using (3.11) for D
we get

| D \setminus E\lambda | \leqslant 1

cD

\biggl( \int 
D

g  - 
\int 
E\lambda 

g

\biggr) 
 -  -  -  - \rightarrow 
\lambda \rightarrow \infty 

0,

so for a.e. x \in D we must have x \in E\lambda x for some \lambda x. Similarly \BbbR d \setminus D is admissible
in (3.8), so using Per(\BbbR d \setminus D) = Per(D) we have for F\lambda any minimizer of (3.8) the
bound

\lambda 

\Biggl( \int 
\BbbR d\setminus D

g  - 
\int 
F\lambda 

g

\Biggr) 
\leqslant Per(D).

This time, to be able to use (3.11) we would need to see that (\BbbR d \setminus D) \setminus F\lambda = \BbbR d \setminus F\lambda 
is bounded, which is not a priori obvious. For large enough \lambda we prove in Lemma
3.10 below that \BbbR d \setminus F\lambda is indeed bounded, allowing us to conclude.
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Lemma 3.10. Assume that for every compact set K \subset \BbbR d one can find cK such
that (3.11) holds and that D \subset B(0, 1). Then there is some \lambda 1 such that if \lambda > \lambda 1 all
minimizers F\lambda of (3.8) satisfy \BbbR d \setminus F\lambda \subset B(0, 1), and in particular | \BbbR d \setminus F\lambda | < +\infty .
Moreover in that case F\lambda \cap B(0, 2) is also a minimizer of

(3.12) min
F\subset B(0,2)\setminus D

Per
\bigl( 
F ; B(0, 2)

\bigr) 
 - \lambda 

\int 
F

g.

Proof. Let us define the compact set

K1 := B(0, 2) \setminus B(0, 1) =
\bigcup 

x\in \partial B(0,3/2)

B (x, 1/2).

Using Lemma 3.4, Example 3.5, this expression, and the condition on g we see that if

\lambda >
2d

cK1

=: \lambda 1, then
\circ 
K1 = B(0, 2) \setminus B(0, 1) \subset F\lambda .

But since g > 0 and \partial B(0, 3/2) \subset 
\circ 
K1 this means that

Per
\bigl( 
F\lambda \cup 

\bigl( 
\BbbR d \setminus B(0, 3/2)

\bigr) \bigr) 
\leqslant Per(F\lambda ) and

\int 
F\lambda \cup (\BbbR d\setminus B(0,3/2))

g \geqslant 
\int 
F\lambda 

g,

so necessarily \BbbR d \setminus B(0, 3/2) \subset F\lambda for all \lambda > \lambda 1 as well, hence \BbbR d \setminus B(0, 1) \subset F\lambda .
These considerations also directly prove that F\lambda \cap B(0, 2) minimizes (3.12).

The curvatures arising from this construction are in fact not independent of the
choice of the density g, as is shown in Proposition 3.11 below. As has been noted in
previous works [6, 22], since we work with boundedD, this ambiguity can be mitigated
by choosing g(x) = 1 for all x \in D. However, g \in L1(\BbbR d\setminus D) is required to make sense
of the unbounded problem (3.8), and there is no canonical choice for it outside of D.
Moreover, as opposed to most other works using this variational mean curvature, we
plan to make explicit use of \kappa D on \BbbR d \setminus D and the corresponding minimizers of (3.8).

Proposition 3.11. For any bounded D and any positive g \in L1(\BbbR d), there exists
some \lambda g > 0 such that if \lambda \leqslant \lambda g, the only minimizer of (3.8) is the empty set, and in
consequence \kappa D(x) \geqslant  - \lambda g(x) for a.e. x. Moreover, if additionally | \BbbR d \setminus F\lambda | < +\infty 
for all \lambda , then

\kappa D(x) =  - \lambda g g(x) for a.e. x \in \BbbR d \setminus ConvD.

Proof. Let us define
GD := argmin

E\supset D
Per(E),

which exists by the same compactness arguments as in Proposition 3.9 (if d = 2,
then in fact GD = ConvD [19]). Then any minimizer F \not = \emptyset of (3.8) must have
Per(F ) \geqslant Per(GD), so that

(3.13) Per(F ) - \lambda 

\int 
F

g \geqslant Per(GD) - \lambda 

\int 
\BbbR d\setminus D

g.

But whenever

\lambda < \lambda c :=
Per(GD)\int 

\BbbR d\setminus D g
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VARIATIONAL CURVATURES AND TV DENOISING 1523

we have that the right-hand side of (3.13) is positive, making F a worse competitor
than the empty set. We can then define

\lambda g := sup

\biggl\{ 
\lambda > 0

\bigm| \bigm| \bigm| \bigm| inf
F\subset \BbbR d\setminus D

Per(F ) - \lambda 

\int 
F

g = 0

\biggr\} 
\geqslant \lambda c > 0.

Note that infF\subset \BbbR d\setminus D Per(F ) - \lambda 
\int 
F
g \leqslant Per(D) - \lambda 

\int 
\BbbR d\setminus D g, the latter being negative

as soon as \lambda 
\int 
\BbbR d\setminus D g < Per(D). This implies that

\lambda g \leqslant 
Per(D)\int 
\BbbR d\setminus D g

.

To prove the second part, notice that having \kappa D(x) <  - \lambda g g(x) means that
x /\in F\lambda g+\varepsilon for some \varepsilon > 0 or, equivalently, that x belongs to the minimal (in the
sense of Proposition 3.3) minimizer E\lambda g+\varepsilon of

min
E\supset D

Per(E) + (\lambda g + \varepsilon )

\int 
E

g.

However, since by assumption we have | E\lambda g+\varepsilon | = | \BbbR d \setminus F\lambda g+\varepsilon | < \infty , taking its
intersection with a convex set cannot increase the perimeter (see [12, Lem. 3.5] for a
proof in the general setting) and we get

Per(E\lambda g+\varepsilon ) + (\lambda g + \varepsilon )

\int 
E\lambda g+\varepsilon 

g \geqslant Per(E\lambda g+\varepsilon \cap ConvD) + (\lambda g + \varepsilon )

\int 
E\lambda g+\varepsilon \cap ConvD

g,

and the inequality would be strict if | E\lambda g+\varepsilon \setminus ConvD| > 0, so necessarily

\bigm| \bigm| \bigl\{ x \in \BbbR d \setminus ConvD
\bigm| \bigm| \kappa D(x) <  - \lambda g g(x)

\bigr\} \bigm| \bigm| = \bigm| \bigm| \bigm| \bigm| \bigm| \bigcap 
\varepsilon >0

E\lambda g+\varepsilon \setminus ConvD

\bigm| \bigm| \bigm| \bigm| \bigm| = 0.

We see that the concrete choice of density g affects the values of \kappa D. We now
introduce one such choice which at least allows for a purely geometric description of
minimizers for \lambda large enough.

Definition 3.12. Assume D \subseteq B(0, 1). For any R > 1 we define gR by

(3.14) gR(x) :=

\Biggl\{ 
1 if 0 \leqslant | x| \leqslant R,

gf if | x| > R

for some gf \in L1(\BbbR d \setminus B(0, R)) with 0 < gf \leqslant 1 and satisfying (3.11).

Since we will make extensive use of minimizers of (3.7) and (3.8) with this par-
ticular choice of density, we introduce some notation for them.

Definition 3.13. Let \lambda > 0 and D \subset B(0, 1) be of finite perimeter. We denote
by D\lambda the maximal (in the sense of inclusion) minimizer of (3.7) with density g2,
that is, of

(3.15) min
E\subset D

Per(E) - \lambda | E| .

We also define D - \lambda as
D - \lambda := \BbbR d \setminus F\lambda ,
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1524 JOS\'E A. IGLESIAS AND GWENAEL MERCIER

Fig. 1. Approximation of the set D with the level sets of \kappa D. For fixed \lambda > 0, we always have
D\lambda \subset E \subset D - \lambda , and d\scrH (\partial D\lambda , \partial D - \lambda ) \rightarrow 0 as \lambda \rightarrow +\infty . With respect to their outer normals, the
free boundaries of D\lambda and D - \lambda have curvature \lambda and  - \lambda , respectively.

where F\lambda is the maximal minimizer of (3.8) with density g2. In view of the proof of
Lemma 3.10, whenever \lambda > 2d we have that F\lambda can be determined from (3.12), which
since g2 \equiv 1 on B(0, 2) turns into

min
F\subset B(0,2)\setminus D

Per
\bigl( 
F ; B(0, 2)

\bigr) 
 - \lambda | F | .

Moreover, notice that D - \lambda can also be found directly as the minimal minimizer of

min
E\supset D

Per(E) + \lambda 

\int 
E

g2.

These sets are sketched for d = 2 in Figure 1.

Remark 3.14. We have chosen D \subset B(0, 1) but other bounded sets can be treated
by rescaling. If for any set E and q > 0 we consider the rescaled set qE we have

Per(qE) - \lambda 

\int 
qE

gR(x) dx = qd - 1 Per(E) - qd\lambda 

\int 
E

gR/q(y) dy,

so the minimization problem for these rescaled sets is equivalent to the original one
with \lambda replaced by q\lambda and R replaced by R/q.

The choice of signs in the notation is motivated by (3.9) and (3.10) and by the
fact that the free boundaries of D\lambda and D - \lambda have curvature \lambda and  - \lambda , respectively,
with respect to their outer normals; see (3.2).

Remark 3.15. From now on, whenever we use the variational mean curvature
\kappa D for some D \subset B(0, 1), we will always assume that the density used is g2, as in
Definition 3.13 above.

We will see in later sections that for large values of \lambda , the sets D\lambda and D - \lambda 

provide us with an approximation of D in Hausdorff distance from the inside and
outside, respectively, motivating the notation. Moreover, they also determine the
curvature \kappa D through (3.9) and (3.10).

3.2. Bounds and examples of variational mean curvatures.

Lemma 3.16. Assume that x0, r are such that B(x0, r) \subseteq D up to measure zero,
that is, | B(x0, r) \setminus D| = 0. Then the optimal variational mean curvature \kappa D of D
satisfies

(3.16) \kappa D
\bigm| \bigm| 
B(x0,r)

\leqslant 
d

r
.

In consequence, for any interior point x \in 
\circ 
D, we have

(3.17) \kappa D(x) \leqslant 
d

dist(x, \partial D)
.
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VARIATIONAL CURVATURES AND TV DENOISING 1525

Similarly, for x \in \BbbR d \setminus D we have  - \kappa D(x) \leqslant d/dist(x, \partial D). Therefore, for any
K \subset \BbbR d we have

(3.18) \| \kappa D\| L\infty (K) \leqslant 
d

dist(K, \partial D)
,

where dist(K, \partial D) := infx\in K dist(x, \partial D).

Proof. By the definition of D\lambda as the maximal solution of (3.15) and that of \kappa D
in (3.9), x \in D\lambda implies \kappa D(x) \leqslant \lambda . On the other hand, by Lemma 3.4 and since by
Example 3.5 we know that we can find a variational mean curvature for B(x0, r) with
value d/r in B(x0, r), we have that \lambda > d/r implies B(x0, r) \subseteq D\lambda , so for x \in B(x0, r)
we get \kappa D(x) \leqslant \lambda for every \lambda > d/r, which is (3.16). To see (3.17), just notice that

since x \in 
\circ 
D, we have that B(x, r) \subset D for each r < dist(x, \partial D).

If x \in \BbbR d \setminus D, we can proceed similarly using F\lambda = \BbbR d \setminus D - \lambda and its varia-
tional problem (3.8). These two cases prove (3.18), since the bound is trivial when
dist(K, \partial D) = 0.

Lemma 3.17. Let D \subset \BbbR d be bounded. Denote by

h(D) := min
E\subset D

Per(E)

| E| 

the Cheeger constant of D, the minimum being attained at Cheeger sets of D. Then
\kappa D(x) \geqslant h(D) for x \in D, with equality for x \in CD, the maximal Cheeger set.

Proof. We again consider the problem

(3.19) min
E\subseteq D

Per(E) - \lambda | E| 

withD\lambda its maximal solution. Assume \lambda > 0 is such that | D\lambda | \not = 0; then by comparing
with the empty set we have

Per(D\lambda ) - \lambda | D\lambda | \leqslant 0,

which implies

\lambda \geqslant 
Per(D\lambda )

| D\lambda | 
\geqslant min
E\subset D

Per(E)

| E| 
= h(D),

which implies, recalling (3.9), that \kappa D(x) \geqslant h(D) for all x \in D. Similarly, considering
(3.19) for \lambda = h(D) we get

Per(Dh(D)) - h(D)| Dh(D)| \leqslant 0,

so that Dh(D) is a Cheeger set, and in fact by maximality Dh(D) = CD, which in turn
implies \kappa D(x) = h(D) for x \in CD.

Proposition 3.18. Let S = (0, 1)\times (0, 1) be the unit square in \BbbR 2. Then denoting
by Q1 := (0, 1/2)\times (0, 1/2) the lower left quadrant we have

(3.20) \kappa S(x) =

\Biggl\{ 
h(S) = 1/rS := 2 +

\surd 
\pi if x \in CS ,

(x1 + x2 +
\surd 
2x1x2)

 - 1 if x \in (S \setminus CS) \cap Q1,

and similarly for the other quadrants. The Cheeger set CS (unique by convexity; see
[3]) is given by

CS =
\bigl\{ 
x \in S

\bigm| \bigm| dist\bigl( x, (rS , 1 - rS)\times (rS , 1 - rS)
\bigr) 
< rS

\bigr\} 
.
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1526 JOS\'E A. IGLESIAS AND GWENAEL MERCIER

Proof. If x \in CS we use Lemma 3.17; the value of rS can be found, for example,
in [25, Thm. 3]. If x /\in CS , without loss of generality we can assume that x = (x1, x2)
is in (S \setminus CS)\cap Q1. Now, x belongs to the circle centered at (R(x), R(x)) with radius
R(x), that is,

(x1  - R(x))2 + (x2  - R(x))2 = R(x)2.

This is a quadratic equation for R(x) that we can solve to find \kappa S(x) = 1/R(x).

Remark 3.19. It is proved in [31, Thm. 3.32(i)] that for a convex planar set E and
\lambda small enough, E\lambda can be written as a union of balls of radius 1/\lambda . In this situation,
the proof of [25, Thm. 1] building up on this characterization as a union implies in
particular that

E\lambda = [E]
1/\lambda 
i +

1

\lambda 
B(0, 1),

where [E]
1/\lambda 
i \subset E is the 1/\lambda -offset of E in the direction of its inner normal, so that E\lambda 

is obtained by a ``rolling ball"" procedure. Furthermore, it has been recently proven
[26] that the same characterization holds for more general planar sets, namely Jordan
domains with no necks.

4. Convergence for indicatrices with noise. In this section we prove Theo-
rem 1.2 on Hausdorff convergence of level sets for denoising the indicatrix of a bounded
finite perimeter set D \subset B(0, 1), with the variational mean curvature \kappa D \in L1(\BbbR d)
constructed with the choices of Definition 3.13 used in the formulas (3.9) and (3.10),
and with noise and parameter choice controlled by (1.3). To this end, let u\alpha ,0 be the
precise representative of the minimizer of (1.1) with f = 1D and w = 0, that is, with
no noise added. We denote by

\kappa \alpha := v\alpha ,0 =
1

\alpha 
\psi \prime (1D  - u\alpha ,0)

the corresponding variational mean curvature associated to the level sets of u\alpha ,0
through duality in Proposition A.1. The definition of \kappa D also provides us with a
natural precise representative for it; we will implicitly use these precise representa-
tives in the rest of the section.

Now, using Corollary 3.7 and since u\alpha ,0 is the result of denoising 1D which has
values in [0, 1], we only need to consider s \in (0, 1) and consequently Es\alpha = \{ u\alpha ,0 > s\} 
always denotes upper level sets (cf. Proposition 1.8).

We implement the local strategy of [14, Thm. 2], which requires that v\alpha ,0 is Ld-
equi-integrable only on K\delta = \{ dist(\cdot , \partial D) \geqslant \delta \} for each \delta > 0. This equi-integrability
is in turn a consequence of Lemma 3.16 and Proposition 4.1 below, which combine to
give the bound

(4.1) \| v\alpha ,0\| L\infty (K\delta ) \leqslant 
d

\delta 
.

Proposition 4.1. The noiseless dual variable \kappa \alpha satisfies | \kappa \alpha | \leqslant | \kappa D| almost
everywhere.

To prove this proposition, which depends crucially on assumption (A), we will
use the following lemmas.

Lemma 4.2. The denoised solution u\alpha ,0 with f = 1D and w = 0 satisfies

u\alpha ,0(x) = 0 for a.e. x \in \BbbR d \setminus ConvD.
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Proof. Denote u := u\alpha ,0, and assume for the sake of contradiction that

| \{ u \not = 0\} \setminus ConvD| > 0.

This implies, defining uc := u1ConvD, that\int 
\BbbR d

\psi (u - 1D) =

\int 
ConvD

\psi (u - 1D) +

\int 
\BbbR d\setminus ConvD

\psi (u)

>

\int 
ConvD

\psi (u - 1D) =

\int 
\BbbR d

\psi (uc  - 1D).

Moreover we can write the coarea formula for u as

TV(u) =

\int +\infty 

0

Per(\{ u > s\} ) ds+
\int 0

 - \infty 
Per(\{ u < s\} ) ds

\geqslant 
\int +\infty 

0

Per(\{ u > s\} \cap ConvD) ds+

\int 0

 - \infty 
Per(\{ u < s\} \cap ConvD) ds

=

\int +\infty 

0

Per(\{ uc > s\} ) ds+
\int 0

 - \infty 
Per(\{ uc < s\} ) ds = TV(uc),

where we have used that the level sets \{ u > s\} for s > 0 and \{ u < s\} for s < 0
must have finite mass since u \in Ld/(d - 1), and the convexity of ConvD. These two
inequalities mean that u could not be a minimizer.

Lemma 4.3. Let 0 < s \leqslant 1. Then

(4.2) D\lambda \subset Es\alpha when 0 < \lambda < \psi \prime (1 - s)/\alpha ,

whereas

(4.3) Es\alpha \subset D - \lambda for 0 >  - \lambda >  - \psi \prime (s)/\alpha .

Proof. First, notice that the problems (3.7) and (3.8) satisfied by D\lambda and D - \lambda 

are of obstacle type, so that as in [23, Lem. 9], one can lift the obstacle constraint
and conclude that D\lambda minimizes

(4.4) E \mapsto \rightarrow Per(E) - 
\int 
E

\kappa \lambda i with \kappa \lambda i = \lambda 1D + \kappa D1\BbbR d\setminus D

whereas D - \lambda minimizes

E \mapsto \rightarrow Per(E) - 
\int 
E

\kappa \lambda o with \kappa \lambda o =  - \lambda g21\BbbR d\setminus D  - \kappa D1D.

Therefore, we can write

Per(Es\alpha \cap D\lambda ) - 
\int 
Es

\alpha \cap D\lambda 

\kappa \lambda i \geqslant Per(D\lambda ) - 
\int 
D\lambda 

\kappa \lambda i .

On the other hand, the level set Es\alpha has a curvature \kappa \alpha , which allows writing

Per(Es\alpha \cup D\lambda ) - 
\int 
Es

\alpha \cup D\lambda 

\kappa \alpha \geqslant Per(Es\alpha ) - 
\int 
Es

\alpha 

\kappa \alpha .
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1528 JOS\'E A. IGLESIAS AND GWENAEL MERCIER

Summing these two inequalities, we obtain\int 
D\lambda \setminus Es

\alpha 

\kappa \lambda i \geqslant 
\int 
D\lambda \setminus Es

\alpha 

\kappa \alpha 

that rewrites, since D\lambda \subset D and using the definition of \kappa \lambda i in (4.4),

(4.5)

\int 
D\lambda \setminus Es

\alpha 

\biggl( 
\lambda  - \psi \prime (1 - u\alpha )

\alpha 

\biggr) 
\geqslant 0.

Now, on (Es\alpha )
c by definition u\alpha \leqslant s which, since \psi \prime is strictly increasing, implies

\lambda  - \psi \prime (1  - u\alpha )/\alpha \leqslant \lambda  - \psi \prime (1  - s)/\alpha . Therefore, for \lambda < \psi \prime (1  - s)/\alpha , (4.5) can hold
only if | D\lambda \setminus Es\alpha | = 0, that is, D\lambda \subset Es\alpha a.e.

Similarly, we can write

Per(Es\alpha \cup D - \lambda ) - 
\int 
Es

\alpha \cup D - \lambda 

\kappa \lambda o \geqslant Per(D - \lambda ) - 
\int 
D - \lambda 

\kappa \lambda o ,

Per(Es\alpha \cap D - \lambda ) - 
\int 
Es

\alpha \cap D - \lambda 

\kappa \alpha \geqslant Per(Es\alpha ) - 
\int 
Es

\alpha 

\kappa \alpha ,

to sum these inequalities and, using (D - \lambda )c \subset Dc and u\alpha > s on Es\alpha , obtain

0 \geqslant 
\int 
Es

\alpha \setminus D - \lambda 

\biggl( 
\psi \prime (u\alpha )

\alpha 
 - \lambda g2

\biggr) 
>

\int 
Es

\alpha \setminus D - \lambda 

\biggl( 
\psi \prime (s)

\alpha 
 - \lambda g2

\biggr) 
.

Hence, since we have g2 \leqslant 1, as soon as 0 < \lambda < \psi \prime (s)/\alpha , we obtain Es\alpha \subset D - \lambda a.e.

Proof of Proposition 4.1. First we take x \in D (this implies by definition \kappa D(x) \geqslant 
0) and define s := u\alpha ,0(x), implying \kappa \alpha (x) = \psi \prime (1 - s)/\alpha f, and assume that for some
\varepsilon > 0

(4.6) \kappa \alpha (x) =
\psi \prime (1 - s)

\alpha 
\geqslant \kappa D(x) + \varepsilon ,

to then use Lemma 4.3 to derive a contradiction. By definition of the level sets we
have that for all \delta > 0,

(4.7) x \in Es - \delta \alpha and x /\in Es+\delta \alpha .

This combined with (4.2) implies that x /\in D\lambda whenever 0 < \lambda < \psi \prime (1  - s  - \delta )/\alpha .
On the other hand, since g2(x) = 1 the construction (3.9) of \kappa D, (4.6) and (4.3) give
x \in D\lambda for all \lambda \geqslant \psi \prime (1  - s)/\alpha  - \varepsilon > 0, where for the last inequality we have used
(4.6). Choosing \delta such that

\psi \prime (1 - s) - \psi \prime (1 - s - \delta ) \leqslant \alpha \varepsilon ,

which is possible since \psi \in \scrC 1(\BbbR ), these two statements are contradictory and there-
fore we must have \kappa \alpha (x) \leqslant \kappa D(x) for all x \in D.

Now, if x \in \BbbR d \setminus D, by Lemma 4.2 we can assume x \in ConvD\setminus D, since otherwise
we would have \kappa \alpha (x) = 0 and the inequality is trivially satisfied. This implies in
particular that g2(x) = 1 (see (3.14)) and we can proceed similarly as above. We have
\kappa \alpha (x) = \psi \prime ( - s)/\alpha and \kappa D(x) \leqslant 0, and failure of the statement means that for some
\varepsilon > 0 we have
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\kappa \alpha (x) =
\psi \prime ( - s)
\alpha 

\leqslant \kappa D(x) - \varepsilon .

As before, for any \delta (4.7) holds and (4.3) then implies that x \in D - \lambda as soon as
0 >  - \lambda > \psi \prime ( - s + \delta )/\alpha . However, the definition of \kappa D (3.10) and that g2(x) = 1
imply that x /\in D - \lambda if  - \lambda < \kappa D(x) \leqslant \psi \prime ( - s)/\alpha + \varepsilon < 0, so that if \delta is such that
\psi \prime ( - s+ \delta ) - \psi \prime ( - s) \leqslant \alpha \varepsilon we again derive a contradiction.

Remark 4.4. It might seem slightly surprising that even though the construction
of \kappa D depends on the density g, as has been seen in Proposition 3.11, we can still
obtain the inequality | \kappa \alpha | \leqslant | \kappa D| . There are two reasons for this. First, we were
able to bound the support of u\alpha in Lemma 4.2, allowing us to avoid the unintuitive
behavior of \kappa D for small negative values and far away from D. Second, with our
particular choice (3.14) we have g2 = 1 in ConvD, so we can still obtain the desired
comparison without distorting the values of \kappa \alpha in question.

As a consequence of (4.1) we can obtain uniform density estimates for the level sets
Es\alpha ,w := \{ u\alpha ,w > s\} outside of K\delta with scale r\delta and constant C\delta possibly degenerating
as \delta \rightarrow 0. These are proved in Proposition B.1 of Appendix B. A further consequence
of these density estimates is the following compact support result.

Proposition 4.5. Assume a parameter choice such that

(4.8) \| v\alpha ,w  - v\alpha ,0\| Ld(\BbbR d) \leqslant C0 < \Theta d,

where v\alpha ,w is the duality certificate for (1.1) of Proposition A.1, and that f = 1D for
D bounded. Then there is R > 0 such that

Suppu\alpha ,w \subset B(0, R)

with R depending on C0 but not on the specific \alpha and w.

Proof. Denote E := Es\alpha ,w = \{ u\alpha ,w > s\} for s > 0 and \{ u\alpha ,w < s\} if s < 0 where
\alpha ,w are fixed. Since Per(E) = sign(s)

\int 
E
v\alpha ,w by Proposition 1.8, using the H\"older

inequality, (4.8), the isoperimetric inequality (1.10), and Proposition 4.1, recalling
that v\alpha ,0 = \kappa \alpha , we get

(4.9)

Per(E) \leqslant 

\bigm| \bigm| \bigm| \bigm| \int 
E

(v\alpha ,w  - v\alpha ,0)

\bigm| \bigm| \bigm| \bigm| + \bigm| \bigm| \bigm| \bigm| \int 
E

v\alpha ,0

\bigm| \bigm| \bigm| \bigm| 
\leqslant C0| E| (d - 1)/d +

\int 
E

| v\alpha ,0| \leqslant \Theta  - 1
d C0 Per(E) + \| \kappa D\| L1 ,

which provides a uniform bound for Per(E).
To prove (4.5) we derive a uniform bound for diam(E), which does not follow

from the perimeter bound alone. However, we have that by (4.1) the hypotheses of
Proposition B.1 are satisfied with K = \{ dist(\cdot , \partial D) \geqslant 1\} and

rK,\varepsilon =
\varepsilon 1/d

d| B(0, 1)| 1/d
,

so the E satisfy uniform density estimates at some scale rK and with constant CK
outside the bounded set K, which are then combined with the fact that (4.9) and the
isoperimetric inequality imply a uniform upper bound for | E| . We can then prove the
diameter bound by considering points xn \in \partial E \setminus K, n = 1, . . . , N , with | xi - xj | > r0
for i \not = j and some r0 \in (0, rK). The inner density estimate | E \cap B(xn, r0)| >
C| B(xn, r0)| combined with the uniform bound for | E| gives a uniform upper bound
for N , hence also for diam(E).
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We are now ready to prove the main result of this section.

4.1. Proof of Theorem 1.2.

Proof of Theorem 1.2. First, we notice that the definition of the Hausdorff dis-
tance reads

d\scrH (\partial Es\alpha ,w, \partial D) = max

\Biggl( 
sup

x\in \partial Es
\alpha ,w

dist(x, \partial D), sup
x\in \partial D

dist(x, \partial Es\alpha ,w)

\Biggr) 
.

Therefore, we need to prove the two statements

sup
x\in \partial D

dist(x, \partial Es\alpha n,wn
) \rightarrow 0 and(4.10)

sup
x\in \partial Es

\alpha n,wn

dist(x, \partial D) \rightarrow 0.(4.11)

Let us start with (4.10), for which the argument follows closely that of [14,
Prop. 9], which we reproduce for completeness. Since the parameter choice (1.3)
implies in particular condition (1.6), arguing as in the proof of Proposition 1.7 we

have, up to a subsequence, that Du\alpha n,wn

\ast 
\rightharpoonup D1D. Now the coarea formula, as formu-

lated, for example, in [5, Thm. 10.3.3], tells us that we can slice these measures (and
not just their total variations) so that

Du\alpha n,wn
(A) =

\int +\infty 

 - \infty 
D1\{ u\alpha n,wn>s\} (A) ds =

\int +\infty 

 - \infty 
D1Es

\alpha n,wn
(A) ds for Borel sets A,

and therefore for a.e. s \in (0, 1) we in fact have

(4.12) D1Es
\alpha n,wn

\ast 
\rightharpoonup D1D.

Now let x \in SuppD1D; then for any r > 0 using (4.12) we get

0 < | D1D| (B(x, r)) \leqslant lim inf
n

| D1Es
\alpha n,wn

| (B(x, r)),

which implies that lim supn dist(x, SuppD1E\alpha n,wn
) \leqslant r. Since r > 0 was arbitrary we

conclude dist(x, SuppD1E\alpha n,wn
) \rightarrow 0, and in particular

sup
x\in SuppD1D

dist(x,SuppD1E\alpha n,wn
) \rightarrow 0.

Finally, as mentioned in section 1.3, we always use representatives for E\alpha n,wn
and D

for which
\partial E\alpha n,wn = SuppD1E\alpha n,wn

and \partial D = SuppD1D,

completing the proof of (4.10).
To prove (4.11) we assume it does not hold to reach a contradiction. On the one

hand, we notice that using the parameter choice (1.3) and Proposition A.2, we can
apply Proposition 4.5 to see that the u\alpha n,wn

have a common compact support. This,
combined with the convergence in L1

loc of u\alpha n,wn proved in Proposition 1.7, implies
that | Es\alpha n,wn

\Delta D| \rightarrow 0. On the other hand, if (4.11) fails, from Proposition 2.6 and
its proof we see that we must have either

(4.13) sup
x\in Es

\alpha n,wn

dist(x,D) \not \rightarrow 0 or sup
x\in \BbbR d\setminus Es

\alpha n,wn

dist
\bigl( 
x,\BbbR d \setminus D

\bigr) 
\not \rightarrow 0.
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Assume the first is true, so that there is \delta > 0 and a subsequence xn \in Es\alpha n,wn

for which dist(xn, D) > \delta . In that case, by the inner density estimates proved in
Proposition B.1 of Appendix B, we have that

| Es\alpha n,wn
\Delta D| \geqslant | Es\alpha n,wn

\setminus D| \geqslant | B(xn, \delta ) \cap Es\alpha n,wn
| \geqslant C\delta | B(0, \delta )| ,

a contradiction. If the second case of (4.13) was true, we instead use the outer density
estimate to again contradict the L1 convergence.

5. Convergence for generic BV functions without noise. This section is
aimed at the proof of Theorem 1.3 and simplified versions of it for piecewise constant
functions. We are concerned with the noiseless situation, that is, we assume w = 0
throughout. Moreover, we always assume Supp f \subset B(0, 1) which, arguing as in
Lemma 4.2, implies

(5.1) Suppu\alpha ,0 \subset Conv (Supp f) \subset B(0, 1).

It might seem that also in this case the convergence could be obtained by following
the same arguments used in section 4. This would require reproducing the inequality
| v\alpha ,0| \leqslant | \kappa D| of Proposition 4.1. However, it is not clear how to construct a function
that acts as a variational curvature for all the level sets of f simultaneously and also
plays the role of \kappa D in the previous inequality, even for piecewise constant f . To
gather some intuition, one can notice that when the data is a characteristic function
f = 1D, the boundary of the noiseless level set Es\alpha can be decomposed into two parts:
a part of the boundary of D and a free part (which is actually C1,\gamma for \gamma \in (0, 1/2)
[29, Thm. 21.8]) with mean curvature (s - 1)/\alpha or  - s/\alpha for points inside or outside
of D, respectively. In turn, assuming g = 1 at the points under consideration, the
same is true for the sets D\pm \lambda defined with curvature \pm \lambda and constraints to lie inside
or outside of D and used through (3.9) and (3.10) in the definition of \kappa D. This
allows us to easily compare them to the mentioned level sets through their respective
variational problems. Since at present we do not know which would be the variational
problem defining a hypothetical analog of D\pm \lambda , in this section we work with the same
construction of curvatures of section 3 but applied to each level set of f separately.

5.1. Approximation with the level sets of the optimal curvature of D.
The key to the results of this section will be to know that we can approximate any
D \subset B(0, 1) with the setsD\lambda andD - \lambda as \lambda \rightarrow \infty arising from the choices of Definition
3.13. First we note that this approximation happens in mass.

Lemma 5.1. For D \subset \BbbR d bounded of finite perimeter, we have as \lambda \rightarrow +\infty that\bigm| \bigm| D \setminus D\lambda 
\bigm| \bigm| \rightarrow 0, and

\bigm| \bigm| D - \lambda \setminus D
\bigm| \bigm| \rightarrow 0.

Proof. It is contained in the proof of Proposition 3.9. For the inside approximants
D\lambda , the result is proven also in [32, Thm. 2.3(ii)].

Moreover, this two-sided approximation also holds in Hausdorff distance of the
corresponding boundaries.

Lemma 5.2. For D \subset \BbbR d bounded of finite perimeter and every \varepsilon > 0 there exists
\lambda \varepsilon > 0 such that D\lambda \varepsilon \subset D \subset D - \lambda \varepsilon , d\scrH (\partial D\lambda \varepsilon , \partial D) \leqslant \varepsilon and d\scrH (\partial D - \lambda \varepsilon , \partial D) \leqslant \varepsilon .

Proof. The interior approximation is proved in [32, Thm. 2.3(iv)]; we reproduce
their argument here and see that it can also be applied for the exterior approximation
with D - \lambda .
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To start, let x \in D with dist(x, \partial D) > \varepsilon . Then we have that B(x, \varepsilon ) \subset D, and as
in the proof of Lemma 3.16 we must have B(x, \varepsilon ) \subset D\lambda for all \lambda > \varepsilon /d, in particular
x \in D\lambda \setminus \partial D\lambda , implying

sup
x\in \partial D\lambda 

dist(x, \partial D) \leqslant \varepsilon for all \lambda > \varepsilon /d.

For the other term of the Hausdorff distance, the strategy is to cover \partial D with finitely
many balls B(xj , \varepsilon ) with j = 1, . . . , N\varepsilon and xj \in \partial D, which is possible since \partial D is
bounded. Then, since Lemma 5.1 implies that | D\setminus D\lambda | \rightarrow 0 as \lambda \rightarrow \infty , we can choose
\lambda \varepsilon such that | D\lambda \varepsilon \cap B(xj , \varepsilon )| > 0 for all j. Since these balls cover \partial D, we have that

sup
x\in \partial D

dist(x, \partial D\lambda ) \leqslant \varepsilon for all \lambda > \lambda \varepsilon .

Since it was only used that \partial D = \partial (\BbbR d \setminus D) is bounded, we can proceed in the same
way for the approximation with \partial D - \lambda . For the first part, it suffices to notice that by
definition F\lambda = \BbbR d\setminus D - \lambda are minimizers of (3.8), so if x \in \BbbR d\setminus D with dist(x, \partial D) > \varepsilon 
we must also have B(x, \varepsilon ) \subset F\lambda = \BbbR d \setminus D - \lambda for all \lambda > \varepsilon /d. Moreover, we have
| D - \lambda \setminus D| \rightarrow 0 by Lemma 5.1, which allows us to repeat the covering argument.

Corollary 5.3. For every bounded finite perimeter set D \subset \BbbR d and every \varepsilon > 0
there exists \lambda \varepsilon > 0 such that

d\scrH (D\lambda \varepsilon , D) \leqslant \varepsilon and d\scrH (D - \lambda \varepsilon , D) \leqslant \varepsilon ,

and also

d\scrH (\BbbR d \setminus D\lambda \varepsilon ,\BbbR d \setminus D) \leqslant \varepsilon and d\scrH (\BbbR d \setminus D - \lambda \varepsilon ,\BbbR d \setminus D) \leqslant \varepsilon .

Proof. It follows by Lemmas 5.1 and 5.2 combined with Theorem 2.7. Note that
the latter theorem is not quantitative and we could get different values of \lambda \varepsilon from it
for the different convergences, but we can then just use the largest of the two.

Example 5.4. A result like Lemma 5.2 can hold only for bounded sets. As a
counterexample, consider D defined by

D :=

\infty \bigcup 
j=0

B

\biggl( 
(j, 0),

1

2j+1

\biggr) 
.

Clearly we have | D| <\infty and Per(D) <\infty , but D\lambda must be a union of finitely many
balls, so d\scrH (\partial D, \partial D\lambda ) = \infty for all \lambda > 0.

To obtain Hausdorff convergence in the noiseless case, we do not need to use
density estimates; for indicatrices it is enough to combine Lemmas 4.3 and 5.2.

Proposition 5.5. Let f = 1D with D \subset B(0, 1), w = 0, and denote by u\alpha ,0 the
coresponding minimizers of (1.1). Then for almost every s \in (0, 1), the boundary \partial Es\alpha 
of the level set Es\alpha = \{ u\alpha ,0 > s\} converges in Hausdorff distance to \partial Es0 = \partial \{ f > s\} 
as \alpha \rightarrow 0.

5.2. Denoising of a generic BV function. Proof of Theorem 1.3. Let
now f be a generic BV function supported in B(0, 1) and let u\alpha the minimizer of
(1.1) with w = 0. One wants to reproduce the construction of section 5.1 for every
level set of u\alpha . We denote Gs := \{ f > s\} for s > 0 and Gs := \{ f < s\} for s < 0 the
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level sets of f and similarly Es\alpha = \{ u\alpha > s\} for s > 0, Es\alpha = \{ u\alpha < s\} for s < 0 the
ones of u\alpha . The sets Es\alpha minimize

(5.2) E \mapsto \rightarrow Per(E) +
sign(s)

\alpha 

\int 
E

\psi \prime (s - f).

In contrast to the situation in section 4, the functions involved may take negative
values, but by using lower level sets for s < 0 we ensure that these are also contained
in B(0, 1). With this in view, given \varepsilon > 0 we have by Lemma 5.2 for each s an
approximation (Gs)\lambda (\varepsilon ,s) of Gs from inside, which to make the notation slightly lighter
we denote as

Gsi,\varepsilon := (Gs)\lambda (\varepsilon ,s) \subset Gs,

with d\scrH (\partial Gso,\varepsilon , \partial G
s) < \varepsilon and curvature \kappa si,\varepsilon bounded above by \lambda (\varepsilon , s). Similarly we

denote by
Gso,\varepsilon := (Gs) - \lambda (\varepsilon ,s) \supset Gs

the corresponding approximation of Gs from the outside with d\scrH (\partial Gso,\varepsilon , \partial G
s) < \varepsilon 

and curvature \kappa so,\varepsilon bounded below by  - \lambda (\varepsilon , s) on B(0, 1).

Lemma 5.6. Let \varepsilon , \delta > 0. Then for \alpha small enough (depending on s, \delta , and \varepsilon ),

| Gs+\delta i,\varepsilon \setminus Es\alpha | = 0 and | Es\alpha \setminus Gs - \delta o,\varepsilon | = 0 for s > 0,

and analogously

| Gs - \delta i,\varepsilon \setminus Es\alpha | = 0 and | Es\alpha \setminus Gs+\delta o,\varepsilon | = 0 for s < 0.

Proof. We assume that s > 0, since the case s < 0 follows in a completely
analogous way after noticing that using lower level sets induces a change of sign in
(5.2), as well as a change in the direction of inclusions with respect to s. Therefore,
let s > 0 and \delta > 0 be fixed. To simplify notation in the proof, since \varepsilon is also fixed,
we omit it and denote

Gs+\delta i := Gs+\delta i,\varepsilon = (Gs+\delta )\lambda (\varepsilon ,s+\delta ), \kappa s+\delta i := \kappa s+\delta i,\varepsilon \leqslant \lambda (\varepsilon , s+ \delta ),

Gs - \delta o := Gs - \delta o,\varepsilon = (Gs - \delta ) - \lambda (\varepsilon ,s - \delta ) and \kappa s - \delta o := \kappa s - \delta o,\varepsilon \geqslant  - \lambda (\varepsilon , s - \delta ).

Using the minimality of Es\alpha in (5.2), one can write

Per(Es\alpha ) +

\int 
Es

\alpha 

\psi \prime (s - f)

\alpha 
\leqslant Per(Es\alpha \cup Gs+\delta i ) +

\int 
Es

\alpha \cup Gs+\delta 
i

\psi \prime (s - f)

\alpha 
.

On the other hand, since \kappa s+\delta i is a variational curvature of Gs+\delta i , one has

Per(Gs+\delta i ) - 
\int 
Gs+\delta 

i

\kappa s+\delta i \leqslant Per(Gs+\delta i \cap Es\alpha ) - 
\int 
Gs+\delta 

i \cap Es
\alpha 

\kappa s+\delta i .

Summing these two inequalities and using (1.9), we get

(5.3)  - 
\int 
Gs+\delta 

i \setminus Es
\alpha 

\kappa s+\delta i \leqslant 
\int 
Gs+\delta 

i \setminus Es
\alpha 

\psi \prime (s - f)

\alpha 
.

Now, recall that Gs+\delta i \subset Gs+\delta , meaning that f \geqslant s+ \delta on this set. Hence s - f \leqslant  - \delta 
and, since \psi \prime is increasing and \psi is even, (5.3) implies\int 

Gs+\delta 
i \setminus Es

\alpha 

\biggl( 
 - \kappa s+\delta i +

\psi \prime (\delta )

\alpha 

\biggr) 
\leqslant 0.
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Since \kappa s+\delta i \leqslant \lambda (\varepsilon , s + \delta ), as soon as \alpha \leqslant \psi \prime (\delta )/\lambda (\varepsilon , s + \delta ), which is always possible
since \psi \prime (\delta ) > 0 by strict monotonicity, one must have | Gs+\delta i \setminus Es\alpha | = 0.

Similarly, the equality | Es\alpha \setminus Gs - \delta o | = 0 is obtained writing

Per(Es\alpha ) +

\int 
Es

\alpha 

\psi \prime (s - f)

\alpha 
\leqslant Per(Es\alpha \cap Gs - \delta o ) +

\int 
Es

\alpha \cap Gs - \delta 
o

\psi \prime (s - f)

\alpha 

and

Per(Gs - \delta o ) - 
\int 
Gs - \delta 

o

\kappa s - \delta o \leqslant Per(Gs - \delta o \cup Es\alpha ) - 
\int 
Gs - \delta 

o \cup Es
\alpha 

\kappa s - \delta o .

Summing these inequalities we obtain\int 
Es

\alpha \setminus Gs - \delta 
o

\psi \prime (s - f)

\alpha 
\leqslant  - 

\int 
Es

\alpha \setminus Gs - \delta 
o

\kappa s - \delta o .

Now, the complement of Gs - \delta o contains the complement of Gs - \delta ; therefore on this
set, one has f \leqslant s - \delta , which implies\int 

Es
\alpha \setminus Gs - \delta 

o

\biggl( 
\psi \prime (\delta )

\alpha 
+ \kappa s - \delta o

\biggr) 
\leqslant 0,

which together with \kappa s - \delta o \geqslant  - \lambda (\varepsilon , s  - \delta ) on B(0, 1) and (5.1) forces the expected
equality as soon as \alpha \leqslant \psi \prime (\delta )/\lambda (\varepsilon , s - \delta ).

We can now prove the main result of this section.

Proof of Theorem 1.3. The proof strongly relies on Lemma 5.6, and once again
we assume without loss of generality that s > 0 is fixed. Let \eta > 0 and \varepsilon = \eta /2.
First, we show that one can find \alpha 0 such that d\scrH (Es\alpha , G

s) \leqslant \eta for every \alpha \leqslant \alpha 0. Using
assumption (1.4), there exists \delta > 0 such that

(5.4) d\scrH (Gs\pm \delta , Gs) \leqslant \varepsilon .

Then, Lemma 5.6 ensures the existence of \alpha 0 such that for \alpha \leqslant \alpha 0, we have up to
measure zero Gs+\delta i,\varepsilon \subset Es\alpha \subset Gs - \delta o,\varepsilon . Now, we just have to note that

d\scrH (Es\alpha , G
s) = max

\Biggl\{ 
sup
x\in Es

\alpha 

dist(x,Gs), sup
x\in Gs

dist(x,Es\alpha )

\Biggr\} 
,

for which
Gs+\delta i,\varepsilon \subset Es\alpha \Rightarrow sup

x\in Gs

dist(x,Es\alpha ) \leqslant sup
x\in Gs

dist(x,Gs+\delta i,\varepsilon )

and
Es\alpha \subset Gs - \delta o,\varepsilon \Rightarrow sup

x\in Es
\alpha 

dist(x,Gs) \leqslant sup
x\in Gs - \delta 

o,\varepsilon 

dist(x,Gs).

Now, the triangle inequality for the Hausdorff distance, (5.4), the Hausdorff conver-
gence of Lemma 5.2, and Theorem 2.7 imply

sup
x\in Gs

dist(x,Gs+\delta i,\varepsilon ) \leqslant d\scrH (Gs, Gs+\delta i,\varepsilon )

\leqslant d\scrH (Gs, Gs+\delta ) + d\scrH (Gs+\delta , Gs+\delta i,\varepsilon ) \leqslant 2\varepsilon = \eta 
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and

sup
x\in Gs - \delta 

o,\varepsilon 

dist(x,Gs) \leqslant d\scrH (Gs, Gs - \delta o,\varepsilon )

\leqslant d\scrH (Gs, Gs - \delta ) + d\scrH (Gs - \delta , Gs - \delta o,\varepsilon ) \leqslant 2\varepsilon = \eta .

We therefore conclude

d\scrH (Gs, Es\alpha ) \leqslant 2\varepsilon = \eta for \alpha \leqslant \alpha 0,

as claimed.
Similarly, using the second part of (1.4) we notice that Lemma 5.6 also provides

us with the reverse inclusions for the complements

\BbbR d \setminus Gs+\delta i,\varepsilon \supset \BbbR d \setminus Es\alpha \supset \BbbR d \setminus Gs - \delta o,\varepsilon ,

so we find, possibly reducing \alpha 0, that also

d\scrH (\BbbR d \setminus Es\alpha ,\BbbR d \setminus Gs) \leqslant \eta for \alpha \leqslant \alpha 0.

Using inequality (2.7) of Proposition 2.6, convergence in Hausdorff distance of the
sets Es\alpha and their complements as \alpha \rightarrow 0 implies convergence of the boundaries.

Remark 5.7. We recall that | Es\alpha \Delta Gs| \rightarrow 0 holds for a.e. s because of the strong
L1 convergence u\alpha \rightarrow u, which is implied by the support bound (5.1) and the L1

loc

convergence proved in Proposition 1.7.

The assumption we used for the level sets Gs holds for many well-behaved func-
tions, in particular the following.

Proposition 5.8. Let f be such that the level sets Gs satisfy uniform density
estimates at some scale r0 and constant C, independent of the level s. Then (1.4)
holds for a.e. s.

Proof. By the assumption and arguing as for (2.5) in Proposition 2.2, we have
that at any point x \in Gs we have the inner density estimate

(5.5)
| Gs \cap B(x, r)| 

| B(x, r)| 
\geqslant C

for r \leqslant r0 = 2r0 and r0, C = C/2d independent of x and s. Moreover, since the Gs

are decreasing in s we may assume \delta > 0 when taking the limit, and to conclude that
d\scrH (Gs, Gs+\delta ) \rightarrow 0 we just need to check

(5.6) sup
x\in Gs

dist(x,Gs+\delta )
\delta \rightarrow 0 -  -  - \rightarrow 0,

since the other term in the Hausdorff distance vanishes. However, if (5.6) were false,
we can find \{ \delta i\} i, \rho > 0, and x\delta i \in Gs such that dist(x\delta i , G

s+\delta i) > \rho . But using (5.5)
for Gs and x\delta i , and possibly reducing \rho so that \rho \leqslant r0, we have

| Gs \setminus Gs+\delta i | \geqslant | Gs \cap B(x\delta i , \rho )| \geqslant C| B(x\delta i , \rho )| = C| B(0, \rho )| ,

which is a contradiction with | Gs\Delta Gs+\delta | \rightarrow 0 as \delta \rightarrow 0 that clearly holds for a.e. s.
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1536 JOS\'E A. IGLESIAS AND GWENAEL MERCIER

Moreover, we also have the outer density estimate

(5.7)
| B(x, r) \setminus Gs| 

| B(x, r)| 
\geqslant C,

again for r \leqslant r0 = 2r0 and C = C/2d. Since the sets \BbbR d \setminus Gs are increasing in \delta , to
conclude that d\scrH (\BbbR d \setminus Gs,\BbbR d \setminus Gs+\delta ) \rightarrow 0 we must check

sup
x\in \BbbR d\setminus Gs+\delta 

dist(x,\BbbR d \setminus Gs) \delta \rightarrow 0 -  -  - \rightarrow 0.

If this does not hold, we can find \{ \delta i\} i, \rho > 0, and x\delta i \in \BbbR d \setminus Gs+\delta i such that
dist(x\delta i ,\BbbR d \setminus Gs) > \rho . But using (5.7) for Gs+\delta i and x\delta i and with \rho \leqslant r0 we have\bigm| \bigm| \bigl( \BbbR d \setminus Gs+\delta i\bigr) \setminus \bigl( \BbbR d \setminus Gs\bigr) \bigm| \bigm| = | Gs \setminus Gs+\delta i | \geqslant | B(x\delta i , \rho ) \setminus Gs+\delta i | 

\geqslant C| B(x\delta i , \rho )| = C| B(0, \rho )| ,

leading again to a contradiction.

The results of [14] or [22] then directly imply that this assumption is also valid
when the source condition holds.

Corollary 5.9. Let f be such that

\partial TV(f) \not = \emptyset .

Then the level sets Gs of f satisfy (1.4) for a.e. s.

This conclusion is, however, nontrivial, since it could be that (1.4) fails for a set
of values of full measure.

Example 5.10. Let \{ Bi\} i\geqslant 0 be a collection of balls such that

Bi \subset B(0, 1), Bi \cap Bj = \emptyset if i \not = j,

\infty \sum 
i=0

Per(Bi) < +\infty .

We construct a function

f :=

\infty \sum 
i=0

ai1Ci
with Ci = Bi + \sigma (i)

\biggl( 
3

2
, 0

\biggr) 
and values ai and offset signs \sigma (i) \in \{  - 1, 1\} that we now describe. For that, let \scrB be
the subset of functions in 2\BbbN with finitely many nonzero values, and let us enumerate
its elements as \{ bi\} i\geqslant 0 in an order in which the position of their last nonzero value is
increasing, say,

0, 1, 01, 11, 001, 011, 101, 111, 0001 . . . .

The \sigma (i) are defined iteratively by

\sigma (0) = 1, \sigma (1) =  - 1, and \sigma (i) = ( - 1)
\bigl( 
\sigma \circ \iota \circ p

\bigr) 
(bi) for i \geqslant 2,

where \iota : \scrB \rightarrow \BbbN \cup \{ 0\} gives the index in the enumeration described, and p : \scrB \setminus \{ 0\} \rightarrow \scrB 
is the map that deletes the last nonzero element. Since \iota \circ p (bi) < i, this process is
well defined. Finally, let

ai =

\infty \sum 
k=1

1

2k
bi(k).
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Now, for any value s \in (0, 1) with an infinite binary expansion and all irrationals in
particular, when one denotes as s\ell the expansion of s up to \ell digits (so s\ell = ai\ell for
some i\ell ) the corresponding offset signs \sigma (i\ell ) alternate with \ell , so

d\scrH 
\bigl( 
\{ f \geqslant s\ell \} , \{ f \geqslant s\} 

\bigr) 
\geqslant 1 while s\ell \rightarrow s as \ell \rightarrow \infty .

6. Can we have uniform density estimates at fixed scale?. In section 4
we have proved Hausdorff convergence of level sets for denoising of 1D + w by using
density estimates at scales that converge to 0 as \alpha \rightarrow 0. However, as the next example
shows, often more can be expected out of the denoised solutions.

Example 6.1. Consider for \ell n > rn \rightarrow 0 with S = (0, 1)2 \subset \BbbR 2 and \psi (t) = t2/2
the situation

f = 1S , wn = 1Bn
with Bn := B

\bigl( 
( - \ell n, - \ell n), rn

\bigr) 
, so that dist(S,Bn) = \ell n  - rn.

The nontrivial level sets of f +wn are all S \cup Bn, and we clearly have that d\scrH 
\bigl( 
\partial (S \cup 

Bn), \partial S
\bigr) 
\rightarrow 0, but they contain a spurious connected component not seen in the limit.

Moreover we notice that if \ell n/rn \rightarrow +\infty the sets S\cup Bn fail to satisfy uniform density
estimates, since in that case for any xn \in \partial Bn we have\bigm| \bigm| (S \cup Bn) \cap B(xn, \ell n  - rn)

\bigm| \bigm| 
| B(xn, \ell n  - rn)| 

=
| Bn| 

| B(xn, \ell n  - rn)| 
\rightarrow 0.

Now, again using \ell n/rn \rightarrow +\infty we have that Per(Conv(S \cup Bn)) > Per
\bigl( 
S \cup Bn), so

we have for the level sets of minimizers of (1.1) that Es\alpha n,wn
\subset S \cup Bn. Moreover, if

s and \alpha n are such that (1 - s)/\alpha n < 2/rn we have that Es\alpha n,wn
\cap Bn = \emptyset , as can be

seen from the computations done in Example 3.5. This implies, when using a linear
parameter choice \alpha n = C\| wn\| L2 = C

\surd 
\pi rn, that whenever C > 1/(2

\surd 
\pi ) = 1/\Theta 2

the effect of wn is not seen in the solution. In that case it is easy to see that level
sets admit uniform density estimates at fixed scale, since then Es\alpha n,wn

= Ss/\alpha n where

the notation Ss/\alpha n is understood in the sense of Definition 3.13, which are explicitly
computed for the case of the square S in Proposition 3.18 and Remark 3.19.

Uniform density estimates along the sequence of level sets of minimizers not only
provide Hausdorff convergence of the boundaries of level sets but also prevent the
appearance of spurious structures smaller than a certain scale. For general sets of
finite perimeter as in section 4, since the limit is not regular, we cannot in general
expect uniform density for the level sets approaching it.

On the opposite side, if we knew that \partial TV(1D) \not = \emptyset , uniform density estimates
for the level sets are implied by the results of [14] for d = 2 and [22] for d > 2.
However, this source condition excludes large classes of sets D where we would expect
the level sets of minimizers to also satisfy uniform density estimates, in particular
sets D with general Lipschitz boundary and satisfying density estimates themselves,
like the square in the example above. The question then arises of how to derive
these estimates for the solutions in such cases. We are not able to give a complete
answer but we collect some observations, specialized to the two-dimensional case and
\psi (t) = t2/2.

Examining the proof of the density estimates in Proposition B.1, to have a uniform
scale at which the estimates hold it would be sufficient to have an inequality bounding
the integral of \kappa D on small sets by a quantity strictly less than their perimeter. In
particular, since connected (indecomposable) components of D inherit the curvature
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of the whole set, such an inequality implies that no arbitrarily small components can
be present, a property which (by the dual stability of Proposition A.2) is also true
for the denoised level sets with an adequate parameter choice. We formulate this
property as the following assumption.

Assumption 6.2. There is a constant 0 < \xi D < 1 and a scale r0 > 0 such that for
any A \subset \BbbR 2 admitting a variational mean curvature in L2(\BbbR 2), x \in \BbbR 2, and 0 < r \leqslant r0
the following inequalities hold:

(6.1)

\int 
A\cap B(x,r)

\kappa +
D \leqslant \xi D Per(B(x, r) \cap A) and\int 

A\cap B(x,r)

\kappa  - 
D \leqslant \xi D Per(B(x, r) \cap A),

where \kappa +
D = max(\kappa D, 0) and \kappa 

 - 
D =  - min(\kappa D, 0).

Let us check that Assumption 6.2 holds for the square.

Example 6.3. Denote the unit square by S \subset \BbbR 2 and the test set directly by
E := A \cap B(x, r), since we will not use its form or regularity explicitly. By definition
\kappa S \geqslant 0 in S, and since S is convex, Proposition 3.11 implies that \kappa S(x) =  - \lambda gg(x)
for x \in \BbbR 2 \setminus S. Let us start with the first inequality of (6.1). It is enough to prove
that there is \xi S < 1 \int 

E

\kappa S \leqslant \xi S Per(E)

for all E \subset S with | E| small and diam(E) < 1/2. Assuming | E| < | S \setminus CS | /4 with
CS the Cheeger set of S and in view of the optimal curvature of the square (3.20) we
have that \int 

E

\kappa S \leqslant 
\int 
(S\setminus S\Lambda )\cap Q1

\kappa S

for S\Lambda again in the sense of Definition 3.13, with some \Lambda such that | (S\setminus S\Lambda )\cap Q1| = | E| 
and Q1 the lower left quadrant. Now, for each \lambda > 0

| (S \setminus S\lambda ) \cap Q1| = 1

\lambda 2
 - \pi 

4\lambda 2
=

4 - \pi 

4\lambda 2
.

Therefore

(6.2)

\int 
(S\setminus S\Lambda )\cap Q1

\kappa S = \Lambda | \{ \kappa S > \Lambda \} | +
\int \infty 

\Lambda 

| \{ \kappa S > \lambda \} | d\lambda 

= \Lambda | (S \setminus S\Lambda ) \cap Q1| +
\int \infty 

\Lambda 

| (S \setminus S\lambda ) \cap Q1| d\lambda 

=
4 - \pi 

2\Lambda 

and on the other hand, by the isoperimetric inequality

(6.3) Per(E) \geqslant 2
\sqrt{} 
\pi | E| = 2

\sqrt{} 
\pi 
4 - \pi 

4\Lambda 2
=

\sqrt{} 
\pi (4 - \pi )

\Lambda 
,

and we get the first inequality of (6.1) with any \xi S such that

1 > \xi S >
4 - \pi 

2
\sqrt{} 
\pi (4 - \pi )

\approx 0.26.
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To prove the second part of (6.1) we notice that whenever

(6.4) r \leqslant 
2
\surd 
\pi 

\xi S \lambda g | B(0, 1)| 1/2

for any F with diam(F ) \leqslant r we can write

1

Per(F )

\int 
F

\kappa  - 
S =

\lambda g
Per(F )

\int 
F\setminus S

g \leqslant 
\lambda g

Per(F )

\int 
F

g

\leqslant 
\lambda g| F | 
Per(F )

\leqslant 
\lambda g| F | 

2
\surd 
\pi | F | 1/2

=
\lambda g| F | 1/2

2
\surd 
\pi 

\leqslant 
\lambda g r | B(0, 1)| 1/2

2
\surd 
\pi 

\leqslant \xi S ,

where we have used g \leqslant 1, the isoperimetric inequality and (6.4).

Remark 6.4. For a convex polygon P , one could try to repeat the proof above
around a vertex with angle 2\theta and \lambda > 0 large enough so that the contact points
of a circle of radius 1/\lambda lie on the two edges the vertex belongs to. The analogous
formulas to (6.2) and (6.3) are then\int 

E

\kappa P \leqslant 
2

\Lambda 

\biggl( 
1

tan \theta 
+ \theta  - \pi 

2

\biggr) 
and Per(E) \geqslant 2

\sqrt{} 
\pi | E| = 2

\surd 
\pi 

\Lambda 

\sqrt{} \biggl( 
1

tan \theta 
+ \theta  - \pi 

2

\biggr) 
.

However, the quotient of these two quantities is below 1 only for \theta larger than \approx 0.219.
It is very likely this is a problem of the proof method, since the isoperimetric estimate
used is far from sharp, and that in fact Assumption 6.2 holds for any polygon P .
Convexity is likely also not required, since a polygon cannot have arbitrarily thin
necks, so by the results cited in Remark 3.19 inclusions of balls characterize P\lambda for \lambda 
large enough, and we can also determine P - \lambda analogously.

Now we check that Assumption 6.2 indeed implies uniform density estimates at
a fixed scale. Our scheme will be to work first with the solutions corresponding to
noiseless data, and then we compare them with the noisy ones using Proposition 4.1.

Theorem 6.5. Let w \in L2(\BbbR 2) and \alpha satisfying the parameter choice

(6.5)
\| w\| L2

\alpha 
\leqslant \eta < 2

\surd 
\pi (1 - \xi D) ,

and let u\alpha ,w denote the corresponding minimizers of (1.1) with f = 1D, where D
satisfies Assumption 6.2 with constant \xi D and scale r0. Then there is C0 \in (0, 1) such
that for a.e. s, the level sets

Es\alpha ,w := \{ u\alpha ,w > s\} if s > 0 and Es\alpha ,w := \{ u\alpha ,w < s\} if s < 0

satisfy uniform density estimates at scale r0 and with constant C0, that is,

| Es\alpha ,w \cap B(x, r)| 
| B(x, r)| 

\geqslant C0, and
| B(x, r) \setminus Es\alpha ,w| 

| B(x, r)| 
\geqslant C0

for all x \in \partial Es\alpha ,w and 0 < r \leqslant r0.

Proof. Since we aim to prove both inner and outer density estimates, we can
assume without loss of generality that s > 0, so that by Proposition 1.8 Es\alpha ,w admits
the variational curvature v\alpha ,w = 1D + w  - u\alpha ,w. For such x and r we have by the
Cauchy--Schwarz inequality, by Proposition 4.1, and since sign(v\alpha ,0) = sign(\kappa D) that
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Es

\alpha ,w\cap B(x,r)

v\alpha ,w \leqslant | Es\alpha ,w \cap B(x, r)| 1/2\| v\alpha ,w  - v\alpha ,0\| L2(\BbbR 2) +

\int 
Es

\alpha ,w\cap B(x,r)

v\alpha ,0

\leqslant | Es\alpha ,w \cap B(x, r)| 1/2\| v\alpha ,w  - v\alpha ,0\| L2(\BbbR 2) +

\int 
Es

\alpha ,w\cap B(x,r)

\kappa +
D

\leqslant | Es\alpha ,w \cap B(x, r)| 1/2\| v\alpha ,w  - v\alpha ,0\| L2(\BbbR 2) + \xi D Per(Es\alpha ,w \cap B(x, r))

\leqslant | Es\alpha ,w \cap B(x, r)| 1/2\eta + \xi D Per(Es\alpha ,w \cap B(x, r)),(6.6)

where we have used the first inequality in (6.1) for the penultimate step and for the
last step the parameter choice (6.5) combined with the dual stability of Proposition
A.2, since in this case \sigma \psi \ast = Id. Plugging this into formula (B.3) of Appendix B, we
obtain

Per(Es\alpha ,w \cap B(x, r)) (1 - \xi D) - | Es\alpha ,w \cap B(x, r)| 1/2\eta \leqslant 2Per
\Bigl( 
B(x, r); (Es\alpha ,w)

(1)
\Bigr) 
.

Using now the isoperimetric inequality, we get

| Es\alpha ,w \cap B(x, r)| 1/2
\bigl( 
2
\surd 
\pi (1 - \xi D) - \eta 

\bigr) 
\leqslant 2Per

\Bigl( 
B(x, r); (Es\alpha ,w)

(1)
\Bigr) 
.

We can derive the inner density estimate | Es\alpha ,w \cap B(x, r)| \geqslant C0| B(x, r)| with C0

depending on \eta by integrating this differential inequality up to r0.
For the outer density, one proceeds in an analogous fashion with the complements

\BbbR 2 \setminus Es\alpha ,w, which switches the sign of the curvature to  - v\alpha ,w and makes \kappa  - 
D play a

role in (6.6) through the second inequality in (6.1).

We notice that in the situation of Theorem 6.5, the convergence d\scrH (\partial Es\alpha ,w, \partial D) \rightarrow 
0 for 0 < s < 1 follows then by Proposition 4.5 and Theorem 2.8. Moreover, we have
as follows.

Corollary 6.6. With \alpha n, wn, and D satisfying the assumptions of Theorem 6.5
and for either s > 1 or s < 0 we additionally have

lim sup
n\rightarrow \infty 

\partial Es\alpha n,wn
= \emptyset ,

where lim sup \partial Es\alpha n,wn
is defined to be [30, Def. 4.1] the set of all limits of subsequences

of points in \partial Es\alpha n,wn
.

Proof. If s < 0, or s > 1, by the convergence u\alpha n,wn \rightarrow 1D in Lq we have
| Es\alpha n,wn

| \rightarrow 0. Assume for a contradiction that we had x \in lim sup \partial Es\alpha n,wn
. Then we

have a not relabeled subsequence and x\alpha n
\in \partial Es\alpha n,wn

such that x\alpha n
\rightarrow x. Now, as in

the proof of Theorem 1.2, by using the inner density estimate, which now holds with
constant C0 and for scales r \leqslant r0 uniformly both in \alpha and the chosen points we get

| Es\alpha n,wn
| \geqslant | B(x\alpha n

, r0) \cap Es\alpha n,wn
| \geqslant C| B(0, r0)| ,

which contradicts | Es\alpha n,wn
| \rightarrow 0.

Observe that in the setting of Theorem 1.2 where the density estimates depend
on the distance to \partial D, the proof we have given for this corollary fails. Indeed, with
such density estimates we could only get that dist(x, \partial D) \leqslant r for all r > 0 small
enough and x \in lim sup\alpha \partial E

s
\alpha ,w, or

lim sup
\alpha 

\partial Es\alpha ,w \subset \partial D,

which for s < 0 or s > 1 is not a satisfactory conclusion. We conclude with some
further observations about when inequality (6.1) could be expected to hold.
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Remark 6.7. Although it is naturally of L2 scaling for \kappa D, Assumption 6.2 can
be formulated in more general spaces with this scaling, giving some hope that it could
hold for sets with Lipschitz boundary. For example, we would have (6.1) with \xi D < 1
if we had \| \kappa D\| L2,w < 2

\surd 
\pi for the weak L2 norm. In fact, in the notation of [27, Def.

3.3], it is also enough to have \| \kappa D\| S(\BbbR 2) < 1, and in [27, Thm. 3.7] it is shown that
S(\BbbR 2) in fact coincides with the Morrey space L1,1 (with different norms, a priori).
The quantitative bounds are necessary, since the example in [27, Ex. 8.4] provides a
set D without density estimates, whose curvature \kappa D belongs to L1,1.

Remark 6.8. We have by definition that

\| \kappa D\| L2,w = sup
\lambda 
\lambda 
\bigm| \bigm| \{ | \kappa D| \geqslant \lambda \} 

\bigm| \bigm| 1/2.
Now, if D is convex the construction of \kappa D implies that \kappa D \geqslant h(D) in D, for

h(D) = inf
A\subset D

Per(A)

| A| 

the Cheeger constant of D, attained by the unique Cheeger set CD. So with the
isoperimetric inequality and that CD \subset D we have

h(D) | \{ \kappa D \geqslant h(D)\} | 1/2 = h(D)| D| 1/2 =
Per(CD)

| CD| 
| D| 1/2 \geqslant 2

\surd 
\pi 

| D| 1/2

| CD| 1/2
\geqslant 2

\surd 
\pi 

with equality if and only if D is a circle. This means that to use the language of weak
norms, it would be necessary to restrict/truncate to small scales or large curvatures.

Remark 6.9. If D is convex we have that u\alpha ,0 = (1 - \alpha \kappa D)+1D (see [3, Prop. 2.2]
or [13, Thm. 6]). This implies that one can construct a vector field z \in L\infty (\BbbR d) with
| z| \leqslant 1 and divergence \kappa D and which coincides with the normal to D on \partial D. The

Green formula would provide us with (6.1) if z was, for example, continuous in
\circ 
D,

since then cancellations of the flux would appear.

Remark 6.10. An inequality resembling (6.1) in Assumption 6.2 also appears in
some works dealing with prescribed mean curvature surfaces in periodic media, like
[16] and [21]. In that case, the setting is that of a bounded cell Q and a potential
\~g \in Ld(Q) satisfying

\int 
E
\~g \leqslant (1  - \delta ) Per(E;Q) for fixed \delta \in (0, 1) and all E \subset Q is

used. In fact, it is proved in [16, Prop. 4.1] using the results of [11] that in this case
there is a continuous vector field z \in C(Q;\BbbR d) with | z| \leqslant 1 for which div z = \~g, which
is also incompatible with \~g being the variational mean curvature of a nonsmooth set
D, since in that case we would expect that z

\bigm| \bigm| 
\partial D

= \nu D [15, Thm. 3.7]. This, after
Remark 6.8, is yet more evidence that (6.1) can only be expected for small r.

Appendix A. Dual problem and its stability.

Proposition A.1. Assume that f, w \in Ld/(d - 1)(\BbbR d). The Fenchel dual of (1.1)
reads

(A.1) sup
v\in \partial TV(0)

\int 
v (f + w) - 1

\alpha 

\int 
\psi \ast ( - \alpha v),

which has a unique maximizer v\alpha ,w that satisfies the optimality condition

(A.2) v\alpha ,w =  - 1

\alpha 
\psi \prime (u\alpha ,w  - f  - w) \in \partial TV(u\alpha ,w),

where u\alpha ,w is the unique minimizer of (1.1).
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Proof. Existence follows strong duality in Banach spaces [10, Thm. 4.4.3, p. 136]
applied to the space Ld/(d - 1)(\BbbR d) with functions TV(\cdot ), G(\cdot ) = 1

\alpha 

\int 
\BbbR d \psi (\cdot  - f  - w),

and the identity operator, while uniqueness is a consequence of strict convexity of \psi \ast .
To apply strong duality we need a qualification condition. Since G is up to a shift

and a constant factor the functional
\int 
\psi and f, w \in Ld/(d - 1), it is enough to check

that u \mapsto \rightarrow 
\int 
\psi (u) is continuous on Ld/(d - 1), so that G is in particular continuous at

0. By [18, Prop. IV.1.1] continuity holds as soon as we can guarantee that \psi \circ u \in L1

for every u \in Ld/(d - 1), which is directly implied by the inequality | \psi (t)| \leqslant C| t| d/(d - 1)

included in assumption (A).
The Fenchel conjugate of G reads

G\ast (v) =  - 
\int 
v (f + w) +

1

\alpha 

\int 
\psi \ast (\alpha v).

As already computed in [23, Thm. 1], the conjugate of the total variation is TV\ast =
\chi 
\partial TV(0), the indicator function of the convex set \partial TV(0). In this duality setting,

we have [18, eq. I.(4.24), I.(4.25)] the optimality conditions v\alpha ,w \in \partial TV(u\alpha ,w) and
 - v\alpha ,w \in \partial G(u\alpha ,w) as well, which are exactly (A.2).

Now we use assumption (A) to arrive at a stability result for the maximizers v\alpha ,w
of (A.1).

Proposition A.2. We have the stability estimate

(A.3) \| v\alpha ,w  - v\alpha ,0\| Ld(\BbbR d) \leqslant \sigma \psi 

\biggl( 
\| w\| Ld/(d - 1)

\alpha 

\biggr) 
,

where \sigma \psi is the inverse of the function t \mapsto \rightarrow m\psi \ast (t)/t, with m\psi \ast the largest modulus
of uniform convexity for \psi \ast .

Proof. The computations are analogous to the ones in [22, Prop. 3.5, 3.6], in turn
originating from the methods in [1, 2], adapted to the slightly different framework
here. The main idea is, for the weak-* closed and convex set K := \partial TV(0) \subset Ld, to
define a generalized projection \pi : Ld/(d - 1) \rightarrow K by

(A.4) \pi (u) := argmin
v\in K

\int 
\psi (u) - vu+ \psi \ast (v),

which is single valued by strict convexity of \psi \ast and then noticing that the dual variable
is obtained as

(A.5) v\alpha ,w =
1

\alpha 
\pi (f + w) ,

where we have used that \psi being even implies that \psi \ast is also even.
Now, given any u \in Ld/(d - 1) and v \in Ld, differentiating the argument of the

right-hand side of (A.4) in direction \pi (u)  - v and using minimality at \pi (u) we end
up with

(A.6)

\int 
(v  - \pi (u)) (u - (\psi \ast )\prime \circ \pi (u)) \geqslant 0.

Moreover, we have the uniform monotonicity inequality (for a proof, see [22, Lem. 1.2])

(A.7)

\int 
(\pi (u1) - \pi (u2))

\bigl( 
(\psi \ast )\prime \circ \pi (u1) - (\psi \ast )\prime \circ \pi (u2)

\bigr) 
\geqslant 2m\psi \ast 

\bigl( 
\| \pi (u1) - \pi (u2)\| Ld/(d - 1)

\bigr) 
,
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for whose left-hand side we have, using (A.6) twice (with v = \pi (u1) and v = \pi (u2))
and the H\"older inequality, that

(A.8)

\int 
(\pi (u1) - \pi (u2)) ((\psi 

\ast )\prime \circ \pi (u1) - (\psi \ast )\prime \circ \pi (u2))

\leqslant 
\int 

(\pi (u1) - \pi (u2)) (u1  - u2)

+

\int 
(\pi (u1) - \pi (u2)) ((\psi 

\ast )\prime \circ \pi (u1) - u1)

 - 
\int 

(\pi (u1) - \pi (u2)) ((\psi 
\ast )\prime \circ \pi (u2) - u2)

\leqslant 
\int 

(\pi (u1) - \pi (u2)) (u1  - u2)

\leqslant \| \pi (u1) - \pi (u2)\| Ld \| u1  - u2\| Ld/(d - 1) .

The combination of (A.8), (A.7), and (A.5) allows us then to conclude (A.3). As
already noted in [22], the property (see [9, Fact 5.3.16]) m\psi \ast (ct) > c2m\psi \ast (t) for all
c > 1 implies that the function t \mapsto \rightarrow m\psi \ast (t)/t is strictly increasing, so its inverse is
well defined.

Appendix B. Density estimates for denoised level sets.

Proposition B.1. Let K \subset \BbbR d be a bounded set, and assume that

(B.1) \| v\alpha ,w  - v\alpha ,0\| Ld(\BbbR d) \leqslant C0 < \Theta d,

which is possible by Proposition A.2. Furthermore, assume that for each \varepsilon > 0 there is
rK,\varepsilon > 0 such that for all x \in \BbbR d \setminus K and all \alpha we have the equi-integrability estimate

(B.2)

\int 
B(x,rK,\varepsilon )

| v\alpha ,0| d \leqslant \varepsilon d.

Then the level sets Es\alpha ,w denoting \{ u\alpha ,w > s\} for s > 0 and \{ u\alpha ,w < s\} when s < 0
satisfy uniform density estimates at some scale rK and with constant CK outside K,
that is,

| Es\alpha ,w \cap B(x, r)| 
| B(x, r)| 

\geqslant CK , and
| B(x, r) \setminus Es\alpha ,w| 

| B(x, r)| 
\geqslant CK

for all x \in \partial Es\alpha ,w \setminus K and 0 < r \leqslant rK .

Proof. Let x \in \partial Es\alpha ,w \setminus K. We start from the formula

(B.3) Per(Es\alpha ,w \cap B(x, r)) - 
\int 
Es

\alpha ,w\cap B(x,r)

v\alpha ,w \leqslant 2Per
\Bigl( 
B(x, r); (Es\alpha ,w)

(1)
\Bigr) 
,

which holds for almost every r > 0 [23, Lem. 8] by repeated application of the precise
formulas for the perimeter of an intersection [29, Thm. 16.3].

On the other hand we have, thanks to the H\"older inequality, the condition (B.1),
and local equi-integrability (B.2) that for 0 < r \leqslant rK,\varepsilon \int 

Es
\alpha ,w\cap B(x,r)

v\alpha ,w \leqslant | Es\alpha ,w \cap B(x, r)| (d - 1)/d\| v\alpha ,w  - v\alpha ,0\| Ld(\BbbR d) +

\int 
Es

\alpha ,w\cap B(x,r)

| v\alpha ,0| 

\leqslant | Es\alpha ,w \cap B(x, r)| (d - 1)/d (C0 + \varepsilon ) .
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Plugging this into (B.3), we obtain (the superscript (1) denoting density-1 points)

Per(Es\alpha ,w \cap B(x, r)) - | Es\alpha ,w \cap B(x, r)| (d - 1)/d(C0 + \varepsilon ) \leqslant 2Per
\Bigl( 
B(x, r); (Es\alpha ,w)

(1)
\Bigr) 
.

Using now the isoperimetric inequality, we get

(B.4) | Es\alpha ,w \cap B(x, r)| (d - 1)/d (\Theta d  - C0  - \varepsilon ) \leqslant 2Per
\Bigl( 
B(x, r); (Es\alpha ,w)

(1)
\Bigr) 
.

Taking some fixed \varepsilon 0 < \Theta d  - C0, and since for a.e. r > 0

Per
\Bigl( 
B(x, r); (Es\alpha ,w)

(1)
\Bigr) 
= \scrH d - 1

\Bigl( 
\partial B(x, r) \cap (Es\alpha ,w)

(1)
\Bigr) 
=

d

dt

\bigm| \bigm| \bigm| \bigm| 
t=r

\bigm| \bigm| Es\alpha ,w \cap B(x, t)
\bigm| \bigm| ,

we can derive the inner density estimate | Es\alpha ,w \cap B(x, r)| \geqslant CK | B(x, r)| with CK
depending on \varepsilon 0 by integrating the differential inequality (B.4) up to rK := rK,\varepsilon 0 .

The outer density estimate follows analogously by considering the complement
\BbbR d \setminus Es\alpha ,w, which admits the variational mean curvature  - v\alpha ,w.
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