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Invariant \bfitvarphi -Minimal Sets and Total Variation Denoising on Graphs\ast 

Clemens Kirisits\dagger , Otmar Scherzer\ddagger , and Eric Setterqvist\dagger 

Abstract. Total variation flow, total variation regularization, and the taut string algorithm are known to be
equivalent filters for one-dimensional discrete signals. In addition, the filtered signal simultaneously
minimizes a large number of convex functionals in a certain neighborhood of the data. In this article
we study the question of to what extent this situation remains true in a more general setting, namely
for data given on the vertices of an oriented graph and the total variation being J(f) =

\sum 
i,j | f(vi) - 

f(vj)| . Relying on recent results on invariant \varphi -minimal sets we prove that the minimizer to the
corresponding Rudin--Osher--Fatemi (ROF) model on the graph has the same universal minimality
property as in the one-dimensional setting. Interestingly, this property is lost if J is replaced by the
discrete isotropic total variation. Next, we relate the ROF minimizer to the solution of the gradient
flow for J . It turns out that, in contrast to the one-dimensional setting, these two problems are not
equivalent in general, but conditions for equivalence are available.
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variation flow
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1. Introduction. It is a well-known fact that for one-dimensional discrete data total vari-
ation (TV) regularization and TV flow are equivalent. More specifically, denote by

J(u) =
n - 1\sum 
i=1

| ui  - ui+1| 

the total variation of u \in \BbbR n, and let f \in \BbbR n and \alpha > 0 be given. Then, as was shown in [37],
the minimizer u\alpha of the functional

1

2
\| f  - u\| 22 + \alpha J(u)

coincides with the solution to the Cauchy problem
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1644 C. KIRISITS, O. SCHERZER, AND E. SETTERQVIST

u\prime (t) \in  - \partial J(u(t)), t > 0,

u(0) = f,

at time t = \alpha . That is, u\alpha = u(\alpha ) for all \alpha > 0. On the other hand, it is known that u\alpha can
also be obtained by means of the taut string algorithm (see [29]), which reads as follows:

1. Identify the vector f \in \BbbR n with a piecewise constant function on the unit interval and
integrate it to obtain the linear spline F .

2. Find the ``taut string"" U\alpha , that is, the element of minimal graph length in a tube of
width 2\alpha around F with fixed ends:

U\alpha = argmin

\biggl\{ \int 1

0

\sqrt{} 
1 + (U \prime (x))2 dx : \| U  - F\| \infty \leq \alpha ,U(0) = F (0), U(1) = F (1)

\biggr\} 
.

3. Differentiate U\alpha to obtain u\alpha .
Problems which essentially can be modeled and solved by the taut string algorithm appear in
diverse applications. Examples include production planning (see, for instance, [30]) and energy
and information transmission (e.g., [32] and [38]). Extensions of the taut string algorithm to
more general data have been studied in [20, 21, 23]. Further suggestions of generalizations of
the taut string algorithm, in both discrete and continuous settings, can be found in [35, Chap.
4.4].

It turns out that the taut string not only has minimal graph length but actually minimizes
every functional of the form

U \mapsto \rightarrow 
\int 1

0
\varphi (U \prime (x)) dx,

where \varphi : \BbbR \rightarrow \BbbR is an arbitrary convex function and U ranges over the 2\alpha -tube around F .
Recently, this intriguing situation was studied in greater generality in [26, 27]. The authors
coined the term invariant \varphi -minimal for sets which, like the 2\alpha -tube, have an element that
simultaneously minimizes a large class of distances. In addition they characterized these sets
in the discrete setting.

In this article we study relations between TV regularization, TV flow and taut strings
in a setting that contains the one outlined above as a special case. More specifically, we
consider data f as given on the vertices of an oriented graph G = (V,E) together with the
total variation

J(f) =
\sum 
v,w

| f(v) - f(w)| ,(1.1)

where the sum runs over all adjacent pairs of vertices v, w.
Our first result concerns the subdifferential of J . In Theorem 2.10 we prove that \partial J(f)

is an invariant \varphi -minimal set for every f : V \rightarrow \BbbR . It is noteworthy that, as shown in
Remark 3.3, this property is not shared by the discrete isotropic TV, which for f \in \BbbR m\times n

reads1

1Here, f \in \BbbR m\times n corresponds to f being defined on the vertices of an m \times n Cartesian graph as depicted
in Figure 3.1.D
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INVARIANT \bfitvarphi -MINIMAL SETS AND TV DENOISING 1645

\sum 
i,j

\sqrt{} 
(fi+1,j  - fi,j)2 + (fi,j+1  - fi,j)2(1.2)

and has been widely used in imaging applications; see [2, 3, 11], for instance.
Next we consider the Rudin--Osher--Fatemi (ROF) model [31] on the graph

min
u:V\rightarrow \BbbR 

1

2

\sum 
v\in V

| f(v) - u(v)| 2 + \alpha J(u), \alpha \geq 0.(1.3)

From its dual formulation and Theorem 2.10 it follows that the solution u\alpha of problem (1.3)
has a characteristic feature resembling the universal minimality property of the taut string:
It simultaneously minimizes \sum 

v\in V
\varphi (u(v))

over the set f - \alpha \partial J(0) for every convex \varphi ; see Theorem 3.2. We stress again that the minimizer
of the isotropic ROF model, where J(f) is given by (1.2), does not have this property.

Because of its anisotropy, different variants of model (1.3) have been used for imaging
problems with an underlying rectilinear geometry [8, 15, 33, 36]. Moreover, in contrast to
(1.2), J as given by (1.1) is submodular and for the minimization of submodular functions
many efficient algorithms are available, for instance, graph cut algorithms [12, 13, 16, 24].

Finally, we examine the gradient flow for J and how it relates to the ROF model. Such
relations in higher dimensional settings have been the subject of recent investigations. In [9]
discrete variational methods and gradient flows for convex one-homogeneous functionals are
investigated and sufficient conditions for their equivalence are provided. A sufficient condition
for the equivalence of TV regularization and TV flow with \ell 1-anisotropy in the continuous
two-dimensional setting is given in [28]. Considering the continuous setting with isotropic TV,
it is shown in [25] that TV regularization and TV flow coincide for radial data but in general
are nonequivalent.

Our results in this direction are the following. First and foremost TV regularization and
TV flow are not equivalent for general graphs and data f ; see Theorem 5.4. This result is
based on a constructed example for which we are able to explicitly track the evolution of the
two solutions u\alpha and u(t) as \alpha and t range over an interval [0, L]. The example also shows
that, in contrast to the one-dimensional setting, the jump sets do not necessarily evolve in
a monotone way. Moreover, we investigate conditions for equality of u\alpha and u(t = \alpha ) and
discuss situations in which they apply.

To summarize, let \psi : \BbbR \rightarrow \BbbR by a strictly convex function, for the sake of analogy pick
\psi (x) =

\surd 
1 + x2. Then the problem

min
u\in f - \alpha \partial J(0)

\sum 
v\in V

\psi (u(v))

may be seen as a generalization of the taut string algorithm to oriented graphs for the following
reasons:D
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1646 C. KIRISITS, O. SCHERZER, AND E. SETTERQVIST

\bullet The set f  - \alpha \partial J(0) reduces to the set of derivatives of the elements in the 2\alpha -tube
around F in case the underlying graph is a path, that is, it models the one-dimensional
situation described in the first paragraph of this introduction.

\bullet The solution u\alpha in fact minimizes
\sum 

v\in V \varphi (u(v)) for any convex function \varphi .
\bullet u\alpha minimizes the corresponding ROF model (1.3).
\bullet Further, if \alpha is either sufficiently small or sufficiently large, then u\alpha equals the TV
flow solution at time t = \alpha .

This article is organized as follows. In section 2 we introduce the graph setting and
collect some properties of J . In particular we discuss the concept of invariant \varphi -minimal
sets in subsection 2.1, while establishing a connection to base polyhedra in subsection 2.2.
Sections 3 and 4 are dedicated to the two main problems considered in this paper, that is, TV
regularization and TV flow, respectively. In section 5 we compare the flow and ROF solutions.
The detailed calculations underlying several results of section 5 are collected in the appendix.

2. Total variation on graphs. Throughout this article, following the terminology of [14],
we consider oriented connected graphs G = (V,E). That is, V = \{ v1, . . . , vn\} and E \subset V \times V
with the additional conditions that, first, (vi, vj) \in E implies (vj , vi) /\in E and, second, there is
a path between every pair of vertices (ignoring edge orientations). Whenever we simply write
``graph"" below, we implicitly mean a graph of this type. For v, w \in V the edge (v, w) \in E
is interpreted as directed from v to w. Let \BbbR V and \BbbR E be the space of real-valued functions
defined on the vertices and edges, respectively. We consider the usual \ell p-norms on \BbbR V

\| u\| pp =
\sum 
v\in V

| u(v)| p, 1 \leq p <\infty ,

\| u\| \infty = max
v\in V

| u(v)| .

Analogous \ell p-norms will be considered on \BbbR E . In particular, denote the closed \ell \infty -ball of
radius \alpha \geq 0 in \BbbR E by

\scrB \alpha = \{ H \in \BbbR E : \| H\| \infty \leq \alpha \} .

Given H \in \BbbR E , define the divergence operator div : \BbbR E \rightarrow \BbbR V according to

(divH)(v) =
\sum 

w\in V :(w,v)\in E

H((w, v)) - 
\sum 

w\in V :(v,w)\in E

H((v, w)).

The divergence at the vertex v can be thought of as the sum of the flows on the incoming
edges minus the sum of the flows on the outgoing edges. We will frequently apply div to the
unit ball \scrB 1 \in \BbbR E and its subset \scrB 1,u defined, for given u \in \BbbR V , by

\scrB 1,u =

\left\{   H \in \BbbR E : H((vi, vj)) \in 

\left\{   
\{ 1\} , u(vi) < u(vj),
[ - 1, 1] , u(vi) = u(vj),
\{  - 1\} , u(vi) > u(vj)

\right\}   .

Introduce further the natural scalar product on \BbbR V according to
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INVARIANT \bfitvarphi -MINIMAL SETS AND TV DENOISING 1647

\langle u, h\rangle \BbbR V =
\sum 
v\in V

u(v)h(v).

For a closed and convex set A \subset \BbbR V the support function \sigma A : \BbbR V \rightarrow \BbbR is given by

\sigma A(u) = sup
h\in A

\langle u, h\rangle \BbbR V .

Definition 2.1. The total variation on \BbbR V is defined as the support function of the set
div\scrB 1,

J(u) = sup
h\in div\scrB 1

\langle u, h\rangle \BbbR V .

Since J(u) = \langle u,divH\rangle \BbbR V for every H \in \scrB 1,u we can rearrange the inner product to obtain

J(u) =
\sum 

(vi,vj)\in E

| u(vj) - u(vi)| .(2.1)

Remark 2.2. Equation (2.1) shows that J is independent of the orientation of edges, even
though the divergence is not. All subsequent results remain true regardless of edge orientation
and also apply to simple undirected graphs once each edge has been oriented arbitrarily.

Definition 2.3. For every u \in \BbbR V the subdifferential \partial J(u) is defined as the set of all
elements u\ast \in \BbbR V such that

\langle h - u, u\ast \rangle \BbbR V + J(u) \leq J(h) for all h \in \BbbR V .

Since \partial J(u) is a closed, convex, and nonempty subset of \BbbR V , we can highlight one partic-
ular element.

Definition 2.4. The element of minimal \ell 2-norm in \partial J(u) will be referred to as the minimal
section of \partial J(u). It is denoted by \partial \circ J(u), that is,

\partial \circ J(u) = argmin
u\ast \in \partial J(u)

\| u\ast \| 2.

The following lemma collects some results for the subdifferential \partial J which will be used in
what follows.

Lemma 2.5.
1. \partial J(0) = div\scrB 1.
2. \partial J(u) = \{ u\ast \in \partial J(0) : \langle u, u\ast \rangle \BbbR V = J(u)\} for all u \in \BbbR V .
3. \partial J(u) = div\scrB 1,u for all u \in \BbbR V .

Proof. The functional J is the support function of the closed and convex set div\scrB 1 and
therefore \partial J(0) = div\scrB 1.

Item 2 follows from Definition 2.3 and the absolute 1-homogeneity of J , that is, J(tu) =
| t| J(u) for all t \in \BbbR and u \in \BbbR V .

Regarding item 3, note that J(u) = \langle u,divH\rangle \BbbR V for H \in \scrB 1 if and only if H \in \scrB 1,u. In
view of item 2, it is then clear that \partial J(u) = div\scrB 1,u.D
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1648 C. KIRISITS, O. SCHERZER, AND E. SETTERQVIST

Remark 2.6.
1. Since, according to item 3 in Lemma 2.5, the set \scrB 1,u only depends on sgn(u(vi) - u(vj))

for every edge (vi, vj) \in E, we have

\partial J(u) = \partial J(h)

if and only if

sgn(u(vi) - u(vj)) = sgn(h(vi) - h(vj))

for each (vi, vj) \in E.
2. It now follows immediately that if the subdifferentials of J at u and h coincide, then

they also coincide for every convex combination of u and h. That is, \partial J(u) = \partial J(h)
implies \partial J(\lambda u+ (1 - \lambda )h) = \partial J(u) for every \lambda \in (0, 1).

3. Lemma 2.5 also implies that the number of different subdifferentials of J is finite. In
particular, \bigm| \bigm| \bigl\{ \partial J(u) : u \in \BbbR V

\bigr\} \bigm| \bigm| \leq 3| E| .

This must not be confused with the fact that for any given u \in \BbbR V the subdifferential
\partial J(u) might have infinitely many elements.

2.1. Connections to invariant \bfitvarphi -minimal sets. In this subsection we recall the notion
of invariant \varphi -minimal sets introduced in [26] and show that the subdifferential \partial J(u) is an
example of such a set.

Definition 2.7. A set \Omega \subset \BbbR n is called invariant \varphi -minimal if for every a \in \BbbR n there exists
an element xa \in \Omega such that

n\sum 
i=1

\varphi (xa,i  - ai) \leq 
n\sum 

i=1

\varphi (xi  - ai)(2.2)

holds for all x \in \Omega and all convex functions \varphi : \BbbR \rightarrow \BbbR .
An interesting property of invariant \varphi -minimal sets is the following. By considering the

particular convex function \varphi (x) = | x| p, 1 \leq p <\infty , in (2.2) we obtain

n\sum 
i=1

| xa,i  - ai| p \leq 
n\sum 

i=1

| xi  - ai| p

for all x \in \Omega . Taking the pth root and including the case p = \infty , which follows by limiting
arguments, shows that the element xa satisfies

\| xa  - a\| p \leq \| x - a\| p

for all x \in \Omega and 1 \leq p \leq \infty . That is, xa is an element of best approximation of a in \Omega with
respect to all \ell p-norms, 1 \leq p \leq \infty .

Before we can restate two characterizations of invariant \varphi -minimal sets from [26] we have
to introduce several notions about convex subsets of \BbbR n.D
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INVARIANT \bfitvarphi -MINIMAL SETS AND TV DENOISING 1649

A hyperplane H supports a set M \subset \BbbR n if M is contained in one of the two closed
halfspaces with boundary H and at least one boundary point of M is in H. Assume that
M \subset \BbbR n is convex. Following the terminology of [22] a set F \subset M is called a face of M if
F = \emptyset , F =M or if F =M \cap H, where H is a supporting hyperplane ofM . A convex polytope
P in \BbbR n is a bounded set which is the intersection of finitely many closed halfspaces. Note
that a face of a convex polytope is itself a convex polytope.

Let \Omega \subset \BbbR n be closed and convex and denote by \{ ei\} ni=1 the standard basis of \BbbR n. For
x \in \Omega , consider all vectors y = ei - ej such that x+\beta y \in \Omega for some \beta > 0. Let Sx denote the
set of all such vectors at x. Further, let Kx = \{ z : z =

\sum 
y\in Sx

\lambda yy, \lambda y \geq 0\} be the convex cone
generated by the vectors in Sx. We say that \Omega has the special cone property if \Omega \subset x +Kx

for each x \in \Omega .

Remark 2.8. In [26] vectors of the type ei and ei+ej are considered in addition to ei - ej in
the definition of the special cone property. Including these vectors leads to a characterization
of the related notion of invariant K-minimal sets.

Theorem 2.9. Let \Omega \subset \BbbR n be a bounded, closed and convex set. Then the following state-
ments are equivalent:

1. \Omega is invariant \varphi -minimal.
2. \Omega has the special cone property.
3. \Omega is a convex polytope where the affine hull of any of its faces is a shifted subspace of

\BbbR n spanned by vectors of the type ei  - ej.

Proof. Equivalence of statements 1 and 2 follows from combining Theorems 3.2 and 4.2
in [26]. Equivalence of statements 1 and 3 is precisely Theorem 4.3 in [26].

An example of an invariant \varphi -minimal set in the plane is depicted in Figure 2.1, left panel.
We are now ready to show the following.

x1

x2

1

1

 - 1

 - 1

x1

x2

P (g)

B(g)

Figure 2.1. Left: The slanted line segment is an example of an invariant \varphi -minimal set as characterized by
Theorem 2.9. In fact, identifying xi with u\ast (vi), it is the subdifferential \partial J(0) for J being defined on the graph
with V = \{ v1, v2\} and E = \{ (v1, v2)\} . All other invariant \varphi -minimal sets in \BbbR 2 are translations and rescalings
of \partial J(0). Right: Submodular polyhedron (in gray) and base polyhedron (slanted line segment) in the plane.
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1650 C. KIRISITS, O. SCHERZER, AND E. SETTERQVIST

Theorem 2.10. The subdifferential \partial J(u) is an invariant \varphi -minimal set.

Proof. Consider first \partial J(0). In [27, Thm. 2.4, Rem. 2.5] it is established that the bounded,
closed, and convex set div\scrB \alpha \subset \BbbR V is invariant \varphi -minimal by showing that it has the special
cone property. It follows that \partial J(0) = div\scrB 1 is an invariant \varphi -minimal set.

Take next a general u \in \BbbR V . We have \partial J(u) = H \cap \partial J(0), where H = \{ u\ast \in \BbbR V :
\langle u\ast , u\rangle \BbbR V = J(u)\} , recall Lemma 2.5. Consider the halfspace \widehat H = \{ u\ast \in \BbbR V : \langle u\ast , u\rangle \BbbR V \leq 
J(u)\} with boundary H. Note that (i) \partial J(0) \subset \widehat H, (ii) H \cap \partial J(0) \not = \emptyset , and (iii) \partial J(0) is a
convex polytope. So, H is a supporting hyperplane of \partial J(0) and \partial J(u) is a face of \partial J(0) and
itself a convex polytope. Further, every face of \partial J(u) is a face of \partial J(0). This follows from
a general result on faces of convex polytopes; see, e.g., [22, Chap. 3.1, Thm. 5]. Therefore
\partial J(u) satisfies statement 3 in Theorem 2.9.

Remark 2.11. As \partial J(u) is an invariant \varphi -minimal set, it follows that the minimal section
\partial \circ J(u) not only has minimal \ell 2-norm in \partial J(u) but satisfies\sum 

v\in V
\varphi (\partial \circ J(u)(v)) = min

u\ast \in \partial J(u)

\sum 
v\in V

\varphi (u\ast (v))

for every convex function \varphi : \BbbR \rightarrow \BbbR .

2.2. Invariant \bfitvarphi -minimal sets and submodular functions. To conclude this section, we
present an interesting connection between submodular functions and invariant \varphi -minimal sets.
Submodular functions play an important role in combinatorial optimization, similar to that
of convex functions in continuous optimization. See [4, 18] for more details.

Let S = \{ 1, . . . , n\} . A set function g : 2S \rightarrow \BbbR is submodular if

g(A) + g(B) \geq g(A \cup B) + g(A \cap B)

for all sets A,B \subset S. Given a submodular function g, assuming g(\emptyset ) = 0, the associated
submodular polyhedron P (g) and base polyhedron B(g) are defined by

P (g) =

\Biggl\{ 
x \in \BbbR n : for all A \subset S,

\sum 
i\in A

xi \leq g(A)

\Biggr\} 
,

B(g) =

\Biggl\{ 
x \in P (g) :

\sum 
i\in S

xi = g(S)

\Biggr\} 
.

Note that B(g) is a bounded set and therefore a convex polytope. In the plane we can easily
visualize submodular and base polyhedra; see Figure 2.1, right panel, for an example.

Define the tangent cone TP (x) of a convex polytope P \subset \BbbR n at x \in P by

TP (x) = \{ \lambda z : \lambda \geq 0, x+ z \in P\} .

N. Tomizawa characterized (see [18, Thm. 17.1]) base polyhedra according to the following.

Theorem 2.12. A convex polytope P \subset \BbbR n is a base polyhedron if and only if for all x \in P ,
the tangent cone TP (x) is generated by vectors of the type ei  - ej, i \not = j.D
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With this characterization at hand, the connection between invariant \varphi -minimal sets and
submodular functions can be revealed.

Proposition 2.13. A bounded, closed, and convex set \Omega \subset \BbbR n is invariant \varphi -minimal if and
only if it is a base polyhedron associated to a submodular function g : 2S \rightarrow \BbbR .

Proof. Recall from Theorem 2.9 that \Omega is invariant \varphi -minimal if and only if it has the
special cone property. Next, it is straightforward to derive that \Omega has the special cone property
if and only if the tangent cone T\Omega (x), for every x \in \Omega , is generated by vectors of the type ei - ej ,
i \not = j. This is precisely the characterization of a base polyhedron as given by Theorem 2.12.

Remark 2.14. Figure 2.1 illustrates the equivalence of invariant \varphi -minimal sets and base
polyhedra. Note that the subdifferential \partial J(0) is the base polyhedron B(g) associated to the
cut function g on the graph; see [4, sect. 6.2].

3. The ROF model on the graph. With the graph setting introduced, we now turn to
an analogue of the ROF image denoising model on \BbbR V . Given f \in \BbbR V and \alpha \geq 0 we consider
the following minimization problem:

min
u\in \BbbR V

1

2
\| f  - u\| 22 + \alpha J(u).(3.1)

Throughout this article the unique solution to (3.1) will be denoted by u\alpha .

3.1. Dual formulation and an invariance property of the ROF minimizer. The next
proposition remains true if J is replaced by the support function of an arbitrary closed and
convex subset of \BbbR V .

Proposition 3.1. For every f \in \BbbR V and \alpha \geq 0 problem (3.1) is equivalent to

min
u\in f - \alpha \partial J(0)

\| u\| 2.(3.2)

Proof. The corresponding dual problem of (3.1) can be expressed as

min
u\ast \in \BbbR V

1

2
\| f  - u\ast \| 22 + (\alpha J)\ast (u\ast ),(3.3)

where (\alpha J)\ast denotes the convex conjugate of \alpha J . For general results underlying the derivation
of (3.3) and the optimality conditions (3.4) below, see [17, Chap. III, Prop. 4.1, Rem. 4.2].
Let u\alpha and u\ast \alpha denote solutions to the primal problem (3.1) and the dual problem (3.3),
respectively. The optimality conditions are

u\ast \alpha \in \partial (\alpha J)(u\alpha ) = \alpha \partial J(u\alpha ),

u\alpha = f  - u\ast \alpha .
(3.4)

As \alpha J(u) is the support function of div\scrB \alpha = \alpha \partial J(0), its convex conjugate (\alpha J)\ast is given by

(\alpha J)\ast (u\ast ) =

\biggl\{ 
0, u\ast \in \alpha \partial J(0),
+\infty , u\ast /\in \alpha \partial J(0).

Taking into account the characterization of (\alpha J)\ast in the dual formulation (3.3) yields
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1652 C. KIRISITS, O. SCHERZER, AND E. SETTERQVIST

u\ast \alpha = argmin
u\ast \in \alpha \partial J(0)

\| f  - u\ast \| 2.

That is, u\ast \alpha is the orthogonal projection of f onto the closed and convex set div\scrB \alpha . For u\alpha 
we now obtain using (3.4) that

\| u\alpha \| 2 = \| f  - u\ast \alpha \| 2 = min
u\ast \in \alpha \partial J(0)

\| f  - u\ast \| 2 = min
u\in f - \alpha \partial J(0)

\| u\| 2 .

Theorem 3.2. The ROF minimizer u\alpha satisfies\sum 
v\in V

\varphi (u\alpha (v)) = min
u\in f - \alpha \partial J(0)

\sum 
v\in V

\varphi (u(v))(3.5)

for every convex function \varphi : \BbbR \rightarrow \BbbR .

Proof. According to Theorem 2.10 the set \alpha \partial J(0) is invariant \varphi -minimal; recall Def-
inition 2.7. From the above derivation of the dual formulation, we know that u\alpha is the
\ell 2-minimizer in the set f  - \alpha \partial J(0). Taken together, this gives (3.5).

While Proposition 3.1 is valid for every support function of a closed and convex set,
Theorem 3.2 fails in this more general case. The following remark discusses this failure for
the so-called discrete isotropic TV.

Remark 3.3. Let G = (V,E) be an M \times N Cartesian graph, as illustrated in Figure 3.1.
On such graphs the following variant of J has been a popular choice, in particular for image
processing applications:

Jiso(u) =

N - 1\sum 
j=1

M - 1\sum 
i=1

\sqrt{} 
| u(vi+1,j) - u(vi,j)| 2 + | u(vi,j+1) - u(vi,j)| 2

+
M - 1\sum 
i=1

| u(vi+1,N ) - u(vi,N )| +
N - 1\sum 
j=1

| u(vM,j+1) - u(vM,j)| ;

see, for instance, [2, 3, 11]. It can be shown that Jiso is the support function of div\scrB iso
1 , where

v1,2 v2,2 v3,2

v2,3

v2,1

v1,3

v1,1 v3,1

v3,3

Figure 3.1. A 3\times 3 Cartesian graph.
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\scrB iso
1 =

\biggl\{ 
H \in \BbbR E : max

i,j
Cij(H) \leq 1

\biggr\} 
,

and Cij(H) is given by

Cij(H) =

\left\{           

\sqrt{} 
H((vi+1,j , vi,j))2 +H((vi,j+1, vi,j))2, i \leq M  - 1, j \leq N  - 1,

| H((vi+1,N , vi,N ))| , i \leq M  - 1, j = N,

| H((vM,j+1, vM,j))| , i =M, j \leq N  - 1,

0, i =M, j = N.

Let M,N > 1. From the construction of \scrB iso
1 it follows that \partial Jiso(0) = div\scrB iso

1 is not a
polytope and therefore, by Theorem 2.9, it cannot be invariant \varphi -minimal. Consequently, the
minimizer of the isotropic ROF model, which can be characterized as

argmin
u\in f - \alpha \partial Jiso(0)

\| u\| 2,

in general does not have property (3.5).

Remark 3.4. In the continuous setting it is known that an analogue of Theorem 3.2 holds
for isotropic TV; see [35, Thm. 4.46].

3.2. Further properties of the ROF minimizer. In this subsection we study further prop-
erties of the ROF minimizer u\alpha . We first give an auxiliary result.

Lemma 3.5. Let 0 \leq \beta 1 < \beta 2. If \partial J(u\beta 1) = \partial J(u\beta 2), then for every \alpha \in (\beta 1, \beta 2) the ROF
minimizer u\alpha is a convex combination of u\beta 1 and u\beta 2. That is,

u\alpha =
\beta 2  - \alpha 

\beta 2  - \beta 1
u\beta 1 +

\alpha  - \beta 1
\beta 2  - \beta 1

u\beta 2 , \beta 1 < \alpha < \beta 2.(3.6)

Proof. Denote the convex combination in (3.6) by c(\alpha ). It suffices to verify that c(\alpha )
satisfies the optimality conditions (3.4), that is, f  - c(\alpha ) \in \alpha \partial J(c(\alpha )). First, note that by
item 2 in Remark 2.6 we have \partial J(c(\alpha )) = \partial J(u\beta 1). Next, let u

\ast 
\beta i

= f  - u\beta i
, i = 1, 2.

If \beta 1 > 0, we compute

f  - c(\alpha )

\alpha 
=

1

\alpha 

\biggl[ 
\beta 2  - \alpha 

\beta 2  - \beta 1
u\ast \beta 1

+
\alpha  - \beta 1
\beta 2  - \beta 1

u\ast \beta 2

\biggr] 
=
\beta 1
\alpha 

\beta 2  - \alpha 

\beta 2  - \beta 1

u\ast \beta 1

\beta 1
+
\beta 2
\alpha 

\alpha  - \beta 1
\beta 2  - \beta 1

u\ast \beta 2

\beta 2
.

It is straightforward to check that the last expression is a convex combination of u\ast \beta 1
/\beta 1 and

u\ast \beta 2
/\beta 2. By optimality of u\beta i

and the assumption that \partial J(u\beta 1) = \partial J(u\beta 2), both u
\ast 
\beta i
/\beta i lie in

the same convex set \partial J(u\beta 1). Therefore (f  - c(\alpha ))/\alpha is in this set, too. We conclude that
c(\alpha ) must be the ROF minimizer u\alpha .

If \beta 1 = 0, then u\ast \beta 1
= 0 and (f  - c(\alpha ))/\alpha = u\ast \beta 2

/\beta 2 \in \partial J(c(\alpha )).

We can now show the following properties of the ROF minimizer.
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Proposition 3.6.
1. Problem (3.1) is mean-preserving, that is\sum 

v\in V
u\alpha (v) =

\sum 
v\in V

f(v) for all \alpha \geq 0.

2. The function \alpha \mapsto \rightarrow \| u\alpha \| 2 is nonincreasing on [0,\infty ).
3. The solution u\alpha is a continuous piecewise affine function with respect to \alpha . Its piece-

wise constant derivative du\alpha /d\alpha exists everywhere except for a finite number of values
of 0 < \alpha 1 < \cdot \cdot \cdot < \alpha N <\infty . In particular,

u\alpha (v) =
1

| V | 
\sum 
w\in V

f(w) for all \alpha \geq \alpha N and v \in V.(3.7)

Proof.
1. According to Proposition 3.1 we have u\alpha = f  - divH for an H \in \BbbR E . Summing

this equation over all v \in V and using the fact that
\sum 

v\in V divH(v) vanishes for every
H \in \BbbR E gives

\sum 
v\in V u\alpha (v) =

\sum 
v\in V f(v) for all \alpha \geq 0.

2. From the dual formulation of the ROF model, we know that u\alpha is the \ell 2-minimizer
in the set f  - div\scrB \alpha . Since f  - div\scrB \beta 1 \subset f  - div\scrB \beta 2 , \beta 1 \leq \beta 2, it then follows that
\alpha \mapsto \rightarrow \| u\alpha \| 2 is nonincreasing.

3. We first prove that the map \alpha \mapsto \rightarrow u\alpha is continuous. Consider a convergent sequence
of regularization parameters \alpha n \rightarrow \alpha . According to the optimality condition (3.4) the
corresponding minimizers un := u\alpha n and u := u\alpha can be expressed as

un = f  - \alpha nu
\ast 
n,

u = f  - \alpha u\ast 

for certain u\ast n \in \partial J(un) and u
\ast \in \partial J(u). We compute

\| un  - u\| 22 = \langle un  - u, un  - u\rangle \BbbR V

= \langle un  - u, \alpha u\ast  - \alpha nu
\ast 
n\rangle \BbbR V

= \alpha \langle un, u\ast \rangle \BbbR V  - \alpha n\langle un, u\ast n\rangle \BbbR V  - \alpha \langle u, u\ast \rangle \BbbR V + \alpha n\langle u, u\ast n\rangle \BbbR V .

Using the fact that \langle u, u\ast \rangle = J(u) and \langle un, u\ast n\rangle = J(un) while \langle un, u\ast \rangle \leq J(un) and
\langle u, u\ast n\rangle \leq J(u) according to Lemma 2.5, we obtain

\| un  - u\| 22 \leq \alpha J(un) - \alpha nJ(un) - \alpha J(u) + \alpha nJ(u)

\leq | \alpha n  - \alpha | | J(u) + J(f)| ,

and therefore un \rightarrow u.
The piecewise affine structure of u\alpha has been shown in [9, Thm. 4.6]. However, since
our proof relies on different arguments, we choose to include it.
From Lemma 3.5 as well as Remark 2.6, items 2 and 3, we can derive two important
facts. These two facts, combined with continuity of the map \alpha \mapsto \rightarrow u\alpha , show that it
must be piecewise affine on [0,\infty ). First, the subdifferential \partial J(u\alpha ) can change onlyD
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a finite number of times. Second, in intervals where it does not change, the minimizer
u\alpha is an affine function of \alpha .
Finally, consider u\alpha for \alpha \geq \alpha N , where \alpha N is the last time \partial J(u\alpha ) changes. Let \=f
denote the averaged initial image f , i.e.,

\=f(v) =
1

| V | 
\sum 
w\in V

f(w) for all v \in V.(3.8)

For \alpha \geq C, where C > 0 is chosen large enough, it follows that \=f \in f - div\scrB \alpha . Clearly,
\=f is the \ell 2-minimizer in f  - div\scrB \alpha . Combined with the piecewise affine structure of
u\alpha , we conclude that u\alpha = \=f for \alpha \geq \alpha N .

Remark 3.7. Recall that in section 2 we have assumed the graph to be connected. If this
assumption is dropped, then (3.7) does not hold in general, since \=f might not be a minimizer
for any \alpha . If the graph is disconnected, however, the ROF problem decouples into mutually
independent subproblems, one for each connected component of the graph. Statement (3.7)
then applies to each subproblem. An analogous remark can be made about property (4.3) of
the TV flow.

4. The TV flow on the graph. In this section we consider the gradient flow associated
to J . That is, given an initial datum f : V \rightarrow \BbbR we want to find a function u : [0,\infty ) \rightarrow \BbbR V

that solves the Cauchy problem

u\prime (t) \in  - \partial J(u(t)) for a.e. t > 0,

u(0) = f.
(4.1)

The statements in the next theorem follow from general results on nonlinear evolution equa-
tions and semigroup theory. See [5, Chap. 4] for a detailed treatment and [34, sect. 2.1] for a
brief introduction to the finite-dimensional setting.

Theorem 4.1. Solutions to problem (4.1) have the following properties:
1. For every f \in \BbbR V there is a unique solution and this solution depends continuously on
f . In particular, if u1 and u2 are two solutions corresponding to initial conditions f1
and f2, respectively, then

\| u1(t) - u2(t)\| 2 \leq \| u1(s) - u2(s)\| 2 for all t \geq s \geq 0.

2. The solution u lies in C([0,\infty ),\BbbR V ) \cap W 1,\infty ([0,\infty ),\BbbR V ) and satisfies

\| u\prime (t)\| 2 \leq \| \partial \circ J(f)\| 2 for a.e. t \geq 0.

3. The solution is right differentiable everywhere. Its right derivative is right continuous,
it satisfies

d+

dt
u(t) =  - \partial \circ J(u(t)), for all t \geq 0,(4.2)

and the map

t \mapsto \rightarrow 
\bigm\| \bigm\| \bigm\| d+
dt
u(t)

\bigm\| \bigm\| \bigm\| 
2

is nonincreasing.D
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4. Define St(f) = u(t). Then, for every f \in \BbbR V , we have

St(Ss(f)) = St+s(f) for all t, s \geq 0.

5. The function u(t) \in \BbbR V converges to a minimizer of J as t\rightarrow \infty .

Equation (4.2) is a strengthening of the inclusion in (4.1). It implies, for instance, that
whenever u\prime exists, it equals  - \partial \circ J(u). Note that Theorem 4.1 actually holds true for any
convex real-valued functional, which admits a minimizer on \BbbR V , in place of J . For J being
the total variation, however, we have in addition the following analogue of Proposition 3.6.

Proposition 4.2.
1. Problem (4.1) is mean-preserving, that is,\sum 

v\in V
u(t)(v) =

\sum 
v\in V

f(v) for all t \geq 0.

2. The function t \mapsto \rightarrow \| u(t)\| 2 is nonincreasing on [0,\infty ).
3. The solution u is piecewise affine with respect to t. More specifically, the derivative
u\prime (t) does not exist for only a finite number of times 0 < t1 < \cdot \cdot \cdot < tM and it is
constant in between. It follows that a stationary solution is reached in finite time:

u(t)(v) =
1

| V | 
\sum 
w\in V

f(w) for all t \geq tM and v \in V.(4.3)

Proof.
1. Since the subdifferential of J consists entirely of divergences of edge functions, for a.e.
t \geq 0 there is an H(t) \in \BbbR E such that

u\prime (t) =  - divH(t).

Summing this equation over all v \in V and using the fact that
\sum 

v\in V divH(v) vanishes
for every H \in \BbbR E gives

d

dt

\sum 
v\in V

u(t)(v) = 0 for a.e. t \geq 0.

Since u \in W 1,\infty ([0,\infty ),\BbbR V ), the assertion follows.
2. From  - u\prime (t) \in \partial J(u(t)) and the characterization of the subdifferential in Lemma 2.5,

it follows that \langle u(t), - u\prime (t)\rangle \BbbR V = J(u(t)). Therefore

 - J(u(t)) = \langle u(t), u\prime (t)\rangle \BbbR V =
1

2

d

dt
\| u(t)\| 22

for a.e. t > 0, which shows that t \mapsto \rightarrow \| u(t)\| 2 is nonincreasing.
3. As for the ROFminimizer the piecewise affine behavior has been shown in [9, Thm. 4.6].

Our proof uses different arguments. According to item 3 in Remark 2.6 the number ofD
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different values the right derivative of u can take is finite. Since d+u/dt is also right
continuous, there must be an \epsilon > 0 for every t0 \geq 0 such that

d+

dt
u(t) =  - \partial \circ J(u(t0)) for all t \in [t0, t0 + \epsilon )

with d+u/dt = u\prime on (t0, t0+\epsilon ). This proves that t \mapsto \rightarrow u(t) is piecewise affine on [0,\infty ).
That d+u/dt only changes a finite number of times follows from the fact that, if it
changes, then its norm becomes strictly smaller. To see this let \^t > 0 and assume that
d+u(t)/dt \equiv c is constant on (\^t - \epsilon , \^t) for some \epsilon > 0 and that d+u(\^t)/dt \not = c. We now
have

J(u(\^t)) = lim
t\rightarrow \^t - 

J(u(t)) = lim
t\rightarrow \^t - 

\langle u(t), - c\rangle = \langle u(\^t), - c\rangle ,

and therefore  - c \in \partial J(u(\^t)). However, since  - c = \partial \circ J(u(t)) for t \in (\^t - \epsilon , \^t) and the
minimal section is the unique element of minimal norm in the subdifferential, we must
have \| d+u(t)/dt\| 2 > \| d+u(\^t)/dt\| 2. This combined with the fact that d+u/dt can take
only a finite number of values implies that it can change only a finite number of times.
Thus t \mapsto \rightarrow u(t) is a continuous piecewise affine function with a finite number of slope
changes. Since, by item 5 in Theorem 4.1, u(t) is convergent, it must reach its limit
in finite time. Due to mean preservation, this limit has to be the averaged initial
datum.

5. Comparison of TV regularization and TV flow. In this section we first provide and
analyze various conditions for the equivalence of TV regularization and TV flow on graphs.
We then show that they are nonequivalent methods by constructing a counterexample.

5.1. Conditions for equivalence of TV regularization and TV flow. Proposition 5.1
below relates the norms of the solutions of the TV regularization and the TV flow to each
other. Recall that \=f denotes the averaged datum f ; see (3.8).

Proposition 5.1. For every \alpha > 0 let u\alpha and u(\alpha ) be the ROF and TV flow solutions,
respectively, both corresponding to the same datum f \in \BbbR V . They satisfy

\| \=f\| 2 \leq \| u\alpha \| 2 \leq \| u(\alpha )\| 2 \leq \| f\| 2 for all \alpha > 0.

It follows that in general u\alpha reaches \=f before u(t), that is, \alpha N \leq tM ; see Propositions 3.6
and 4.2.

Proof. Both \| u\alpha \| 2 and \| u(\alpha )\| 2 are nonincreasing functions of \alpha (recall property 2 in
Propositions 3.6 and 4.2) and therefore bounded from above by \| f\| 2. On the other hand, due
to mean preservation (recall property 1 in Propositions 3.6 and 4.2), they are bounded from
below by \| \=f\| 2. It remains to show that \| u\alpha \| 2 \leq \| u(\alpha )\| 2. To see this, observe that both u\alpha 
and u(\alpha ) lie in f  - div\scrB \alpha with u\alpha being the element of minimal norm in this set according
to (3.2).

The next proposition collects several conditions for equality of ROF and TV flow solutions.
The second condition is an adaptation of [28, Thm. 10] to the graph setting.D
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1658 C. KIRISITS, O. SCHERZER, AND E. SETTERQVIST

Proposition 5.2. Let u\alpha and u(t) be the ROF and TV flow solutions for a given common
datum f \in \BbbR V .

1. Let \alpha > 0. We have u\alpha = u(\alpha ) if and only if

 - 1

\alpha 

\int \alpha 

0
u\prime (t)dt \in \partial J(u(\alpha )).(5.1)

2. Let \alpha > 0. If

 - \langle u\prime (t), u(\alpha )\rangle \BbbR V = J(u(\alpha )) for a.e. t \in (0, \alpha ),(5.2)

then u(\alpha ) = u\alpha . Moreover, condition (5.2) is always satisfied for \alpha = t1, where t1 is
the first time u\prime (t) does not exist.

3. Define T\alpha (f) = u\alpha . We have

u\alpha = u(\alpha ) for all \alpha \geq 0

if and only if

Tt(Ts(f)) = Tt+s(f) for all t, s \geq 0.(5.3)

Proof.
1. We can express u(\alpha ) = f+

\int \alpha 
0 u\prime (t)dt. Recalling the optimality conditions (3.4) for the

ROF minimizer u\alpha , it follows that u(\alpha ) = u\alpha if and only if  - 1
\alpha 

\int \alpha 
0 u\prime (t)dt \in \partial J(u(\alpha )).

2. The proof is analogous to that of [28, Thm. 10]. We include it for the sake of com-
pleteness.
Integrating (5.2) from t = 0 to t = \alpha gives

\langle f  - u(\alpha ), u(\alpha )\rangle \BbbR V = \alpha J(u(\alpha )).(5.4)

On the other hand, since  - u\prime (t) lies in \partial J(0) for almost every t, so does its average
 - 1

\alpha 

\int \alpha 
0 u\prime (t) dt. Therefore

f  - u(\alpha ) =  - 
\int \alpha 

0
u\prime (t) dt \in \alpha \partial J(0).(5.5)

Combining (5.4) and (5.5) shows that f  - u(\alpha ) \in \alpha \partial J(u(\alpha )); recall Lemma 2.5. But
this is just the optimality condition (3.4) for the ROF model, hence u(\alpha ) = u\alpha .
Next, recall that the flow solution satisfies

 - u\prime (t) = \partial \circ J(f) \in \partial J(u(t)), t \in [0, t1).

This implies by Lemma 2.5 that

\langle \partial \circ J(f), u(t)\rangle = J(u(t)), t \in [0, t1),

and since u is continuous in t

\langle \partial \circ J(f), u(t1)\rangle = J(u(t1)).

Therefore condition (5.2) is satisfied for every \alpha \in [0, t1].D
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...v1 v2 vn

Figure 5.1. Graph corresponding to a one-dimensional space-discrete signal with n pixels.

3. Let u\alpha = u(\alpha ) for all \alpha \geq 0. It then follows from property 4 in Theorem 4.1 that
Tt(Ts(f)) = Tt+s(f) for all t, s \geq 0.
Start now with the assumption Tt(Ts(f)) = Tt+s(f) for all t, s \geq 0. As the TV flow
has an analogous property and the solutions to TV regularization and TV flow always
coincide for the interval [0, t1] according to item 2 it is then immediate that they
coincide for all \alpha \geq 0.

Remark 5.3.
1. Proposition 5.2, item 1, gives that u(\alpha ) = u\alpha if and only if the average time derivative

1
\alpha 

\int \alpha 
0 u\prime (t)dt is in  - \partial J(u(\alpha )). Compare with the pointwise inclusion u\prime (t) \in  - \partial J(u(t))

which holds for a.e. t > 0. Note further that condition (5.1) is strictly weaker than
(5.2).

2. Condition (5.2) holds true, given any \alpha > 0, for graphs of the type displayed in
Figure 5.1 corresponding to one-dimensional space-discrete signals. This follows di-
rectly from the inclusion

\partial J(u(s)) \subset \partial J(u(t)), s \leq t,(5.6)

which applies in this setting. The derivation of (5.6) can be done with the following
arguments. Consider a pair of adjacent vertices vi and vi+1. In [37, Prop. 4.1], it is
shown that if u(s)(vi) = u(s)(vi+1), then u(t)(vi) = u(t)(vi+1) for any t \geq s. Taking
into account the continuity of t \mapsto \rightarrow u(t) and the characterization of the subdifferential
given by item 3 in Lemma 2.5, (5.6) then follows.

3. Another family of instances where u\alpha = u(\alpha ), for all \alpha \geq 0, arises from the eigenvalue
problem for the TV subdifferential. This problem seems to have originally been studied
in the continuous setting, where it was realized to give rise to explicit solutions of both
the TV flow and the ROF model. See, for instance, [1, 6]. In the discrete setting the
situation is similar. Following [9, 19] we call f \in \BbbR V an eigenfunction of J if it satisfies
\lambda f \in \partial J(f) for some \lambda \geq 0. If the datum of the ROF model has this property, then
the optimality condition (3.4) directly implies that

u\alpha =

\Biggl\{ 
(1 - \alpha \lambda )f, \alpha \lambda < 1,

0, \alpha \lambda \geq 1.

See also [7, Thm. 5]. In other words T\alpha (f) is a nonnegative multiple of f , hence again
an eigenfunction. A brief calculation now shows that (5.3) is satisfied.

5.2. Negative results. All results in this section are derived from the counterexample
given by the graph and datum displayed in Figure 5.2. While the corresponding solutions
u\alpha and u(t) are illustrated in Figures 5.3 and 5.4, the underlying computations can be foundD
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v12 v22 v32

v23

v21

v13

v11 v31

v33

100 18 20

100

100

200

200 200

0

Figure 5.2. Left: graph structure. Right: datum f .

0 \leq \alpha \leq 2/5:

 - \alpha \alpha 

 - \alpha  - \alpha 

 - \alpha \alpha 

 - \alpha 

\alpha 

 - \alpha 

\alpha 

 - \alpha 

 - \alpha 

100 + \alpha 18 + 4\alpha 20 - \alpha 

100 - \alpha 

100 + \alpha 

200 - 2\alpha 

200 - 2\alpha 200 - 2\alpha 

2\alpha 

2/5 \leq \alpha \leq 2:

 - \alpha 
2 - 3\alpha 

2

 - \alpha  - \alpha 

 - \alpha \alpha 

 - \alpha 

\alpha 

 - \alpha 

\alpha 

 - \alpha 

 - \alpha 

100 + \alpha 19 + 3\alpha 
2

19 + 3\alpha 
2

100 - \alpha 

100 + \alpha 

200 - 2\alpha 

200 - 2\alpha 200 - 2\alpha 

2\alpha 

2 \leq \alpha \leq 4:

 - \alpha  - \alpha 

 - \alpha  - \alpha 

 - \alpha \alpha 

 - \alpha 

\alpha 

 - \alpha 

\alpha 

 - \alpha 

 - \alpha 

100 + \alpha 18 + 2\alpha 20 + \alpha 

100 - \alpha 

100 + \alpha 

200 - 2\alpha 

200 - 2\alpha 200 - 2\alpha 

2\alpha 

Figure 5.3. The evolution of the ROF minimizer u\alpha (on the vertices) and the function F\alpha (on the edges)
on the interval 0 \leq \alpha \leq 4. The underlying computations can be found in the appendix.

0 \leq t \leq 2/5:

 - t t

 - t  - t

 - t t

 - t

t

 - t

t

 - t

 - t

100 + t 18 + 4t 20 - t

100 - t

100 + t

200 - 2t

200 - 2t 200 - 2t

2t

2/5 \leq t \leq 4:

 - t
4
5
 - t

 - t  - t

 - t t

 - t

t

 - t

t

 - t

 - t

100 + t 94
5
+ 2t 96

5
+ t

100 - t

100 + t

200 - 2t

200 - 2t 200 - 2t

2t

Figure 5.4. The evolution of the TV flow u(t) (on the vertices) and the function F (t) (on the edges) on
the interval 0 \leq t \leq 4. The underlying computations can be found in the appendix.
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in the appendix. Our main considerations in constructing this counterexample are explained
below.

Proposition 3.1 together with the fact that \scrB \alpha =  - \scrB \alpha implies that the ROF minimizer u\alpha 
can be written as

u\alpha = f + divF\alpha (5.7)

for an F\alpha \in \scrB \alpha . Regarding the TV flow, note that Lemma 2.5 and Proposition 4.2 guar-
antee the existence of a piecewise constant function t \mapsto \rightarrow H(t) \in \scrB 1,u(t) with finitely many
discontinuities satisfying

u\prime (t) =  - divH(t)

for all but a finite number of times. Integrating and setting F (t) =  - 
\int t
0 H(s)ds we obtain

the following representation:

u(t) = f + divF (t).(5.8)

Two properties concerning these representations are worth mentioning. First, the edge func-
tions F\alpha and F (t) are not uniquely determined in general. Second, F (t) satisfies\bigm\| \bigm\| \bigm\| d+

dt
F (t)

\bigm\| \bigm\| \bigm\| 
\infty 

\leq 1

for all t, while the derivative of F\alpha in general is not bounded by one. The counterexample
displayed in Figure 5.2 was constructed in such a way that F\alpha is uniquely determined and
satisfies \| dF\alpha /d\alpha \| \infty > 1 for certain values of \alpha . In fact, on the edge e = (v32, v22) we have
dF\alpha (e)/d\alpha =  - 3/2 for 2/5 < \alpha < 2; see Figure 5.3.

5.2.1. Nonequivalence of TV flow and TV regularization. In spite of the similar qual-
itative properties of TV flow and TV regularization (recall Propositions 3.6 and 4.2), the
solutions u(\alpha ) and u\alpha do not coincide in general.

Theorem 5.4. There exist graphs G = (V,E) and data f \in \BbbR V for which the TV regular-
ization problem and the TV flow problem are nonequivalent, i.e.,

u\alpha \not = u(\alpha ) for some \alpha > 0.

Proof. Consider the graph and the datum f given in Figure 5.2. For this example, the
evolutions of u\alpha and u(\alpha ) on the interval [0, 4] are displayed in Figures 5.3 and 5.4, respectively.
Note that u\alpha \not = u(\alpha ) for \alpha \in (2/5, 4].

Remark 5.5.
1. Proposition 5.2, item 3, combined with Theorem 5.4 gives that the ROF model in

general does not possess the semigroup property (5.3). This is in contrast to the
situation for the TV flow; recall property 4 in Theorem 4.1.

2. Recall Theorem 4.1, item 3, stating that t \mapsto \rightarrow \| d+u(t)/dt\| 2 is nonincreasing. The ROF
minimizer, in contrast, does not have an analogous property. Consider Figure 5.3,
where it can be seen that \| du\alpha /d\alpha \| 2 increases from the interval (2/5, 2) to (2, 4).D

ow
nl

oa
de

d 
10

/0
7/

19
 to

 1
31

.1
30

.1
69

.5
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1662 C. KIRISITS, O. SCHERZER, AND E. SETTERQVIST

3. In [9, Thm. 4.7] the authors give a sufficient condition for equivalence of the variational
method and the gradient flow associated to a proper, convex, lower semicontinuous
and absolutely one-homogeneous function J on \BbbR n. This condition, called MINSUB,
requires

\langle \partial \circ J(u), \partial \circ J(u) - u\ast \rangle = 0

to hold for all u \in \BbbR n and u\ast \in \partial J(u). Theorem 5.4 implies that the total variation as
given in Definition 2.1 does not meet MINSUB on general graphs.

5.2.2. Nonmonotone behavior of jump sets. For a given graph G = (V,E) and datum
f \in \BbbR V we define the jump sets of the ROF and TV flow solutions in the following way:

\Gamma \alpha = \{ (v, w) \in E : u\alpha (v) \not = u\alpha (w)\} , \alpha \geq 0,

\Gamma (t) = \{ (v, w) \in E : u(t)(v) \not = u(t)(w)\} , t \geq 0.

Clearly, for \alpha or t large enough these two sets are empty. They do not, however, necessarily
evolve in a monotone way.

Proposition 5.6. There are graphs G = (V,E), data f \in \BbbR V and numbers \beta 2 > \beta 1 \geq 0,
s2 > s1 \geq 0, such that

\Gamma \beta 1 \subsetneq \Gamma \beta 2 ,

\Gamma (s1) \subsetneq \Gamma (s2).

Proof. Consider the graph and datum of Figure 5.2.
For the TV regularization, Figure 5.3 shows that

sgn(u\alpha (v32) - u\alpha (v22)) =

\left\{   
1, 0 \leq \alpha < 2/5,
0, 2/5 \leq \alpha \leq 2,

 - 1, 2 < \alpha \leq 4.

That is, the jump between u\alpha (v22) and u\alpha (v32) disappears for 2/5 \leq \alpha \leq 2 but appears again,
with reversed sign, for 2 < \alpha \leq 4. For all other edges (v, w) the quantity sgn(u\alpha (v) - u\alpha (w))
is constant on [0, 4]. This shows that \Gamma \beta 1 \subsetneq \Gamma \beta 2 for every \beta 1 \in [2/5, 2] and \beta 2 \in (2, 4].

For the TV flow (see Figure 5.4), we have

sgn(u(t)(v32) - u(t)(v22)) =

\left\{   
1, 0 \leq t < 2/5,
0, t = 2/5,

 - 1, 2/5 < t \leq 4.

Here the jump between u(t)(v22) and u(t)(v32) disappears at t = 2/5 and then a jump
with reversed sign appears for 2/5 < t \leq 4. Again, for all other edges (v, w) the quantity
sgn(u(t)(v) - u(t)(w)) is constant on [0, 4]. Thus, \Gamma (2/5) \subsetneq \Gamma (s2) for every s2 \in (2/5, 4].

Remark 5.7. For one-dimensional graphs, however, the jump sets are nonincreasing; see
item 2 in Remark 5.3. On the other hand, in the continuous anisotropic setting it is known
that jumps can be created in the solution; see [10, Rem. 4] and [28, Ex. 1].D
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100 20 20

100

100

200

200 200

0

 - \alpha  - \alpha 

 - \alpha  - \alpha 

 - \alpha \alpha 

 - \alpha 

\alpha 

 - \alpha 

\alpha 

 - \alpha 

 - \alpha 

100 + \alpha 20 + 2\alpha 20 + \alpha 

100 - \alpha 

100 + \alpha 

200 - 2\alpha 

200 - 2\alpha 200 - 2\alpha 

2\alpha 

Figure 5.5. Left: datum \~f . Right: u\alpha = u(\alpha ) (on the vertices) and F\alpha = F (\alpha ) (on the edges) for \alpha \in [0, 4].

Remark 5.8. We stress that \beta 1 and s1 can be equal to zero in Proposition 5.6. To see this
consider the datum \~f and solutions u\alpha = u(\alpha ) given in Figure 5.5. Note that \~f is equal to f
from Figure 5.2 except for v22, where \~f(v22) = 20. The underlying calculations are analogous
to those for f and are therefore omitted. A jump between the vertices v22 and v32, which is
not present in the datum \~f , is created in u\alpha = u(\alpha ), 0 < \alpha \leq 4. Thus the jump set of an
image resulting from TV regularization or TV flow can strictly contain the jump set of the
datum.

6. Conclusion. In this article we have studied and compared TV regularization and TV
flow for functions defined on the vertices of an oriented connected graph. Our motivation was
the discrete one-dimensional setting, where the two problems are known to be equivalent and
their solution minimizes a large class of convex functionals in a certain neighborhood of the
data.

It turns out that in the graph setting this situation can be recovered only for \alpha , t \in 
[0, t1] \cup [tM ,\infty ), the reason being that on the complement (t1, tM ) the ROF and the flow
solution are in general different. Here t1 and tM are the first and last times, respectively, the
time derivative of the flow solution changes.

In addition we have shown that for every \alpha \geq 0 the ROF minimizer u\alpha simultaneously
minimizes all functionals of the form \sum 

v\in V
\varphi (u(v))(6.1)

over the set f  - \alpha \partial J(0), where \varphi : \BbbR \rightarrow \BbbR is convex but otherwise arbitrary. In doing so we
have relied on the fact that \partial J is invariant \varphi -minimal. Since invariant \varphi -minimal sets must
be polyhedra, the subdifferential of discrete isotropic TV cannot be such a set. Consequently,
the minimizer of the isotropic ROF model in general does not have property (6.1).

Appendix A. TV denoising on a particular graph. In this appendix we consider the
graph and datum given by Figure 5.2 and compute the solutions of the TV regularization
problem and the TV flow problem on the interval [0, 4].D
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TV regularization. Recall that the ROF minimizer u\alpha can be represented as

u\alpha = f + divF\alpha ,

where F\alpha \in \scrB \alpha ; see (5.7). Below, F\alpha is computed for \alpha \in [0, 4], which then enables computa-
tion of u\alpha on this interval.

We have for any v \in V ,

f(v) - deg(v)\alpha \leq u\alpha (v) \leq f(v) + deg(v)\alpha ,(A.1)

where deg(v) denotes the degree of v, that is, the number of edges incident to v. Using (A.1)
it is straightforward to show that

sgn(u\alpha (vij) - u\alpha (vkl)) = sgn(f(vij) - f(vkl)) \in \{ \pm 1\} 

for all edges (vij , vkl) except (v32, v22) on the interval 0 \leq \alpha \leq 4. The optimality condition
(3.4) together with the equality \partial J(u) = div\scrB 1,u (recall Lemma 2.5, item 3) then gives

F\alpha ((vij , vkl)) = \alpha sgn(f(vij) - f(vkl))

for all (vij , vkl) \in E\setminus \{ (v32, v22)\} and 0 \leq \alpha \leq 4.
Consider now the special edge (v32, v22). Using the knowledge of F\alpha on the other edges,

u\alpha (v22) and u\alpha (v32) are given by

u\alpha (v22) = f(v22) + F\alpha ((v32, v22)) + F\alpha ((v23, v22)) - F\alpha ((v22, v12)) - F\alpha ((v22, v21))

= 18 + F\alpha ((v32, v22)) + 3\alpha 

and

u\alpha (v32) = f(v32) - F\alpha ((v32, v22)) + F\alpha ((v33, v32)) - F\alpha ((v32, v31))

= 20 - F\alpha ((v32, v22))

for 0 \leq \alpha \leq 4. Recall further that u\alpha is the \ell 2-minimizer in the set f  - div\scrB \alpha (cf. Proposi-
tion 3.1) and that F\alpha ((v32, v22)) only appears in the terms u\alpha (v22) and u\alpha (v32). Minimizing
(u\alpha (v22))

2 + (u\alpha (v32))
2 subject to the constraint F\alpha ((v32, v22)) \in [ - \alpha , \alpha ] then gives

F\alpha ((v32, v22)) =

\left\{   
\alpha , 0 \leq \alpha \leq 2/5,

(2 - 3\alpha )/2, 2/5 \leq \alpha \leq 2,
 - \alpha , 2 \leq \alpha \leq 4.

The function F\alpha is now determined on all edges on the interval \alpha \in [0, 4]. The ROF
minimizer u\alpha can then be computed according to (5.7). The results can be seen in Figure 5.3.

TV flow. Recall that, according to (5.8), the solution u(t) of the TV flow problem can be
represented as

u(t) = f + div(F (t)),
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where F (t) =  - 
\int t
0 H(s)ds and H(s) \in \scrB 1,u(s). In particular, F (t) \in \scrB t. Below, F (t) is

computed for t \in [0, 4], which then enables computation of u(t) on this interval.
We have an analogous inequality to (A.1),

f(v) - deg(v)t \leq u(t)(v) \leq f(v) + deg(v)t(A.2)

for all v \in V . Using (A.2), we can derive that

sgn(u(t)(vkl) - u(t)(vij)) = sgn(f(vkl) - f(vij)) \in \{ \pm 1\} (A.3)

holds for any edge (vij , vkl) \in E\setminus \{ (v32, v22)\} and 0 \leq t \leq 4. From (A.3) and H(s) \in \scrB 1,u(s) it
follows in turn that

H(s)((vij , vkl)) = sgn(f(vkl) - f(vij))

for all (vij , vkl) \in E\setminus \{ (v32, v22)\} and 0 \leq t \leq 4. Hence,

F (t)((vij , vkl)) =  - 
\int t

0
H(s)((vij , vkl))ds = t sgn(f(vij) - f(vkl))

for all (vij , vkl) \in E\setminus \{ (v32, v22)\} and 0 \leq t \leq 4.
Turn next to the computation of F (t)((v32, v22)) on 0 \leq t \leq 4. Knowledge of F (t) on the

other edges gives

u(t)(v22) = 18 + 3t+ F (t)((v32, v22))(A.4)

and

u(t)(v32) = 20 - F (t)((v32, v22))(A.5)

on 0 \leq t \leq 4. From (A.4) and (A.5), together with F (t) \in \scrB t, follow the inequalities

u(t)(v22) \leq 18 + 4t < 20 - t \leq u(t)(v32), 0 \leq t < 2/5.

These inequalities imply that

sgn(u(t)(v22) - u(t)(v32)) =  - 1, 0 \leq t < 2/5,

and therefore

H(t)((v32, v22)) =  - 1, 0 \leq t < 2/5.

We then obtain

F (t)((v32, v22)) =  - 
\int t

0
H(s)((v32, v22))ds = t, 0 \leq t \leq 2/5.

Consider now the interval 2/5 \leq t \leq 4, where we estimate
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F (t)((v32, v22)) = F (2/5)((v32, v22)) - 
\int t

2/5
H(s)((v32, v22))ds

\geq 2/5 - (t - 2/5) = 4/5 - t.

This inequality together with (A.4) and (A.5) gives

u(t)(v32) \leq 96/5 + t < 94/5 + 2t \leq u(t)(v22), 2/5 < t \leq 4.

From these inequalities it follows that

H(t)((v32, v22)) = sgn(u(t)(v22) - u(t)(v32)) = 1, 2/5 < t \leq 4,

which in turn gives

F (t)((v32, v22)) = 4/5 - t, 2/5 \leq t \leq 4.

The function F (t) is now determined on all edges on the interval t \in [0, 4]. The solution
u(t) of the TV flow problem can then be computed according to (5.8). The results can be
seen in Figure 5.4.
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