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Chapter 1

Basic Concepts of Numerical
Analysis

1.1 Vector- and Matrix Norms

We denote by Rn the space of n-dimensional real vectors, with elements

x =

 x1
...
xn

 , xi ∈ R .

Rm×n denotes the space of m× n matrices, with elements

A =

 a11 · · · a1n
...

...
am1 · · · amn

 , aij ∈ R .

Each vector can be written as a matrix

x =

 x1
...
xn

 ∈ Rn×1 .

For x ∈ Rn, we denote the transpose vector by

xT = [x1, x2, ..., xn] ∈ R1×n .
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6 CHAPTER 1. BASIC CONCEPTS OF NUMERICAL ANALYSIS

For matrices A, the definition of the transpose matrix AT is accordingly.
The set {e1, ..., en} ⊂ Rn of vectors with components ei = [δij]

n
j=1 is called

the cartesian basis. Thereby

δij =

{
1, i = j ,
0, i 6= j ,

denotes the Kronecker symbol.
There exist several different norms for matrices:

Definition 1.1. A function ‖·‖ : Rm×n → R is called norm, if

1. ‖x‖ ≥ 0, ∀x ∈ Rm×n and ‖x‖ = 0 if and only if x = 0.

2. ‖λx‖ = |λ| ‖x‖, ∀x ∈ Rm×n and λ ∈ R.

3. ‖x+ y‖ ≤ ‖x‖+ ‖y‖, ∀x, y ∈ Rm×n.

Example 1.2. Some common vector norms on Rn are

1. ‖x‖1 :=
∑n

i=1 |xi| ,

2. ‖x‖2 :=
√∑n

i=1 x
2
i =
√
xTx ,

3. ‖x‖∞ := maxi=1,...,n |xi| .
Some common matrix norms on Rm×n are

1. ‖A‖1,∞ := max1≤j≤n
∑m

i=1 |ai,j| .

2. ‖A‖∞,1 := max1≤i≤m
∑n

j=1 |ai,j| .

3. Frobeniusnorm: ‖A‖F :=
√∑m

i=1

∑n
j=1 a

2
i,j .

The most important norm however is the spectral norm. For defining this
one, we need eigenvalues :

Definition 1.3. Let C ∈ Rn×n. Then λ is called an eigenvalue of C if there
exists a vector x ∈ Rn\ {0} such that

Cx = λx .

The according x is called eigenvector. Typically, an eigenvector x with norm
1 is called the normalised eigenvector.

We denote by σ(C) the set of all eigenvalues of the matrix C. That is,

σ(C) = {λ : ∃x ∈ Rn\ {0} such that Cx = λx} .
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Remark 1.4. λ ∈ σ(C) if and only if det(λI−C) = 0. This relation is obvi-
ous, when we know that det(λI−C) = 0 is equaivalent to the fact that λI−C
is singular - or in other word has a non-trivial nullspace {x : (λI − C)x = 0} 6=
{0} . This nullspace contains all eigenvectors.

Definition 1.5. Then the spectral radius ρ(C) is the largest absolute values
of the eigenvalues, that is

ρ(C) := max {|λ| : λ ∈ σ(C)} . (1.1)

Example 1.6. The eigenvalues of matrices can be complex, although the
coefficients of C are real. Let

C =

[
2 5
−1 −2

]
Then the zeros of the characteristic polynomial are ±i. Thus the spectral
radius of C is 1.

Definition 1.7. For every matrix A ∈ Rm×n we define ‖A‖2 :=
√
ρ(ATA).

Remark 1.8. If C is a symmetric matrix, then all eigenvalues are real. In
particular we have for C = ATA that all eigenvalues are real. Moreover, in
the later case all eigenvalues are non-negative.

Theorem 1.9. Let C ∈ Rm×n, then there exist orthogonal matrices U ∈
Rm×m and V ∈ Rn×n such that

UTCV = S,

where S ∈ Rm×n is a rectangular diagonal matrix with non-negative diagonal
elements σ1 ≥ σ2 ≥ . . . ≥ σmin{m,n} ≥ 0. In particular, if m > n, then

S =



σ1 0 · · · 0

0 σ2
. . .

...
...

. . . . . . 0
0 · · · 0 σn
0 · · · · · · 0
...

...
0 · · · · · · 0


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else if m < n,

S =


σ1 0 · · · 0 0 · · · 0

0 σ2
. . .

...
...

...
...

. . . . . . 0
...

...
0 · · · 0 σm 0 · · · 0

 .
A matrix is called orthogonal if UT = U−1.

Remark 1.10. If there exists a singular value decomposition of C = ATA,
then

Avi = σiui , ATui = σivi , ∀i = 1 : min {m,n} .
Here ui and vi are the column vectors of U and V , respectively. Moreover,
vi are the eigenvectors of ATA with eigenvalues λi = σ2

i , and ui are the
eigenvectors of AAT with eigenvalues λi = σ2

i , respectively. That is,

ATAvi = σ2
i vi and AATui = σ2

i ui , ∀i = 1, . . . ,min {m,n} .

Theorem 1.11. Let C ∈ Rm×m be symmetric, then there exist an orthogonal
matrix U ∈ Rm×m such that

UTCU = Diag(λ1, . . . , λm) ,

That is, the singular values equal the eigenvalues.

Example 1.12. The spectral norm should not be confused with the Frobenius
norm: It is a standard result from linear algebra that

‖A‖2
F =

∑
λ∈σ(ATA)

λ =
∥∥σ(ATA)

∥∥
1
.

On the other hand

‖A‖2
2 = sup

λ∈σ(ATA)

λ =
∥∥σ(ATA)

∥∥
∞ .

Remark 1.13. We review the confusing terminology:
Let C ∈ Rn×n be a matrix.

• An eigenvalue λ is a solution of the equation Cx = λx for some x 6= 0.

• A spectral value σ is a solution of the equation CTCx = σ2x for some
x 6= 0.

• If C is symmetric, then C = ATA and λ ∈ σ(C) if and only
√
λ ∈ σ(A).
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1.2 Well- and Ill–Conditioned Systems of Lin-

ear Equations

We consider the difference between ill-conditioned and well-conditioned sys-
tem of equations. A system of equations is considered to be well-conditioned
if a small change in the coefficient matrix or a small change in the right hand
side results in a small change in the solution vector. A system of equations is
considered to be ill-conditioned if a small change in the coefficient matrix or
a small change in the right hand side results in a large change in the solution
vector.

Example 1.14. We consider[
1 2
2 3.999

] [
x
y

]
=

[
4

7.999

]
.

The solution of this equation is[
x
y

]
=

[
2
1

]
.

Now we consider the system with a perturbed right hand side[
1 2
2 3.999

] [
x
y

]
=

[
4.001
7.998

]
.

Now, the solution is [
x
y

]
=

[
−3.999
4.000

]
.

If we make a small change of the coefficients of A we observe that[
1.001 2.001
2.001 3.998

] [
x
y

]
=

[
4

7.999

]
.

Here the solution is [
x
y

]
=

[
3.994

0.001388

]
.

We say that the system is ill-conditioned because small variations in the coef-
ficient matrix or the right hand side result in a large change of the solution.
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Example 1.15. We consider[
1 2
2 3

] [
x
y

]
=

[
4
7

]
.

The solution of this equation is again[
x
y

]
=

[
2
1

]
.

Now we consider the system with a perturbed right hand side[
1 2
2 3

] [
x
y

]
=

[
4.001
7.001

]
.

Now, the solution is [
x
y

]
=

[
1.999
1.001

]
.

If we make a small change of the coefficients of A we observe that[
1.001 2.001
2.001 3.001

] [
x
y

]
=

[
4
7

]
.

Here the solution is [
x
y

]
=

[
2.003
0.997

]
.

We say that the system is well-conditioned because small variations in the
coefficient matrix or the right hand side result in a small change in the solu-
tion.

To differ between ill– and well–posed equations one uses the condition
number:

Cond(A) =
∥∥A−1

∥∥
2
‖A‖2 .
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The reason can be the following derivation

‖∆x‖2

‖x‖2

=
‖A−1∆b‖2

‖b‖2

‖b‖2

‖x‖2

≤ ‖A
−1‖2 ‖∆b‖2

‖b‖2

‖Ax‖2

‖x‖2

≤ ‖A
−1‖2 ‖∆b‖2

‖b‖2

‖A‖2 ‖x‖2

‖x‖2

≤
∥∥A−1

∥∥
2
‖A‖2

‖∆b‖2

‖b‖2

= Cond(A)
‖∆b‖2

‖b‖2

.

That is, the condition number gives a qualitative figure of the error magnifi-
cation of the relative error. The absolute error can be estimated as follows:

‖∆x‖2 =
∥∥A−1∆b

∥∥
2
≤
∥∥A−1

∥∥
2
‖∆b‖2 ,

Therefore the error enhancement can be estimated to be of the order ‖A−1‖2.

Example 1.16. • We consider the matrix A from Example 1.14. The
square-roots of the eigenvalues of ATA are

0.000200032003451
4.999200032003841

The square roots of the eigenvalues of (ATA)−1 are

1/0.000200032003451
1/4.999200032003841

and thus

– ‖A−1‖2 = 1/0.000200032003451 ∼ 4999. ‖A−1‖2 predicts there-
fore an error magnification of 4999. The actual error in the right
hand side is 0.0014 =

√
2 · 0.0012 while the error in the solution

is 6.7073 =
√

5.9992 + 32 Thus the absolute error is magnified by
a factor 4743. Thus the actual error it overestimates the error by
a factor 1.05.
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– The condition number is 24992.The relative error in the right hand
side is 0.00016 ∼ 0.0014/

√
42 + 7.9992 The relative error of the so-

lution is 2.9996 = 6.7073/
√

22 + 12. Thus the relative error mag-
nification is 18748 = 2.9996/0.00016. Here the condition number
overestimates the error only by a factor 1.3 ∼ 24992/18748.

• For the matrix A from Example 1.15 we have the roots of the eigenval-
ues of ATA are

0.236067977499791
4.236067977499790

and the square roots of the eigenvalues of (ATA)−1 are

1/0.236067977499791
1/4.236067977499790

.

and thus

– ‖A−1‖2 = 1/0.236067977499791 ∼ 4.24. ‖A−1‖2 predicts there-
fore an error magnification of 4.24. The errors of the right hand
side and of the solution are both 0.0014 =

√
2 · 0.0012. Thus the

absolute error is not magnified at all.

– Thus the condition number is 17.94. The relative error in the right
hand side is 0.00017365 ∼ 0.0014/

√
42 + 72. The relative error

of the solution is 0.00063 = 0.0014/
√

22 + 12. Thus the relative
error magnification is 3.6280 = 0.00063/0.00017365. In this case
the relative error is overestimated by a factor 4.96.

• The condition number of the first matrix is of a factor 1388 larger than
the condition of the second matrix. The first matrix could be called
ill-conditioned, while the second one is well–conditioned.

1.3 Nonlinear Problems

For nonlinear problems the error analysis is much more involved. We shortly
sketch it here. In principal the problem is again reduced to linear problems.

Let F : Rn → R by a function.



1.3. NONLINEAR PROBLEMS 13

Problem 1.17. We want to evaluate F at a vector x ∈ Rn. We assume that
some measurement, accumulated, and data errors force use to evaluate F at
x+∆x. How can the error in the evaluation, that is ∆y := F (x+∆x)−F (x),
be estimated?

From the mean value theorem it follows

∆y = F (x1 + ∆x1, x2 + ∆x2, ..., xn + ∆xn)− F (x1, x2, ..., xn)

=
n∑
i=1

∂F

∂xi
(ζ)∆xi ,

where ζ is a point on the line in between x and x+ ∆x.

Since ∆x is considered small (errors should always stay small), it seems
plausible to use the approximation:

∆y ≈
n∑
i=1

∂F

∂xi
(x)∆xi .

The number

Kabs :=

∥∥∥∥∥
[
∂F

∂xi
(x)

]
i=1,...,n

∥∥∥∥∥
2

= ‖∇F (x)‖2

is called absolute condition number of F at x and is considered a measure for
the enhancement of the absolute error.

If we have a vector valued function F : Rn → Rn, then we generalize this
concept to

Kabs :=

∥∥∥∥∥
[
∂Fj
∂xi

(x)

]
i,j=1,...,n

∥∥∥∥∥
2

= ‖∇F (x)‖2 .

Example 1.18. If F is a linear function, that is F (x) = Ax with some
matrix [aij]i,j=1,...,n = A ∈ Rn×n, then

Kabs = ‖A‖2 .

For a function F : Rn → Rn the relative error is estimated as follows: Let
A =

[
∂Fj
∂xi

(x)
]
i,j=1,...,n

, then the relative condition number of F at a point x

is Cond(A).
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1.4 Order

Let {aε : ε 6= 0} and {bε : ε 6= 0} be parametrized families of numbers, which
are all different from zero, that is aε, bε 6= 0.

• We use the notation aε = O(bε), if there exist a constant ε0 > 0 and
C > 0 such that

|aε| ≤ C |bε| , ∀ε ∈ (0, ε0) .

• We say aε = o(bε), if

lim
ε→0

|aε|
|bε|

= 0 .

Example 1.19. Take {bx = x : x 6= 0} and {ax = sin(x) : x 6= 0}, then limx→0
sinx
x

=
1. Thus

sin(x) = O(x) .

Take
{
bx =

√
|x| : x 6= 0

}
and {ax = sin(x) : x 6= 0}, then limx→0

sinx
x

x√
x

=

limx→0
sinx
x

limx→0

√
x = 0. Thus

sin(x) = o(
√
|x|) .



Chapter 2

Elimination Algorithms

2.1 Gauss-Elimination

We describe this algorithm first exemplary and then we do it formally.

We consider the linear equation

4x1 + 1x2 + 0x3 + 0x4 = 3

1x1 + 4x2 + 1x3 + 0x4 = 3

0x1 + 1x2 + 4x3 + 1x4 = 0

0x1 + 0x2 + 1x3 + 4x4 = 2

(2.1)

In the first step we eliminate the entry 1 in front of x1 in the second line by
multiplication of the first line with −1/4 and adding it to the second line.
This gives the matrix equation

4x1 + x2 + 0x3 + 0x4 = 3

0x1 +
15

4
x2 + 1x3 + 0x4 =

9

4
0x1 + 1x2 + 4x3 + 1x4 = 0

0x1 + 0x2 + 1x3 + 4x4 = 2

(2.2)

To eliminate the factor 1 in front of x2 in the third line we multiply the

15
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second line by − 4
15

and add it to the third line. We get

4x1 + 1x2 + 0x3 + 0x4 = 3

0x1 +
15

4
x2 + 1x3 + 0x4 =

9

4

0x1 + 0x2 +
56

15
x3 + x4 = − 9

15
0x1 + 0x2 + x3 + 4x4 = 2

To eliminate the factor 1 in front of x3 in the fourth line we multiply the
third line by −15

56
and add it to the fourth line. We get

4x1 + x2 + 0x3 + 0x4 = 3

0x1 +
15

4
x2 + x3 + 0x4 =

9

4

0x1 + 0x2 +
56

15
x3 + x4 = − 9

15

0x1 + 0x2 + 0x3 +
209

56
x4 =

121

56

From this we get a solution by first resolving the last line for x4 = 121
209

. Then
we get x3 = −( 9

15
+ 121

209
)15

56
and so on.

Now, we do it in matrix notation. The equation (2.1) can be written in
matrix notation: 

4 1 0 0
1 4 1 0
0 1 4 1
0 0 1 4

 ·

x1

x2

x3

x4

 =


3
3
0
2

 .

Each of the elimination steps can be implemented by multiplying a matrix
from the left. In the first step we use the matrix

L(1) =


1 0 0 0
−1

4
1 0 0

0 0 1 0
0 0 0 1


Then the equation

4 1 0 0
0 15

4
1 0

0 1 4 1
0 0 1 4

x = L(1)Ax = L(1)b =


3
9
4

0
2





2.2. ROADMAP 17

is equivalent to (2.2). The second step in matrix form requires

L(2) =


1 0 0 0
0 1 0 0
0 − 4

15
1 0

0 0 0 1


Then we get the matrix equation

4 1 0 0
0 15

4
1 0

0 0 56
15

1
0 0 1 4

x = L(2)L(1)Ax = L(2)L(1)b =


3
9
4

− 9
15

2


In the last step we use the matrix

L(3) =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 −15

56
1


and get the matrix equation

4 1 0 0
0 15

4
1 0

0 0 56
15

1
0 0 0 209

56

x = L(3)L(2)L(1)Ax = L(3)L(2)L(1)b =


3
9
4

− 9
15

121
56


2.2 Roadmap

The Gauss-eliminiation described above, a–priori, is only suitable for solving
linear equations. Now, we show that all information is already available to
derive a decomposition of the form

A = LR ,

where L is a lower triangular matrix, and R is an upper triangular matrix,
without additional complexity. For this purpose we formulate the Gauss-
eliminiation steps in matrix notation. We show that each step of Gauss-
eliminiation can be modeled by a matrix, which can be easily inverted. These
inverse matrices are used to derive the decomposition.
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2.3 Gauss-Eliminiation in Matrix Notation

In the following we prescribe the elimination steps in a formal way, indepen-
dent of the dimension n:

Let x = [x1, ..., xn]T ∈ Rn such that xk 6= 0. Then we define the matrix

L(k) = I − lkeTk , (2.3)

where lk = [0, ..., 0, lk+1,k, ..., ln,k]
T ∈ Rn with ljk = xj/xk, j = k + 1, ..., n.

Then we have

L(k)x =



1 0 · · · 0

0
. . . . . .

...
. . . 1 0

−lk+1,k 1
. . .

...
...

. . . . . . 0
0 · · · −ln,k · · · 0 1





x1
...
xk
xk+1

...
xn


=



x1
...
xk
0
...
0


. (2.4)

Denote A = A(1) = [aij]ij the n× n–Matrix and x = [ai1]i ∈ Rn the first
column of A(1). If a11 6= 0, then the matrix L(1) = I − l1eT1 results in

L(1)A(1) =


1 0 · · · 0
−l21 1 0 · · · 0
−l31 0 1 0

...
. . . . . . 0

−ln1 0 · · · 0 1




a11 a12 · · · a1n

a21 a22 · · · a2n

a31 a32 · · · a3n
...

...
...

an1 an2 · · · ann



=


a11 a12 · · · a1n

0 a
(2)
22 · · · a

(2)
2n

0 a
(2)
32 · · · a

(2)
3n

...
...

...

0 a
(2)
n2 · · · a

(2)
nn

 =: A(2) .

(2.5)

This is the first step of the Gauss-elimination. If a
(2)
22 6= 0, then we select

in the second step (k = 2) for x the second column of A(2), that is x =

[a12, a
(2)
22 , ..., a

(2)
n2 ]T . The according matrix L(2) = I− l2eT2 then satisfies A(3) =
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L(2)A(2), where,

L(2) =



1 0 · · · · · · · · · 0
0 1 0 · · · · · · 0

0 −l32
. . . · · · · · · 0

0 −l42 0 1 0 · · ·
...

...
. . . . . . 0

0 −ln2 · · · · · · 1


A(3) =



a11 a12 a13 · · · a1n

0 a
(2)
22 a

(2)
23 · · · a

(2)
2n

0 0 a
(3)
33 · · · a

(3)
3n

0 0 a
(3)
43 · · · a

(3)
4n

...
...

...

0 0 a
(3)
n3 · · · a

(3)
nn


.

Inductive, if all pivot elements a
(i)
ii are different from 0, then, after (n − 1)

steps, we get an upper tridiagonal matrix

R = L(n−1)A(n−1) = L(n−1)L(n−2) · · ·L(1)A . (2.6)

In the following we derive a decomposition A = LR, where L is a lower
triangular matrix with diagonal entries 1 and R is an upper diagonal matrix.
The structure of the Gauss-elimination explained above only provides

LA = R .

Essentially we have to prove that inverse of L is again a lower diagonal matrix.

2.4 The LR-Decomposition

From (2.6) it follows that

A = LR with L = L(1)−1L(2)−1 · · ·L(n−1)−1 . (2.7)

The matrices L(i)−1 can be explicitly calculated: First of all we remark that

eTi lj = [0, · · · , 0, 1, 0, · · · , 0]



0
...
0

lj+1,j
...
ln,j


=

{
0 for i ≤ j
li,j for i ≥ j + 1

. (2.8)
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From this it follows that:

(I − lieTi )(I + lie
T
i ) = I − lieTi + lie

T
i − lieTi lieTi

= (eTi li = 0(2.8))I .

The form of L is calculated inductive: Thereby we assume that for 1 ≤ k < n:

L(1)−1 · · ·L(k)−1 = I + l1e
T
1 + · · ·+ lke

T
k .

For k = 1 this assertion follows from the first part. From L(k+1)−1 = I +
lk+1e

T
k+1 it follows that

L(1)−1 · · ·L(k+1)−1 = (I + l1e
T
1 + · · ·+ lke

T
k )(I + lk+1e

T
k+1) ,

and from (2.8) it follows that

L(1)−1 · · ·L(k+1)−1 =I + l1e
T
1 + · · ·+ lke

T
k + lk+1e

T
k+1 +

k∑
i=1

lie
T
i lk+1e

T
k+1

=(eTi lk+1 = 0 for i = 1, · · · , k)

I + l1e
T
1 + · · ·+ lke

T
k + lk+1e

T
k+1 .

Thus we have seen that L(i)−1 = I + lie
T
i (note L(i) = I − lie

T
i ) and L =

I + l1e
T
1 + · · ·+ ln−1e

T
n−1.

If during the Gauss-elimination a pivot element a
(i)
ii becomes 0, then the

Gauss-algorithm fails. Otherwise an LR-decomposition can be determined.
After a matrix A has been LR-decomposed the resulting equation Ax = b

can be easily solved with forward and backward substitution:

Solve Ax = LRx = b in two steps:

• Solve Ly = b by forward substitution

• Solve Rx = y by backward substitution

Remark 2.1. The total amount of products and division required for LR-
decomposition is 1

3
n3 +O(n2). The number of computations for forward and

backward substitutions is comparable small: It requires

(n− 1)2

2
(forward) +

(n− 1)2

2
+ n(backward substitution) = n2 − n+ 1

Multiplications and divisions.
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2.5 Pivoting

Example 2.2. The matrix

A =

[
0 1
1 0

]
,

is a simple example where the elimination fails. However, if one interchanges
the first and second row, the solution can be calculated by elimination. This
is the topic of pivoting.

In practice the Gauss-elimination works well with partial pivoting, where
in the i-th step the element a

(i)
ji with

j =
argmax
i ≤ k ≤ n

∣∣∣a(i)
ki

∣∣∣∑n
l=i

∣∣∣a(i)
kl

∣∣∣
is selected and the i-th and j-th rows are interchanged.

Example 2.3. Solve Mx = b, for

M =

 2 6 10
1 3 3
3 14 28

 x1

x2

x3

 =

 0
2
−8

 .

To determine the first pivot element, we denote

M (1) = M

and we compute the maximal factor

j =
argmax

1 ≤ k ≤ 3

∣∣∣m(1)
k1

∣∣∣∑n
l=1

∣∣∣m(1)
kl

∣∣∣ = argmax

{
c1 =

2

18
, c2 =

1

7
, c3 =

3

45

}
= 2 .

Then the system of linear equations is rewritten by interchanging the first
and second rows of the original system:

M̃ (1)

 x1

x2

x3

 :=

 1 3 3
2 6 10
3 14 28

 x1

x2

x3

 =

 2
0
−8

 .
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The first elimination step consists in multiplication of the second row by
−1/2 and to sum it with the first line, to give the second line. The second
step consists in multiplication of the third row by −1/3 and sum it with the
first line:

M (2)

 x1

x2

x3

 :=

 1 3 3
0 0 −2
0 −5

3
−19

3

 x1

x2

x3

 =

 2
2
14
3

 .

The next pivot element is

j =
argmax

2 ≤ k ≤ 3

∣∣∣m(2)
k2

∣∣∣∑n
l=1

∣∣∣m(2)
kl

∣∣∣ = argmax

{
c2 =

0

2
, c3 =

5

24

}
= 3 .

After pivoting we get the equation

M̃ (2)

 x1

x2

x3

 :=

 1 3 3
0 −5

3
−19

3

0 0 −2

 x1

x2

x3

 =

 2
14
3

2

 .

No further elimination step is necessary. Now we can solve the equation
system by backward substitution and get:

x3 = −1, x2 = 1, x1 = 2 .

In some case even partial pivoting may fail, and then we have to use total
pivoting. Thereby we select the index (j, k), with i ≤ j, k ≤ n, for pivoting,

such that
∣∣∣a(i)
j,k

∣∣∣ is maximal - in absolute terms - note that partial pivoting

is formulated in relative terms. We then interchange the j-the and i-th row,
and also the k-th and i-th column.

We summarize the numerical effort of Gauss-elimination in the following
table:

Method Computation cost
without pivoting 1

3
n3 +O(n2)

with partial pivoting 1
3
n3 +O(n2)

with total pivoting 1
3
n3 +O(

∑n
i=1 i

2)

The numerical effort for total pivoting is high, and thus, typically, it is not
implemented.
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2.6 Cholesky-Decomposition

First, we recall that a matrix A is called positive definite if

xTAx > 0 , ∀x 6= 0 .

With LR-decomposition a symmetric and positive definite matrix A is
decomposed into the product of L (lower diagonal triangular matrix, which
has entries 1 in the diagonal) and an upper diagonal triangular matrix. The
Cholesky decomposition provides a decomposition A = LLT for symmetric
and positive definite matrices. Here L does not need to have entries 1 in the
diagonal necessarily.

Example 2.4. Let

A =

 4 1 3
1 4 0
3 0 4

 .

The Cholesky-decomposition can be determined by the comparison of the co-
efficients. We do it first in this particular example and then in a general
form.  4 1 3

1 4 0
3 0 4

 =

 l11 0 0
l21 l22 0
l31 l32 l33

 l11 l21 l31

0 l22 l32

0 0 l33

 .

From this we immediately get:

l211 = 4 , l11l21 = 1 , l11l31 = 3 ,

thus

l11 = 2 , l21 =
1

2
, l31 =

3

2
.

Moreover, we have

l221 + l222 = 4 , l21l31 + l22l32 = 0 ,

which gives

l22 =

√
15

2
, l32 = −

√
15

10
.

Finally l231 + l232 + l233 = 4, which implies

l33 =
2
√

10

5
.



24 CHAPTER 2. ELIMINATION ALGORITHMS

Thus  l11 0 0
l21 l22 0
l31 l32 l33

 =

 2 0 0
1
2

√
15
2

0
3
2
−
√

15
10

2
√

10
5

 .

This comparison of coefficients can be generalized to an abstract setting:
a11 a12

... a1n

a21 a22
... a2n

· · · · · · · · · · · ·
an1 an2

... ann

 =


l11 0 · · · 0

l21 l22
. . .

...
...

. . . 0
ln1 ln2 . . . lnn



l11 l21 · · · ln1

0 l22 ln2
...

. . . . . .
...

0 · · · 0 lnn


There we obtain successively:

a11 = l211

a21 = l21l11

a22 = l221 + l222

a31 = l31l11

a32 = l31l21 + l32l22

a33 = l231 + l232 + l233
...

⇒

l11 =
√
a11

l21 = a21/l11

l22 =
√
a22 − l221

l31 = a31/l11

l32 = (a32 − l31l21)/l22

l33 =
√
a33 − l231 − l232

...

From the algorithm above we see that the complexity for calculation of lij
(with i ≥ j) is at most j ∗, /.√ operations. Thus the total complexity of
∗, /.√ operations is

n∑
j=1

(n+ 1− j)j =
n(n+ 1)2

2
− n(n+ 1)(2n+ 1)

6
=

1

6
n3 +O(n2) .

2.7 QR-Decomposition

Definition 2.5. Let v ∈ Rr\{0}: The matrix

H = I − 2

vTv
vvT ∈ Rr×r

is called Householder-transformation.
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Example 2.6. Let v = [1, 1]T , then

H =

[
1 0
0 1

]
− 2

2

[
1
1

]
[1, 1] =

[
0 −1
−1 0

]
.

Let w = [1,−1]T be a vector that is orthogonal to v, then we have

Hv = H

[
1
1

]
=

[
−1
−1

]
= −v ,

Hw = H

[
1
−1

]
=

[
1
−1

]
= w.

For an arbitrary vector ζ we write it with respect to the orthonormal coordi-

nate system
{

v√
2
, w√

2

}
:[
ζ1

ζ2

]
=

λ√
2

[
1
1

]
+

µ√
2

[
1
−1

]
.

This gives the local coordinate parameters

λ =
ζ1 + ζ2√

2
and µ =

ζ1 − ζ2√
2

.

Thus

Hζ =
λ√
2
Hv +

µ√
2
Hw = − λ√

2
v +

µ√
2
w .

Thus matrix H serves as a mirror transformation for the v component along
the mirror w.

This observation holds true in every dimension:

Lemma 2.7. The Householder transformation H is a symmetric matrix,
which satisfies:

Hv = −v and Hw = w , ∀w ∈ [v]⊥ = {λv : λ ∈ R}⊥ .

To introduce the QR decomposition we construct an Householder matrix
H, which transforms a given, arbitrary, vector x ∈ Rr\{0} into e1 ∈ Rr.
That is, we are looking to a vector v ∈ Rr\{0} such that

Hx = x− 2

vTv
v(vTx) = ζe1 . (2.9)
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e
1

v

x=e
2

w

x−ξe1

Figure 2.1: Here x = e2

Geometrical speaking v and w are the complementary vectors between x and
e1.

We derive v from some necessary conditions: From (2.9) it follows that

x− ζe1 =
2vTx

‖v‖2
2

v . (2.10)

This means that v is proportional to x − ζe1. In fact every v = λ(x − ζe1),
λ 6= 0 satisfies (2.10). Now we determine the necessary relation between x
and ζ. Let v = λ(x− ζe1), then from (2.10) it follows that

x− ζe1 =
2 ‖x‖2

2 − 2ζx1

‖x‖2
2 − 2ζx1 + ζ2

(x− ζe1) ,

which implies that
|ζ| = ‖x‖2 . (2.11)

We use the following choice for (ζ, λ) (every other choice is possible as
well)

ζ =

{
−‖x‖2 for x1 = 0

− x1
|x1| ‖x‖2 for x1 6= 0

and λ =
1

‖x‖2

. (2.12)

With this choice

v =

{
x/ ‖x‖2 + e1 for x1 = 0 ,

1
‖x‖2

[
x+

x1‖x‖2
|x1| e1

]
for x1 6= 0

(2.13)
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and Hx = ζe1. Thus (2.9) is satisfied.

Example 2.8. Let x = [1, 3, 4]T . Then ‖x‖2 =
√

26

v =
1√
26

 1
3
4

+

 1
0
0

 .

Then the Householder matrix is

H =

 −0.1961 −0.5883 −0.7845
−0.5883 0.7106 −0.3859
−0.7845 −0.3859 0.4855

 .

We check and see that with w = [0.7845, 0,−1.1961]T , which is orthogonal to
v,

Hx =

 −5.0990
0
0

 , Hw = w , Hv = −v .

The Housholder-algorithm for decomposing a matrix

A = [aij] 1 ≤ i ≤ m
1 ≤ j ≤ n

= [a1, · · · , an]

is realized as follows (note that the matrix A does not have to be quadratic):
We assume that m ≥ n.

• We initialize A(1) = A and x = a1 (the first column of the matrix A).
With this vector x we can determine the Householder matrix H(1) ∈
Rm×m from (2.10) and get

H(1)a1 = r11e1 , r11 = ±‖a1‖2 6= 0 .

Here the notation ± just means that we do not specify the sign in
front of ‖a1‖2 - it is, however, completely determined by (2.12). Con-
sequently

H(1)A =

[
r11 ∗ ∗ ∗

0 A(2)

]
where A(2) ∈ R(m−1)×(n−1) .
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• Now, we proceed inductively, and assume that after i steps we have
constructed Householder matrices H(1), · · · , H(i) such that

H(i) · · ·H(1)A =


r11 · · · r1i

. . .
... R(i)′

0 rii
0 · · · 0 A(i+1)

 (2.14)

where R(i)′ ∈ Ri×(n−i) and A(i+1) ∈ R(m−i)×(n−i).

In the inductive step we select for x ∈ Rm−i the first column ai+1 of
A(i+1) and construct the Householder matrix H(i+1)′ ∈ R(m−i)×(m−i)

and the according vector v′ ∈ Rm−i from (2.10). Application of the
Householder transform gives

H(i+1)′A(i+1) =

[
ri+1,i+1 ∗ ∗ ∗

0 A(i+2)

]
where ri+1,i+1 = ±‖ai+1‖2 6= 0. Again ± means that we have to choose
a particular sign. Using the notation, we get

H(i+1) :=

[
I 0
0 H(i+1)′

]

H(i+1)H(i) · · ·H(1)A =


r11 · · · r1i

. . .
...

0 rii

R(i)′

0 · · · 0 ri+1,i+1 ∗ ∗ ∗
0 · · · 0 0 A(i+2)

 .

We observe here, that in each step the first i rows are not changed.

Each Householder matrix H is unitary, that is HT = H−1, and the prod-
uct of unitary matrices is again unitary. This shows that the Householder
decomposition of matrix A with rank n can be decomposed as follows:

A = QR = Q


r11 · · · r1n

. . .
...

0 rnn
0 · · · 0

 .

where Q ∈ Rm×m is unitary and R ∈ Rm×n is triangular matrix with rii 6= 0.



2.7. QR-DECOMPOSITION 29

Example 2.9. We consider QR-decomposition of the matrix

A =

 1 1 1
1 3 4
1 6 7

 .

• In the first step we use (2.12) and (2.13) to calculate

ζ = −
√

3 and v =
1√
3

 1 +
√

3
1
1

 .

Thus the first Householder matrix is given by

H(1) =

 −0.5774 −0.5774 −0.5774
−0.5774 0.7887 −0.2113
−0.5774 −0.2113 0.7887

 .

This shows then that

H(1)A =

 −1.7321 −5.7735 −6.9282
0 0.5207 1.0981
0 3.5207 4.0981

 .

We select the submatrix

A(2) =

[
0.5207 1.0981
3.5207 4.0981

]
.

and calculate the second Householder matrix according to x = [0.5207, 3.5207]T .
Using (2.12) and (2.13) we calculate

ζ = −3.5590 and v =

[
1.1463
0.9892

]
.

The according Householder transformation is

H(2)′ =

[
−0.1463 −0.9892
−0.9892 0.1463

]
.

Moreover,

H(2) =

 1 0 0
0 −0.1463 −0.9892
0 −0.9892 0.1463

 .
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Because,

H(2)′A(2) =

[
−3.5590 −4.2147

0 −0.4867

]
,

we have found now the decomposition

R = H(2)H(1)A =

 −1.7321 −5.7735 −6.9282
0 −3.5590 −4.2147
0 0 −0.4867

 .

Finally the Q-matrix of the QR decomposition is given by

Q = H(1)TH(2)T = H(1)H(2) =

 −0.5774 0.6556 0.4867
−0.5774 0.0937 −0.8111
−0.5774 −0.7493 0.3244

 .

Remark 2.10. The QR-algorithm is often used for solving least-squares
problems: Minimization of ‖Ax− b‖2

2 is equivalent to solving AT (Ax − b)
(which we will see later). If we have a QR decomposition, then it is equiva-
lent to

RTRx = RT b

So the solution can be found by backward and forward substitution.

2.8 Conclusion

At the end we compare the complexity of all elimination algorithms for
quadratic matrices A ∈ Rn×n:

QR 2
3
n3 +O(n2)

LR 1
3
n3 +O(n2)

Cholesky 1
6
n3 +O(n2)
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Interpolation

We study the problem of interpolation of function samples y0 = y(x0), . . . , yl =
y(xl) from a function y : [a, b]→ R on the grid

∆ = {a = x0 < x1 < . . . < xl = b} . (3.1)

The grid size is defined by

h := max
i=1,...,l

hi , hi = xi − xi−1 .

Notation: m is the degree of the polynomial, l + 1 is the number of
interpolation points.

3.1 Lagrange Interpolation

Historically, the first interpolation methods are based on polynomials:

Definition 3.1. Πm denotes the space of polynomials of degree ≤ m.

Polynomial interpolation consists in determining a polynomial p ∈ Πm

such that
p(xi) = yi , i = 0, . . . ,m . (3.2)

Definition 3.2. We denote by

w(x) :=
m∏
i=0

(x− xi) ∈ Πm+1

31
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the nodal polynomial at ∆. The polynomial

li(x) :=
w(x)

(x− xi)w′(xi)
=

m∏
j=0,j 6=i

x− xj
xi − xj

∈ Πm, x 6= xi (3.3)

is called Lagrange-polynomial.

The Lagrange-polynomial satisfies

li(xj) = δij . (3.4)

The polynomial

p(x) =
m∑
i=0

yili(x) .

satisfies p(xj) =
∑m

i=0 yili(xj) = yj, that is the interpolation exercise. The
polynomial is unique in the space of functions in Πm.

Example 3.3. Every function f(x) is interpolated at nodal points a and b
by the linear polynomial

p(x) = f(a)− f(b)− f(a)

b− a
(x− a) .

3.2 Trigonometric Interpolation

Here we consider the grid

∆ =

{
t0 = 0 < t1 =

2π

l
< . . . < tl−1 = (l − 1)

2π

l

}
, (3.5)

which equally subdivides the interval [0, 2π) into l subintervals.
The goal is to interpolate sample values {y0, y1, . . . , yl−1} at ∆ with a

function of the form

y(t) =
a0

2
+

m∑
j=1

aj cos(jt) +
m∑
j=1

bj sin(jt) .

Such functions are called trigonometric polynomial of degree m.
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We restrict attention to the case that l = 2m + 1, in which case we can
expect that we can solve the trigonometric interpolation exercise uniquely
(2m + 1 nodal values and 2m + 1 interpolation values): The interpolation
exercise reads as follows:

Given {y0, y1, . . . , y2m} determine a0, {a1, . . . , am} , {b1, . . . , bm} such that

yk =
a0

2
+

m∑
j=1

aj cos(jtk) +
m∑
j=1

bj sin(jtk) , ∀k = 0, 1, . . . , 2m . (3.6)

The coefficients {ai, bi} can be determined analytically: For this purpose we
use the following expression of the sums of cos and sin:

l−1∑
k=0

cos(ĵtk) cos(jtk) =


0 for j 6= ĵ and j, ĵ ∈

{
0, 1, . . . , l−1

2

}
,

l
2

for j = ĵ ∈
{

1, . . . , l−1
2

}
,

l for j = ĵ = 0 ,

l−1∑
k=0

cos(ĵtk) sin(jtk) = 0 for j, ĵ ∈
{

0, 1, . . . ,
l − 1

2

}
,

l−1∑
k=0

sin(ĵtk) sin(jtk) =


0 for j 6= ĵ and j, ĵ ∈

{
0, 1, . . . , l−1

2

}
,

l
2

for j = ĵ ∈
{

1, . . . , l−1
2

}
,

0 for j = ĵ = 0 .

(3.7)

These equalities are determined from the summation formulas

cos(jtk) cos(ĵtk) =
1

2

(
cos((j − ĵ)tk) + cos((j + ĵ)tk)

)
=

1

2
Re
(
ei(j−ĵ)tk + ei(j+ĵ)tk

)
,

cos(jtk) sin(ĵtk) =
1

2

(
sin((j + ĵ)tk)− sin((j − ĵ)tk)

)
=

1

2
Im
(
ei(j+ĵ)tk − ei(j−ĵ)tk

)
,

sin(jtk) sin(ĵtk) =
1

2

(
cos((j − ĵ)tk)− cos((j + ĵ)tk)

)
=

1

2
Re
(
ei(j−ĵ)tk − ei(j+ĵ)tk

)
.

We only show the first identity of (3.7), the others are left as exercises:
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Theorem 3.4.

l−1∑
k=0

cos(ĵtk) cos(jtk) =


0 for j 6= ĵ and j, ĵ ∈

{
0, 1, . . . , l−1

2

}
,

l
2

for j = ĵ ∈
{

1, . . . , l−1
2

}
,

l for j = ĵ = 0 ,

Proof: Denoting

q+ = ei(j+ĵ) 2π
l and q− = ei(j−ĵ) 2π

l ,

it follows that

l−1∑
k=0

cos(ĵtk) cos(jtk) =
1

2
Re

l−1∑
k=0

(
ei(j−ĵ)tk + ei(j+ĵ)tk

)
=

1

2
Re

(
l−1∑
k=0

qk− +
l−1∑
k=0

qk+

)
.

Let us denote by ∑
:=

l−1∑
k=0

qk− +
l−1∑
k=0

qk+ .

• If j = ĵ = 0, then q+ = q− = 1. therefore∑
:= 2l .

Thus in turn
l−1∑
k=0

cos(ĵtk) cos(jtk) = l .

• If j = ĵ ∈
{

1, . . . , l−1
2

}
, then q− = 1, and

∑l−1
k=0 q

k
− =

∑l−1
k=0 1 = l.

Because j + ĵ = 2j ∈ {2, . . . , l − 1} we see that q+ 6= 1.

The second term of
∑

is a geometric sum, that is

l−1∑
k=0

qk+ =
1− ql+
1− q+

=
1− ei(j+ĵ)2π

1− q+

= 0 .

Therefore
l−1∑
k=0

cos(ĵtk) cos(jtk) =
1

2
Re(0 + l) =

l

2
.
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• if j 6= ĵ, then 0 6= j − ĵ and j + ĵ ∈ {1, . . . , l − 2}. Therefore, both
l(j ± ĵ)2π

l
are multipliers of 2π, and thus ql± = 1, which means that∑

= 0. Therefore

l−1∑
k=0

cos(ĵtk) cos(jtk) = 0 .

2

Now, we continue with determining the coefficient {aj, bj}. Thereby we use
three types of equalities (3.7) above :

• From (3.6) it follows that by taking into account that cos(0tk) =
cos(0) = 1,

l−1∑
k=0

yk = l
a0

2
+

m∑
j=1

aj

l−1∑
k=0

cos(0tk) cos(jtk)︸ ︷︷ ︸
(1.in (3.7) with ĵ=0)=0

+
m∑
j=1

bk

l−1∑
k=0

cos(0tk) sin(jtk)︸ ︷︷ ︸
(2.in (3.7) with ĵ=0)=0

.

That is

a0 =
2

l

l−1∑
k=0

yk .

• Let ĵ ∈
{

1, . . . , l−1
2

}
. Then, by multiplication of (3.6) with cosine
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functions and summation gives

l−1∑
k=0

yk cos(ĵtk)

=
a0

2

l−1∑
k=0

cos(ĵtk)︸ ︷︷ ︸
(1.in (3.7) with j=0)=0

+
m∑
j=1

aj

l−1∑
k=0

cos(jtk) cos(ĵtk)︸ ︷︷ ︸
(1.in (3.7))= l

2
δj,ĵ

+
m∑
j=1

bj

l−1∑
k=0

sin(jtk) cos(ĵtk)︸ ︷︷ ︸
(2.in (3.7))=0

,

=
l

2
aĵ . ∀1 ≤ ĵ <

l

2
.

That is

aĵ =
2

l

l−1∑
k=0

yk cos(ĵtk) . (3.8)

• Let ĵ ∈
{

1, . . . , l−1
2

}
. Multiplication of (3.6) with sine functions and

summation gives

l−1∑
k=0

yk sin(ĵtk)

=
l−1∑
k=0

(
a0

2
+

m∑
j=1

aj cos(jtk) +
m∑
j=1

bj sin(jtk)

)
sin(ĵtk) ,

=
l

2
bĵ .

Or in other words:

bĵ =
2

l

l−1∑
k=0

yk sin(ĵtk) . (3.9)
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It is common to change to a complex number notation:

cĵ = aĵ + ibĵ =
2

l

l−1∑
k=0

yk(cos(ĵtk) + i sin(ĵtk)) =
2

l

l−1∑
k=0

yk exp(iĵtk) . (3.10)

Definition 3.5. The discrete Fourier transform (DFT) of a set of n complex
data values {yk : k = 0, . . . , l − 1}, which are evenly spaced in [0, 2π) is the
set {

cĵ =
l−1∑
k=0

yk exp(iĵtk) : ĵ = 0, 1, . . . , l − 1

}
.

Note, that in comparison with (3.10) the prefactor 2
l

is left out.

3.3 Fast Fourier Transform (FFT)

Is an algorithm for fast evaluation of the DFT.
Let

ω = ωl = exp

(
i
2π

l

)
.

With this notation the DFT becomes{
cĵ =

l−1∑
k=0

ykω
ĵk : ĵ = 0, 1, . . . , l − 1

}
.

We explain the FFT for a 4 × 4 system, that is for l = 4. In this case
ω = exp

(
i2π

4

)
= i. The linear relation of the DFT is as follows:

ω0y0 + ω0y1 + ω0y2 + ω0y3 = c0 ,

ω0y0 + ω1y1 + ω2y2 + ω3y3 = c1 ,

ω0y0 + ω2y1 + ω4y2 + ω6y3 = c2 ,

ω0y0 + ω3y1 + ω6y2 + ω9y3 = c3 .

Let

F4 :=


1 1 1 1
1 ω ω2 ω3

1 ω2 ω4 ω6

1 ω3 ω6 ω9

 =


1 1 1 1
1 ω ω2 ω3

1 ω2 1 ω2

1 ω3 ω2 ω

 =


1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i

 .
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be the Fourier -matrix.
Thus the system in matrix vector notation reads as follows:

F4


y0

y1

y2

y3

 =


c0

c2

c1

c3

 .

The matrix F4 can be factorized as follows:

F4 =


1 0 1 0
0 1 0 i
1 0 −1 0
0 1 0 −i




1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 .

The last matrix puts the odd indices in front of the even ones. The middle
matrix consists of two Fourier matrices of half size. In general we have

F2n =

[
In Dn

In −Dn

] [
Fn 0
0 Fn

]


1 0
0 1 0

0 1 0

0 1 0
0 1 0

0 1 0


,

where In is the n-dimensional unitary matrix and Dn = diag(1, ω, . . . , ωn−1)
with ω = ωn = exp(2πi/n). The last matrix puts the odd lines on the top of
the matrix and shuffles the even to the end. See Strang [14].

We calculate matrix vector multiplications after the factorization:

• We have to perform and index renumbering. Since there are no multi-
plications needed it does not count to the complexity.

• we need to perform two times the Fourier matrix multiplication of size
n/2.

• We need n multiplications, when multiplying with the diagonal matri-
ces DnFn.
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Thus we have the recursive complexity

e(2n) = 2e(n) +O(n) .

O(n) here refers to the fact that at most order n operations, such as mul-
tiplications with ω are performed. Let n = 2p (in our example n = 4 and
p = 2). From the master theorem it follows that e(n) = O(n log2(n)).

3.4 Spline Interpolation

Let ∆ = {a = x0 < x1 < . . . < xl = b} be a grid on the interval [a, b]. A step
function is a function, which satisfies

s(x) = si , xi−1 ≤ x < xi , i = 1, . . . , l .

The set of all step functions is denoted by S0,∆. It is a vector space of
dimension l. As basis functions we use the characteristic functions χi =
χ[xi−1,xi), i = 1, . . . , l. Thus

s(x) =
l∑

i=1

siχi(x) .

Remark 3.6. Let f : [a, b] → R. The step function s(x) =
∑l

i=1 siχi(x)
with

si =
1

hi

∫ xi

xi−1

f(x) dx , i = 1, . . . , l (3.11)

is the best approximating step function with respect to the norm ρ→
√∫ b

a
ρ2(x) dx.

That is the functional

ρ ∈ S0,∆ →
∫ b

a

(f(x)− ρ(x))2 dx

is minimal for s.

3.5 Linear Splines

Definition 3.7. A spline of degree n is a function s, which is (n− 1)–times
differentiable in (a, b) and on every interval [xi−1, xi) a polynomial of degree
n. The space of splines of order n is denoted by Sn,∆.
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Figure 3.1: A linear spline

Of particular importance are the linear splines (n = 1) and cubic splines
(n = 3).

Remark 3.8. • Sn,∆ is an (n+ l)-dimensional space. Thus, in order to
determines a spline of degree n, we have to specify the values at l nodal
points and n additional conditions.

• A basis for S1,∆ are formed by the hat functions Λi, i = 0, 1, . . . , l,
which are continuous, piecewise linear, and satisfy

Λi(xj) = δij , i, j = 0, . . . , l . (3.12)

• (3.12) allows for an easy computation of the interpolating spline: Let
y0, . . . , yl sample values. Then, s =

∑l
i=0 yiΛi ∈ S1,Λ is the unique

spline, which satisfies

s(xi) = yi , i = 0, . . . , l .

3.6 Cubic Splines

Cubic splines, that are the elements of S3,∆, are used frequently in computer
graphics.

We summarize some basic facts:

1. a cubic spline is two times differentiable.

2. A cubic spline is determined from (l+3) measurements and conditions.

3. If s ∈ S3,∆, then s′′ ∈ S1,∆. Thus

s′′ =
l∑

i=0

γiΛi , (3.13)



3.6. CUBIC SPLINES 41

where γi = s′′(xi) , i = 0, . . . , l ,. γi are called moments of s.

In the following we derive the conditions for determining a cubic spline. First,
we need some auxiliary result: For an arbitrary function ρ, which is twice
differentiable in [xi−1, xi], we have:

ρ(x)− ρ(xi)

=

∫ x

xi

ρ′(t) · 1 dt

=︸︷︷︸
Integration by parts

ρ′(t)(t− x)|xt=xi −
∫ x

xi

ρ′′(t)(t− x) dt

=− ρ′(xi)(xi − x)−
∫ x

xi

ρ′′(t)(t− x) dt .

(3.14)

Moreover, for an arbitrary t ∈ [xi−1, xi] we have

s′′(t) = γi−1Λi−1(t) + γiΛi(t)

= γi−1
xi − t

xi − xi−1

+ γi
t− xi−1

xi − xi−1

= −γi−1

hi
(t− xi) +

γi
hi

(t− xi−1)

=
γi − γi−1

hi
(t− xi) + γi ,

(3.15)
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which implies that for every x ∈ [xi−1, xi)

s(x)− s(xi) + s′(xi)(xi − x)

=︸︷︷︸
(3.14)

−
∫ x

xi

s′′(t)(t− x) dt

=︸︷︷︸
(3.15)

− γi − γi−1

hi

∫ x

xi

(t− xi)(t− x) dt− γi
∫ x

xi

t− x dt

=︸︷︷︸
Integration by parts

γi − γi−1

2hi

∫ x

xi

(t− xi)2 dt

+
γi − γi−1

2hi
(t− xi)2(t− x)

∣∣∣∣x
t=xi

− γi
2

(t− x)2
∣∣∣x
t=xi

=
γi − γi−1

hi

(x− xi)3

6
+ γi

(x− xi)2

2
.

(3.16)

Using the abbreviations we get

si = s(xi) and s′i = s′(xi) for i = 0, . . . , l .

Thus from (3.16) it follows that for every x ∈ [xi−1, xi) and i = 1, . . . , l

s(x) = si + s′i(x− xi) + γi
(x− xi)2

2
+
γi − γi−1

hi

(x− xi)3

6
. (3.17)

In particular for i = 1, . . . , l we have

si−1 = si − s′ihi +
γih

2
i

2
− (γi − γi−1)h2

i

6

= si − s′ihi +
h2
i

6
(2γi + γi−1) ,

s′i−1 = s′i −
hi
2

(γi−1 + γi) .

(3.18)
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Combinations of these equations shows

si+1 − si
hi+1

− si − si−1

hi

=s′i+1 − γi
hi+1

6
− γi+1

hi+1

3
− s′i + γi−1

hi
6

+ γi
hi
3

=(γi + γi+1)
hi+1

2
− γi

hi+1

6
− γi+1

hi+1

3
+ γi−1

hi
6

+ γi
hi
3

=
1

6
(hi+1γi+1 + 2γi(hi + hi+1) + γi−1hi) .

Writing this system in matrix notation we get

1

6


h1 2(h1 + h2) h2 0

h2 2(h2 + h3)
. . .

. . . . . . hl−1

hl−1 2(hl−1 + hl) hl


︸ ︷︷ ︸

∈R(l−1)×(l+1)


γ0

γ1
...

γl−1

γl



=−


−h−1

1 h−1
1 + h−1

2 −h−1
2 0

−h−1
2 h−1

2 + h−1
3

. . .
. . . . . . −h−1

l−1

−h−1
l−1 h−1

l−1 + h−1
l −h−1

l


︸ ︷︷ ︸

∈R(l−1)×(l+1)


s0

s1
...

sl−1

sl

 .

(3.19)

The matrices in (3.19) have dimension (l − 1) × (l + 1), and thus are
underdetermined. Thus, additional conditions are required: For a natural
cubic spline we request in addition that

s′′(a) = s′′(b) = 0 . (3.20)

However, (3.13) then shows, that

γ0 = s′′(a) = 0 and γl = s′′(b) = 0 . (3.21)
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Thus the system (3.19) simplifies to

1

6


2(h1 + h2) h2 0

h2 2(h2 + h3)
. . .

. . . . . . hl−1

hl−1 2(hl−1 + hl)


︸ ︷︷ ︸

:=G∈R(l−1)×(l−1)

 γ1
...

γl−1



=

 d1
...

dl−1

 ,

(3.22)

where

di =
si+1 − si
hi+1

− si − si−1

hi
=
si+1

hi+1

− si
(

1

hi
+

1

hi+1

)
+
si−1

hi−1

,

i = 1, . . . , l − 1 .

(3.23)

Example 3.9. We consider an equidistant grid with step size h. For given
j = 1, . . . , l − 1 we determine the natural cubic spline s which satisfies

s(xi) = si = δij , i = 0, . . . , l . (3.24)
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The system (3.22), (3.23) reads as follows:

1

6


4 1 0

1 4
. . .

. . . . . . 1
0 1 4


 γ1

...
γl−1



=− 1

h2


2 −1 0

−1 2
. . .

. . . . . . −1
0 −1 2


 s1

...
sl−1



=− 1

h2


2 −1 0

−1 2
. . .

. . . . . . −1
0 −1 2





0
...
0
1
0
...
0



=
1

h2



0
...
0
1
−2
1
0
...
0


.

(3.25)
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Chapter 4

Numerical Quadrature

In this chapter we investigate the numerical approximation of integrals

I[f ] =

∫ b

a

f(x) dx , (4.1)

without determining analytically the anti-derivative of f .

Example 4.1. The simplest approximation formulas are the mid point∫ b

a

f(x) dx ≈ (b− a)f

(
a+ b

2

)
(4.2)

and the trapezoidal formula∫ b

a

f(x) dx ≈ b− a
2

f(a) +
b− a

2
f(b) , (4.3)

respectively. Obviously, in general, in (4.2) and (4.3) there is no equality.

In general, we are considering quadrature formulas of the form:

Q[f ] =
m∑
i=0

ωif(xi) ≈ I[f ] ,

with nodal points {xi : i = 0, . . . ,m} and weights {ωi : i = 0, . . . ,m}.
In particular we have

Mid point rule m = 0 x0 = a+b
2

ω0 = b− a
Trapezoidal rule m = 1 x0 = a, x1 = b ω0 = ω1 = b−a

2

47
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4.1 Compound Formulas

In practice an interval [â, b̂] is subdivided into n subintervals and (4.2) and
(4.3) are applied to each subinterval.

We assume for the sake of simplicity of presentation a uniform subdivision:

â = x̂0 < x̂1 < x̂2 < · · · < x̂n = b̂ ,

x̂j = â+ jh , h =
b̂− â
n

.
(4.4)

We call x̂i as the sampling points. The compound formula is defined as
follows:

Qn[f ] :=
n∑
j=1

Q[f[xj−1,xj ]] ≈
∫ b̂

â

f(x) dx .

Example 4.2. The trapezoidal rule results in the compound formula

Qn[f ] :=
n∑
j=1

x̂j − x̂j−1

2
(f(x̂j) + f(x̂j−1))

=
h

2
f(â) + h

n−1∑
j=1

f(x̂j) +
h

2
f(b̂) .

(4.5)

We denote the x̂j the sampling points.

4.2 Order of Quadrature Formulas

Qualitative properties of a quadrature formula are the degree of exactness
and order of convergence

Definition 4.3. Let Πm be the vector space of polynomials of degree ≤ m.

1. A quadrature formula Q[f ] has degree q if

Q[p] = I[p] , ∀p ∈ Πq .

2. A compound quadrature formula converges against I[f ] with order s if

|Qn[f ]− I[f ]| = O(n−s) , n→∞ .
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Note the different terminology:

x̂i sampling points compound
xi nodal points small interval

â, b̂ boundaries compound
a, b boundaries small interval
n # intervals compound
m # nodal intervals small interval

4.3 Newton-Cotes-Formulas

Using polynomial interpolation we can construct quadrature formulas for I[f ]
for arbitrary degrees of freedom q.

Proposition 4.4. Let x0 < x1 < · · · < xm nodal points in [a, b] and let

ωi :=

∫ b

a

li(x) dx . (4.6)

Then the Newton-Cotes quadrature formula

Q[f ] =
m∑
i=0

ωif(xi)

has exactness degree of at least q = m.

Example 4.5. We constrain ourselves to equidistant nodal points a = x0 <
x1 < · · · < xm = b.

For m = 1 we have the trapezoidal rule (4.3) and for m = 2 we have the
Simpson formula∫ b

a

f(x) dx ≈ b− a
6

(
f(a) + 4f

(
a+ b

2

)
+ f(b)

)
. (4.7)

According to Proposition 4.4 the Simpson-formula has exactness degree 2. In
fact it has even exactness degree 3. The trapezoidal rule has exactness degree
1.
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Remark 4.6. We emphasize that for all quadrature formulas

b− a =

∫ b

a

1 dx = I[1] =︸︷︷︸
1∈Π0

Q[1] =
m∑
i=0

ωi . (4.8)

For m = 2 we get the compound Simpson-rule: With x̂i = â + ih, i =

0, . . . , 2m and h = b̂−â
2n

we have∫ b̂

â

f(x) dx ∼

h

3

{
f(â) + 4f(x̂1) + 2f(x̂2) + 4f(x̂3) + · · ·+ 2f(x̂2n−2) + 4f(x̂2n−1) + f(b̂)

}
Remark 4.7. The compound trapezoidal rule has degree 2: On an arbitrary
interval [a, b] we have by Taylor’s theorem:

f(x) = f(a) + f ′(a)(x− a) +
f ′′(ζa)

2
(x− a)2

f(x) = f(a) +
f(b)− f(a)

b− a
(x− a)

+

(
f ′(a)− f(b)− f(a)

b− a

)
(x− a) +

f ′′(ζa)

2
(x− a)2

= f(a) +
f(b)− f(a)

b− a
(x− a)

− f ′′(ζb)

2
(b− a)(x− a) +

f ′′(ζa)

2
(x− a)2

Denoting by C := supx∈[a,b] |f ′′(ξ)| and integration over the interval [a, b] we
get ∣∣∣∣∫ b

a

f(x) dx− (b− a)
f(a) + f(b)

2

∣∣∣∣∣∣∣∣∫ b

a

f(x) dx−
∫ b

a

f(a) +
f(b)− f(a)

b− a
(x− a) dx

∣∣∣∣
≤C

2

∫ b

a

(x− a)(b− x) dx =
C

6
(b− a)3 .

This shows that the compound trapezoidal formula on a uniform grid satisfies:∣∣∣∣∣
∫ b̂

â

f(x) dx−Qn[f ]

∣∣∣∣∣ ≤ n
C

6
h3 =

C(b− a)

6
h2 .
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where C := supx∈[â,b̂] |f ′′(ξ)|.
Thus the compound trapezoidal formula is a second order method.

4.4 Gaussian-Quadrature

Let x0 < x1 < · · · < xm denote nodal points and denote the according
weights ω0, ω1, · · · , ωm. Wie are interested in how large the maximal degree
of exactness of the following quadrature formula can be:

Q[f ] =
m∑
i=0

ωif(xi) ≈ I[f ] =

∫ b

a

f(x) dx . (4.9)

Proposition 4.8. Then the degree of exactness of a quadrature formula Q[·]
from (4.9) can be at most q = 2m+ 1.

With Gaussian-quadrature formulas it is possible to achieve the degree
2m+ 1. The weights ωi and the nodes are tabelized. The higher accuracy is
obtained by optimizing the nodal points.

Gauß-Legendre-Integration on the Interval [−1, 1]
n xi ωi

1 0 2

2 −
√

1
3
,
√

1
3

1, 1

3 −
√

3
5
, 0,
√

3
5

5
9
, 8

9
, 5

9

4 −
√

3
7

+ 2
7

√
6
5
,−
√

3
7
− 2

7

√
6
5
, 18−

√
30

36
, 18+

√
30

36
,√

3
7
− 2

7

√
6
5
,

√
3
7

+ 2
7

√
6
5

18+
√

30
36

, 18−
√

30
36

5 −1
3

√
5 + 2

√
10
7
,−1

3

√
5− 2

√
10
7
, 0, 322−13

√
70

900
, 322+13

√
70

900
, 128

225
,

1
3

√
5− 2

√
10
7
, 1

3

√
5 + 2

√
10
7

322+13
√

70
900

, 322−13
√

70
900
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Chapter 5

Ordinary Differential Equations

In this chapter we study the numerical solution of ordinary differential equa-
tions

y′ = f(t, y) , t ∈ [0, T ] with the initial condition y(0) = y0 . (5.1)

Here y is a vector valued function. We call this equation a system of first
order.

We use the following convention:

y ∈ Rν±1

x ∈ Rν+1

î, ĵ Index for x, y
i, j Index of iterations of numerical method
yi, ti iterate yi approximating y(ti)

Example 5.1. (Exponential Grow) A population has infinite resources. At
time t the population is P (t). We assume that the rate of change in the
population is constant: That is, there exists a constant α such that

P ′(t)

P (t)
= α (5.2)

and the population doubles every year. From the later we determine α. Be-
cause (logP )′(t) = α it follows that

logP (t) = αt+ β .

53
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If we choose the time units in years and assume that the population doubles
every year (that is α = 2) it follows that:

2 =
P (t+ 1)

P (t)
= eα and P (0) = eβ .

Several further easy examples can be found in the book of Heuser [7].

The second example provides a relation between ordinary and partial differ-
ential equations, and how ordinary differential equation solvers can be used
for the solution of partial differential equations.

Example 5.2. Let u(x, t), −1 ≤ x ≤ 1, be the temperature distribution at
time t in a slab of length l = 2. Assuming constant conductivity σ = 1, u
satisfies the heat conduction equation:

ut = σuxx = uxx , −1 < x < 1 , 0 < t < T . (5.3)

This is now a partial differential equation because it depends on derivatives
of at least two variables x, t. By discretization of the x variable we can
transform the partial differential equation in a system of ordinary differential
equations.

Let v : [−1, 1]→ R be an arbitrary function satisfying v(−1) = v(1) = 0,
then we get by integration by parts∫ 1

−1

ut(t, x)v(x) dx =

∫ 1

−1

uxx(t, x)v(x) dx = −
∫ 1

−1

ux(t, x)vx(x) dx . (5.4)

Assume that the temperatures u(−1, t) := u0(t) and u(1, t) := u1(t) are mea-
sured, then, for every t > 0, u(t, x) can be approximated by a linear spline in
space over the grid ∆ = {−1 = x0 < x1 < ... < xν = 1}, that is

u(t, x) =
ν∑
î=0

yî(t)Λî(x) , (5.5)

where Λî is a linear hat function with peak at xî. Taking into account the
boundary conditions we see that y0 = u0(t) and yν = u1(t). All other functions
yî are unknown.
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Inserting (5.5) in (5.4) we get a system of differential equations for y1, ..., yν−1:

ν∑
î=0

y′
î
(t)

∫ 1

−1

Λî(x)v(x) dx = −
ν∑
î=0

yî(t)

∫ 1

−1

Λ′
î
(x)vx(x) dx ,

where we choose v(x) ∈
{

Λĵ(x) : ĵ = 1, ..., ν − 1
}

- this means that v is a

hat function, which satisfies homogenous boundary conditions.

Denote by

G := [
〈
Λî,Λĵ

〉
]1≤î,ĵ≤ν−1 =

h

6



4 1 0 · · · · · · 0

1 4 1 0
. . . 0

0
. . . . . . . . . . . . . . .

...
. . . . . . 1 4 1

... . . 0 1 4


and

A := [
〈
Λî
′,Λĵ

′〉]1≤î,ĵ≤ν−1 = h



2 −1 0 · · · · · · 0

−1 2 −1 0
. . . 0

0
. . . . . . . . . . . . . . .

...
. . . . . . . . . . . . . . .

...
. . . . . . −1 2 −1

...
. . . . . . 0 −1 2


we get a compact description of the system

Gy′(t) + Ay(t) = b(t) , (5.6)

where b is an appropriate vector, which depends on u0 and u1.

To completely specify the system (5.6) we need initial values for
y1, ..., yν−1, which are typically determined from interpolation of the initial
temperature u(0, x). Note however, that this is a system of equations (the
solution y is vector valued).
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5.1 The Euler Method

The (explicit) Euler-method approximates y on a uniform grid

∆ = {0 = t0 < t1 < t2 < ... < tn} ⊆ I

with the recursive formula

yi+1 = yi + (ti+1 − ti)f(ti, yi) .

The implicit Euler-method approximates the solution by

yi+1 = yi + (ti+1 − ti)f(ti+1, yi+1) . (5.7)

Thereby in each step an equation has to be solved. This method is stable in
a sense which has to be specified afterward. However, the method is rather
slow.

5.2 Runge-Kutta Method

The disadvantage of both Euler-methods is the slow convergence (in depen-
dence of the time discretization). Faster convergence can be obtained with
an ansatz

yi+1 = yi + h
s∑
j=1

bjf(ti + cjh, ηj) ,
s∑
j=1

bj = 1 , (5.8)

where ηj is an approximation for y(ti + cjh).
Such methods are called Runge-Kutta-methods of degree s. In particular:

• The explicit Euler method is with s = 1 and c1 = 0, η1 = yi.

• For the implicit Euler method we have s = 1, c1 = 1, η1 = yi+1.

Because in (5.8) one calculates and approximation yi+1 ≈ y(ti+1) starting
from yi ≈ y(ti) the method is called single step method. If other previous
approximations yi−1, ... are used to determine yi+1, then the method is called
multi-step method.



5.3. SINGLE STEP RUNGE-KUTTA METHODS 57

5.3 Single Step Runge-Kutta Methods

We assume that yi = y(ti), then by the fundamental theorem of differential
calculus

y(ti+1)− yi+1 =︸︷︷︸
y(ti)=yi

y(ti+1)− y(ti)− h
s∑
j=1

bjf(ti + cjh, nj)

=

∫ ti+1

ti

y′(t) dt− h
s∑
j=1

bjf(ti + cjh, nj)

=︸︷︷︸
ODE

∫ ti+1

ti

f(t, y(t)) dt − h
s∑
j=1

bjf(ti + cjh, nj) .

We see that the local error gets small if

h
s∑
j=1

bjf(ti + cjh, nj) ≈
∫ ti+1

ti

f(t, y(t)) dt .

This suggest to take quadrature formulas for choosing {bj}, {cj} and {ηj}.

Example 5.3. • Using the mid-point rule we get

yi+1 = yi + hf(ti + h/2, η1) , (5.9)

where ideally η1 = y(ti + h/2). Because this value of the solution y is
not known we are looking for an approximation: The method of Runge
(1895) used the approximation

η1 = y(ti) +
h

2
y′(ti) ≈ yi +

h

2
f(ti, yi) .

• With the trapezoidal rule we find

yi+1 = yi +
h

2
f(ti, yi) +

h

2
f(ti+1, η̃1) ,

where η̃i ≈ y(ti + h). If we proceed as in the Runge method and if we
use the approximation

η̃1 = yi + hy′(ti) ,

then we get the method of Heun.
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The Runge-Kutta methods rely on the following choice of coefficients:

ηj ≈ y(ti + cjh) = y(ti) +

∫ ti+cjh

ti

y′(t) dt = y(ti) +

∫ ti+cjh

ti

f(t, y(t)) dt .

(5.10)
For the approximate evaluation there are used again quadrature formulas
which, for the evaluation of f(t, y), use the same nodal values f(ti + cjh, ηj),
j = 1, ..., s, as they are used for calculating yi+1. Thus we make the following
ansatz:

ηj = yi + h

s∑
k=1

ajkf(ti + ckh, ηk) ,
s∑

k=1

ajk = cj . (5.11)

In practice the coefficients {ajk, bj, cj} are summarized in a quadratic
tableau (Runge-Kutta Abc or Butcher-scheme):

c A
bT

=

c1 a1,1 ... ... ... a1,s

c2 a2,1 a2,2 ... ... ...
c3 a3,1 a3,2 ... ... ...
... ... ... ... ... ...
cs as,1 ... ... as,s−1 as,s

b1 b2 ... bs−1 bs

where A = [aj,k] ∈ Rs×s, b = [b1, ..., bs]
T ∈ Rs and c = [c1, ..., cs]

T ∈ Rs.

Example 5.4. For the explicit and implicit Euler method we have the fol-
lowing tableau, respectively:

0 0
1

1 1
1

The method of Runge requires to add a trivial equation to transform it into
the general scheme:

η0 = yi + h
∑1

k=0 0 · f(ti + ckh, ηk)
η1 = yi + h

2
f(ti + h/2, η0)

yi+1 = yi + hf(ti + h/2, η1) .

The tableau then reads as follows:

0 0 0
1/2 1/2 0

0 1
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5.4 Stiff ODE’s

Stiffness is a phenomenon rather than a definition in a rigorous mathematical
setting. The terminology stiff probably originates from chemical reaction
problems which exhibit tight coupling of various reactions of different scales.

Since there is no rigorous mathematical definition of stiffness, we can only
describe it phenomenologically.

Example 5.5. Consider the differential equation

y′(t) = −15y(t) , t ≥ 0 , y(0) = 1 . (5.12)

The exact solution is

y(t) = e−15t ,

which satisfies y(t)→ 0 for t→∞.

Numerically we see a completely different behavior for various methods.

1. The Euler method with a step size of h = 1/4 oscillates and the solution
blows up very rapidly. The iterates yi, i = 0, . . . , 10,

[1,−3, 8,−21, 57,−157, 433,−1189, 3271,−8995, 24736]T .

While the exact solution is

[1, 0.0235, 0.0006, 0, 0, 0, 0, 0, 0, 0, 0]T .

2. The iterates with Euler’s method with step size h = 1/8 are bounded:

[1,−0.8750, 0.7656,−0.6699, 0.5862,−0.5129,

0.4488,−0.3927, 0.3436,−0.3007, 0.2631,−0.2302,

0.2014,−0.1762, 0.1542,−0.1349, 0.1181,−0.1033,

0.0904,−0.0791, 0.0692]T .

The exact solution is

[1, 0.1534, 0.0235, 0.0036, 0.0006, 0.0001, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] .



60 CHAPTER 5. ORDINARY DIFFERENTIAL EQUATIONS

3. The trapezoidal method, defined by ,

yi+1 = yi +
h

2
(f(ti, yi) + f(ti+1, yi+1))

=
2− 15h

2 + 15h
yi .

With step size h = 1/8 we get

[1, 0.0323, 0.0010, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

which decreases monotonically to zero.

Example 5.6. One of the most prominent examples of a stiff ODEs is a
system that describes the chemical reaction of Robertson:

y′1 = −4.10−2y1 + 104y2y3 ,

y′2 = 4.10−2y1 − 104y2y3 − 3.107y2
2 ,

y′3 = 3.107y2
2 .

(5.13)

On a short time interval the numerical solution of the system does not make
problems, however for large t (let us say 1011) it does.

5.4.1 Stiffness Ratio

Consider the linear inhomogeneous system

y′(t) = Ay(t) + f(t) , (5.14)

where y = y(t), f = f(t) ∈ Rν and A ∈ Rν×ν is symmetric with eigenvalues
λî ∈ C and eigenvectors yî, î = 1, . . . , ν. We assume that the matrix A can
be diagonalized: That is, there exists a matrix Y , consisting of the columns
of yî, such that

A = Y ΛY −1 ,

where Λ is the diagonal-matrix consisting of eigenvalues of A, and yî, î =
1, . . . , ν forms an orthonormal basis of Rν [4]. So, if A can be diagonalized,
then with

z(t) = Y −1y(t) and g(t) = Y −1f(t) . (5.15)

z′(t) = Y −1y′(t) = ΛY −1y(t) + Y −1f(t) = Λz(t) + g(t) , (5.16)
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or in other words

z′
î
(t) = λîzî(t) + gî(t) . (5.17)

The solution of this system is determined by the method of variations of
constants : This procedure makes use of the ansatz

zî(t) = cî(t)e
λît . (5.18)

Then

z′
î
(t) = c′

î
(t)eλît + cî(t)λîe

λît .

To satisfy the differential equation (5.17) we have to satisfy

c′
î
(t)eλît + cî(t)λîe

λît = cî(t)λîe
λît + gî(t) ,

or in other words

c′
î
(t) = e−λîtgî(t) .

Thus we get

cî(t)− c
(0)

î
=

∫ t

0

c′
î
(τ) dτ =

∫ t

0

gî(τ)e−λîτ dτ .

And thus
zî(t) = cî(t)e

λît

=

(∫ t

0

gî(τ)e−λîτ dτ + c
(0)

î

)
eλît

=

∫ t

0

gî(τ)eλî(t−τ) dτ + c(0)eλît ,

or in compact vector notation

z(t) =

∫ t

0

g(τ)eΛ(t−τ) dτ + c
(0)

î
eΛt ,

where here eΛ(t−τ) = [eλî(t−τ)]1≤î≤ν .
Thus, in total we get:

y(t) = Y z(t) =

∫ t

0

eΛ(t−τ)f(τ) dτ + eΛtY c(0) . (5.19)
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Let us assume that

<(λî) < 0 , ∀î = 1, 2, . . . , ν . (5.20)

Let λ, λ ∈ {λî, i = 1, 2, . . . , n} be the maximal absolute eigenvalues:

−<λ =
∣∣<(λ)

∣∣ ≥ |<(λî)| ≥ |<(λ)| = −<(λ), i = 1, 2, . . . , n .

We now define the stiffness ratio as

<(λ)

<(λ)
.

The crux with the siffness ratio is that it is severely affected by the smallest
negative eigenvalue (equivalently the one with highest absolute value). This
one however, is the best behaving analytically. Surprisingly, it affects the
numerics most striking.

Remark 5.7. The solution of the homogenous equation according to (5.17)
(that is with gî ≡ 0) is given by

zî(t) = ceλît .

The name variations of constant for the ansatz (5.18) is due to the fact that
the constant c of the solution of the homogenuous system is replaced by the
function cî(t). That means that the constant is replaced by a function, that
is it is varied now.

Example 5.8. Also the Example 5.2 results into a system of stiff ODEs’ if
n is large.

5.4.2 A-Stability

The behavior of numerical methods on stiff problems can be analyzed by
applying these methods to the test equation

y′(t) = λy(t) with y(0) = 1 (5.21)

for some λ ∈ C. The solution of this equation is y(t) = eλt. This solution is
monotonically decreasing and approaches zero for t→∞ when <(λ) < 0.
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Definition 5.9. If the numerical method also exhibits the monotonicity be-
havior, then the method is said to be A-stable.

Now, we return to Runge-Kutta methods and define the stability function:

Definition 5.10.

R : C\
{

1

σ
: 0 6= σ ∈ σ(A)

}
→ C ,

ζ → 1 + ζbT (1− ζA)−1

 1
...
1


The stability domain of a Runge-Kutta method is defined by

S := {ζ : |R(ζ)| ≤ 1} .

For applications one should choose the step-size h in such a way that hλi ∈ S
for all eigenvalues.

Note also, that the stability function and stability domain only depend on
A and b, but not on c.

Theorem 5.11. A Runge-Kutta method is A-stable if for given

ζ ∈ C− :=
{
ζ = ζr + iζ i ∈ C : ζr ≤ 0

}
we have |R(ζ)| ≤ 1.

Example 5.12. For the explicit Euler method we have

R(ζ) = 1 + ζ ,

and thus it is not A-stable. Because the set of ζ where

|R(ζ)|2 = |1 + ζ|2 = (1 + ζr)2 + ζ i2 ≤ 1

is a circle with center (−1, 0) and radius 1 in the complex plane, the explicit
Euler-method is only stable if the step-size h is chosen such that

hλ ∈ B(−1,0)(1) (ball of radius 1 and center (−1, 0)).
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For (5.12) we can guarantee stability for h ≤ 1/15, which supports the
numerical results of Example 5.5.

If we are considering again a system of ODEs (5.14), where the matrix
A has eigenvalues {λi = λri + iλii : i = 1, . . . , n}, then for A-stability it is re-
quired that

(hλri + 1)2 + (hλii)
2 ≤ 1 .

Example 5.13. The implicit Euler method is A-stable, because here R(ζ) =
(1− ζ)−1 and

|1− ζ|2 = (1− ζr)2 + ζ i2 = 1− 2ζr + |ζ|2 ≥ 1 for ζr ≤ 0 .

The step size is not essential for A-stability.

Example 5.14. The simplest Gauß-Quadrature formula (s = 1) is the im-
plicit mid-point rule. The according tableau is

c = 1/2 A = 1/2
bT = 1

and the Runge-Kutta method has the form

yi+1 = yi + hf(ti + h/2, η1) , η1 = yi +
h

2
f(ti + h/2, η1) . (5.22)

By combination of the two equations we get:

yi+1 = yi + hf(ti + h/2, (yi + yi+1)/2) .

According to the definition of the stability function we have:

R(ζ) = 1 + ζb(1− ζA)−1

= 1 + ζ

(
1− ζ

2

)−1

=
1 + ζ

2

1− ζ
2

= 1 + ζ + ζ2/2 + ζ3/4 + ... ,

which is a Möbius-function. This function satisfies

|R(ζ)|2 =

(
1 + ζr

2

)2
+
(
ζi

2

)2

(
1− ζr

2

)2
+
(
ζi

2

)2 ≤ 1 , ∀ζ = ζr + iζ i ∈ C− .

That is, the implicit mid-point rule is A-stable. Every choice of the step size
is feasible.
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5.5 Ill-Conditioned ODE

There exist ODEs for which error and noise significantly influence the so-
lution. Such problems are called ill–conditioned, and cannot be cured by a
numerical approach. As an illustration we consider the system

u′1 = 2u2 and u′2 = 2u1

for which the general solution is

u1 = ae2x + be−2x and u2 = ae2x − be−2x .

Taking the initial conditions

u1(0) = 3 and u2(0) = −3

we have
a+ b = 3 and a− b = −3 ,

and therefore a = 0 and b = 3, and the solution of the system is

u1 = 3e−2x and u2 = −3e−2x .

However, if we put

u1(0) = 3 + ε and u2(0) = −3 ,

(assume that ε is some noise), then we have

a+ b = 3 + ε and a− b = −3 ,

which gives a = ε
2

and b = 3 + ε
2
, and therefore the solution is

u1 =
ε

2
e2x + (3− ε)e−2x and u2 =

ε

2
e2x −

(
3− ε

2

)
e−2x .

For fixed ε > 0 the term ε
2
e2x gets dominant for large x.

Ill-conditioning can also occur for a single first-order ODE: Consider for
example

y′ = 3y − t2

for which the general solution is

y = Ce3t +
t2

3
+

2t

9
+

2

27
.

If we take as initial condition y(0) = 2
27

+ ε, then C = ε. Again, the term
Ce3t gets dominant for large t. Thus for every small error ε the error term
will dominate the exact solution.
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5.6 Multi-Step Methods

The basic idea consists in approximating the integrand on the right hand
side of

y(ti+l) = y(ti−k) +

∫ ti+l

ti−k

y′(τ) dτ = y(ti−k) +

∫ ti+l

ti−k

f(τ, y(τ)) dτ

over an intervall [ti−k, ti+l]. Given some s ∈ N let

(tj, fj) := (tj, f(tj, yj)) for j = i− s, i− s+ 1, . . . , i ,

where yj ≈ y(tj), which we assume to be calculated already. The polynomial
of degree s interpolating these values is given by

Ps(τ) =
i∑

j=i−s

fjLj(τ) with Lj(τ) =
i∏

j 6=ĵ=i−s

τ − tĵ
tj − tĵ

.

The functions Lj are the basic Lagrange polynomials.
The s-th order multi-step method is defined by

yi+l = yi−k +

∫ ti+l

ti−k

Ps(τ) dτ .

The different methods depend on the choice of s, k and l.

• The s-th order Adams-Bashford methods is explicit and l = 1 and
k = 0.

• The s-th order Adams-Moulton method is implicit and l = 0 and k = 1.

We are only studying the first five members of the Adams-Bashford for con-
stant step-size:

Order s Interpolant Interpolation points
0 constant (ti, fi)
1 linear (ti, fi), (ti−1, fi−1)
2 quadratic (ti, fi), (ti−1, fi−1), (ti−2, fi−2)
2 cubic (ti, fi), (ti−1, fi−1), (ti−2, fi−2), (ti−3, fi−3)
4 quartic (ti, fi), (ti−1, fi−1), (ti−2, fi−2), (ti−3, fi−3), (ti−4, fi−4)
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• If s = 0, l = 1 and k = 0 then the Adams-Bashfort method satisfies
P0 = f(ti, yi) and thus

yi+1 = yi + hif(ti, yi) with hi = ti − ti−1

is exactly the Euler method.

• If s = 1, l = 1 and k = 0 we have

P1(τ) = fi−1 +
fi − fi−1

hi−1

(τ − ti−1) .

Thus we obtain∫ ti+1

ti

f(τ, y(τ)) dτ ≈
∫ ti+1

ti

(
fi−1 +

fi − fi−1

hi−1

(τ − ti−1)

)
dτ

=
hi
2

(
hi + 2hi−1

hi−1

fi −
hi
hi−1

fi−1

)
.

In particular if h = hi = hi−1, then

yi+1 = yi +
h

2
(3fi − fi−1) .

The derivation of higher order methods is analogous. Here only the results
for constant step-size are summarized:

Order s Adam-Bashfort
0 yi+1 = yi + hfi
1 yi+1 = yi + h

2
(3fi − fi−1)

2 yi+1 = yi + h
12

(23fi − 16fi−1 + 5fi−2)
3 yi+1 = yi + h

24
(55fi − 59fi−1 + 37fi−2 − 9fi−3)

4 yi+1 = yi + h
720

(1901fi − 2774fi−1 + 2616fi−2 − 1274fi−3 + 251fi−4)
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Chapter 6

Statistical Testing

6.1 Probability Space

Definition 6.1. An experiment is said to be random if it has more than one
possible outcome, and deterministic if it has only one. The set of possible
outcomes describes the sample space.

Example 6.2. Examples of random experiments are:

Random experiment Sample space Ω
Throwing a coin {H(ead), T (ails)}

Lifetime of a lamp R+

Throwing a dice three times {(a1, a2, a3) : ai ∈ {1, 2, . . . , 6}}

Below we describe a random experiment in a formal manner:

Definition 6.3. A probability space (Ω,A,P) consists of a sample space Ω,
a σ-algebra A and a probability measure P. Subsets of Ω are called events.

A σ-algebra is a set of subsets of Ω which satisfies:

1. Ω ∈ A.

2. If A ∈ A, then also the complement, denoted by Ac, is in A.

3. Let A1, A2, . . . ∈ A, then
⋃∞
i=1Ai ∈ A.

The mathematical concept of σ-algebra is rather technical. It is necessary
for a rigorous definition, but in practice one can think of the σ-algebra as

69
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all reasonable subsets of Ω. For instance if Ω is finite, then the σ-algebra
consists of all subsets.

The probability measure is a function

P : A → [0, 1] ,

which satisfies

1. P(Ω) = 1 and P({}) = 0 .

2. Let A1, A2, . . . ∈ A be pairwise disjoint, then

P

(
∞⋃
i=1

Ai

)
=
∞∑
i=1

P(Ai) .

In the following we review some important examples of probability mea-
sures:

Remark 6.4. If Ω is finite, then A = 2Ω, which denotes all subsets of Ω.

6.2 Laplace-Experiments

Definition 6.5. A Laplace-experiment is a probability experiment, with finitely
many events, where each event has equal probability. In this case we define

P(A) =
|A|
|Ω|

, ∀A is event. .

Example 6.6. Examples of Laplace-experiments are throwing of dices and
coins, respectively. As an example, for throwing of dices, we consider the
event A of even spots: Then

A = {2, 4, 6} and Ω = {1, 2, . . . , 6} .

Therefore

P(A) =
1

2
.

In the following we consider general counting principles:
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Definition 6.7. 1. Let k ∈ N and n ∈ N satisfying n ≥ k. Permutations
without repetitions of n elements are given by the set

Akn := {(x1, x2, . . . , xk) : xi ∈ {1, 2, . . . , n} − {x1, . . . , xi−1}} .

This definition only makes sense for n ≥ k, because otherwise some xk
would have to be chosen from the empty set.

2. Let k ∈ N and n ∈ N . Permutations with repetitions of n elements are
given by the set:

Bk
n := {(x1, x2, . . . , xk) : xi ∈ {1, 2, . . . , n}} .

3. Let k ∈ N0 and n ∈ N satisfying n ≥ k. Combinations without repeti-
tions of n elements are given by the set:

Ck
n :=

{
(x1, x2, . . . , xn) : xi ∈ {0, 1} ,

n∑
i=1

xi = k

}
.

Note, an element of Ck
n is an indicator, like for instance,

(1, 1, 0, 1, ....1),

which components of a combination are used.

4. k ∈ N0 and n ∈ N . Combinations with repetitions of n elements are
given by the set:

Dk
n :=

{
(x1, x2, . . . , xn) : xi ∈ {0, 1, . . . , k} ,

n∑
i=1

xi = k

}
.

Theorem 6.8.

∣∣Akn∣∣ =
n!

(n− k)!
,
∣∣Bk

n

∣∣ = nk ,
∣∣Ck

n

∣∣ =

(
n

k

)
, and

∣∣Dk
n

∣∣ =

(
n+ k − 1

k

)
.
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Proof. While the assertions are relatively easy to prove for
∣∣Akn∣∣ , ∣∣Bk

n

∣∣ , ∣∣Ck
n

∣∣,
the proof of the assertion for

∣∣Dk
n

∣∣ requires an interesting trick: We define
the mapping

L : Dk
n → Ck

n+k−1 .

(x1, . . . , xn)→ (1, . . . , 1︸ ︷︷ ︸
x1×

, 0, . . . , 0, 1, . . . , 1︸ ︷︷ ︸
xk×

)

If some xi = 0, it is repeated 0-times, which means it is just left out; never-
theless the separator 0 appears. We illustrate this by an example: Let n = 4
and k = 3, then

x1, x2, x3 L(x1, x2, x3)
(1, 1, 1) (1, 0, 1, 0, 1)
(1, 0, 2) (1, 0, 0, 1, 1)
(0, 3, 0) (0, 1, 1, 1, 0)

This mapping is one-to-one. And thus
∣∣Dk

n

∣∣ =
∣∣Ck

n+k−1

∣∣ =
(
n+k−1

k

)
.

Example 6.9. We consider four combinations:

1. k distinguishable particles are distributed randomly to n energy states.
In this case we assign each particle xi a state in {1, . . . , n}.

2. k un-distinguishable particles are distributed randomly to n energy
states. In this case we assign each state the number of particles in the
box.

(a) in each box there can only be one particle.

(b) in each box there can be infinitely many particles.

• In the case 1a, we find iteratively that

x1 ∈ {1, . . . , n} , x2 ∈ {1, . . . , n} \ {x1} , . . .

Therefore we have n(n− 1) · . . . · (n− k + 1) possibilities.

• In the case 1b, we find that xi ∈ {1, . . . , n}, for all i = 1, . . . , k. There-
fore we have nk possibilities. If all of this possibilities have the same
probability, then it is called Maxwell-Boltzmann-model.
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• In the case 2a we have xi ∈ {0, 1} and the total elements of particles
is k, which is equivalent to

∑n
i=1 xi = k. Therefore we have

(
n
k

)
possi-

bilities. If all of this possibilities have the same probability, then it is
called Fermi-Dirac-model.

• That is xi ∈ {0, 1, . . . , k} and the total elements of particles is k. That
is we have

∣∣Dk
n

∣∣ =
(
n+k−1

k

)
possibilities. If all of this possibilities have

the same probability, then it is called Bose-Einstein-model.

Example 6.10. In front of a theater there are queuing up 2n people. The
entrance fee is 50 Euro. Each person has either a 50 or 100 Euro bill avail-
able. There are exactly n persons with a 50 Euro bill and 50 with a 100 Euro
bill. There is no money in the theater counter in the beginning. What is the
probability that the entrance is smoothly without requeuing.

The possible events are identified with the elements of the sets

Ωn :=

{
(x1, x2, . . . , x2n) : xi = ±1 ,

2n∑
i=1

xi = 0

}
.

xi = 1 means that the person i pays with a 50 Euro bill and xi = −1 means
that the person pays with a 100 Euro bill. Ωn is isomorphic to the set{

(x1, x2, . . . , x2n) : xi ∈ {0, 1} ,
2n∑
i=1

xi = n

}
= Cn

2n .

Thus |Ωn| =
(

2n
n

)
.

The events where no requeuing is necessary are characterized as follows:

An :=

{
(x1, x2, . . . , x2n) : xi = ±1 ,

2n∑
i=1

xi = 0 ,
k∑
i=1

xi ≥ 0 ∀k ≤ 2n

}
.

We interpret each xi as the slope. For an event that requires requeuing the
path meets the height −1 at a point ρ for the first time (see Figure 6.1). From
ρ to 2n we mirror the path at the −1 axis. The mirrored path then arrives
at 2n at height −2. All paths starting at 0 and arriving at −2 are

Ān :=

{
(x1, x2, . . . , x2n) : xi = ±1 ,

2n∑
i=1

xi = −2

}
.
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0

−1

−2

Figure 6.1: As soon as the −1 axis is intersected the path is mirrored around
the −1 axis, and it ends up at −2 at 2n.

To get to the endpoint −2 we have to have n − 1 values of +1 and n + 1
values of −1.

Again, we transform −1 → 0, and then we have n − 1 values of 1 and
n+ 1 values of 0. Thus

Ān ∼=

{
(x1, x2, . . . , x2n) : xi = {0, 1} ,

2n∑
i=1

xi = n− 1

}
∼= Cn−1

2n .

Because An = Ωn\Ān, we have |An| =
(

2n
n

)
−
(

2n
n−1

)
and thus

P(An) =

(
2n
n

)
−
(

2n
n−1

)(
2n
n

) =
1

n+ 1
.
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6.3 Probability Distributions

Until now we have been considering only discrete events. Now we also con-
sidering also continuous (geometrical) events.

Example 6.11. We are testing the life span of lamps. The life span is non-
negative, so we use Ω = R+. We have determined from experiments that the
probability that a lamp stays intact in the time interval [0, te) is

P([0, te)) =

∫ te

0

f(λ) dλ ,

where

f(λ) =
1

1000
e−x/1000 .

Note that

P([0,+∞)) =

∫ +∞

0

f(λ) dλ = 1 ,

which means that P is a probability measure, in fact. The function f is called
probability density.

Let A denote the event that the life time of the tested lamp is more than
1000 hours, that is that the event A is [1000,+∞]. For this event the proba-
bility is given by

P(A) =
1

1000

∫ +∞

1000

e−x/1000 dx = −e−x/1000
∣∣+∞
1000

=
1

e
≈ 0.37 .

Definition 6.12. • A measurable function X : Ω → R from the sample
space to R is called random variable. Measurable means that for every
reasonable set A ⊆ R

X−1(A) = {ω ∈ Ω : X(ω) ∈ A} ∈ A .

X is called discrete is the range of X, R(X), is finite.

Note that the definition of measurability is very similar to the definition
of continuity. A function X : Ω → R is called continuous if for every
open set A ⊆ R, X−1(A) is open.

• A measurable function X : Ω → Rn is called random or statistical
vector.
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• Given a random variable X the associated probability distribution is
defined as follows:

PX(A) = P(X ∈ A) = P(X−1(A)) , ∀A ∈ A .

• If X is discrete, then P it is called discrete probability distribution. In
this case we have

P(X ∈ A) =
∑
a∈A

P(X = a) .

The map
a→ P(X = a) (6.1)

is called discrete probability density of X.

• A random variable X is called absolutely continuous, if there exists a
density function f : Rn → [0,∞) such that

P(X ∈ A) =

∫
A

f(λ) dλ , ∀A ∈ A . (6.2)

The formal relation to the discrete setting is as follows: Let X be dis-
crete with range {a1, . . . , an}. The, by setting

f(x) =
n∑
i=1

αiδ(x− ai) ,

where δ is a delta-distribution, it follows from (6.2):

P(X ∈ A) =
∑
ai∈A

αi ,

meaning that αi = P(X = ai)

Example 6.13. We consider the probabilistic experiment of throwing a dice
twice. The sample space is

Ω = {(i, j) : i, j = 1, 2, . . . , 6} .

Let A be the union of all subsets of Ω and define

P(A) :=
|A|

|Ω| = 36
, ∀A ∈ A .
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The triple (Ω,A,P) is a probability space.
For instance, a random variable is

X : (i, j)→ i+ j .

Then ∣∣X−1({2})
∣∣ = |{(1, 1)} = 1| ,∣∣X−1({3})
∣∣ = |{(1, 2), (2, 1)}| = 2 , . . . .

Thus we have P(X = 2) = 1/36, P(X = 3) = 1/18, . . ..

Example 6.14. We bring some examples of discrete and continuous distri-
butions:

Discrete distributions:

• A random variable X is said to have a binomial distribution with
parameters n = {1, 2, . . .} and θ ∈ [0, 1] if X(Ω) = {0, 1, . . . , n}
and k ∈ X(Ω)

P(X = k) =

(
n

k

)
θk(1− θ)n−k . (6.3)

The formula can be understood as follows: we want k successes
(the probability of each success is θ, and thus the probability of
k success is θk) and n − k failures (probability is (1 − θ)n−k).
However, the k successes can occur anywhere among the n trials,
and there are

(
n
k

)
different ways of distributing k successes in n

trials.

• A random variable X is said to be geometrically distributed if

X(Ω) = {1, . . . , n} and P(X = k) = θ(1− θ)k−1 .

It is the probability that the first occurrence of success require k
number of independent trials, each with success probability θ.

• A random variable X is said to be Poisson distributed if

X(Ω) = {0, 1, 2, . . .} and P(X = k) = e−α
αk

k!
, α > 0.

Continuous distributions:
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Figure 6.2: Binomial, geometrical, and Poisson distribution
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• The density of the normal distribution is given by

f(x) =
1

σ
√

2π
e−(x−µ)2/(2σ2) .

Therefore

P(X ∈ A) =

∫
A

f(λ) dλ .

In this case we say that X is Nµ,σ2-distributed.

Let A = [0, z], σ = 1, µ = 0, then

P(A) =
1√
2π

∫ z

0

exp

(
−x

2

2

)
dx =

1

2
erf

(
z√
2

)
,

where erf(·) denotes the error function. Usually it is implemented
in standard software, such as MATHEMATICA and MATLAB,
but it is not to be calculated analytically.

The normal distribution satisfies remarkable properties: Let X be
N(µ, σ2)-distributed (that is, the distribution has density f). Then

– pX + q with (p 6= 0) is N(pµ+ q, p2σ2) distributed.

– (X − µ)/σ is N(0, 1)-distributed.

– Suppose that X1, . . . , Xn are independent random variables,
which are N(µi, σ

2
i ) distributed, then

X̂ := X1 + . . .+Xn

is N(µ1 + . . .+ µn, σ
2
1 + . . .+ σ2

n) distributed.

• The density of the exponential distribution is given by

f(x) =

{
0 for x ≤ 0 ,

αe−αx for x > 0 .

• The density of the logarithmic normal distribution is given by

f(x) =

{
0 for x ≤ 0 ,

1
2πσ2

1
x
e−(lnx−µ)2/2σ2

for x > 0 .

If a random variable Y is log-normal distributed, then X = log(Y )
is normal distributed.
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Figure 6.3: Normal and exponential distribution

• The density of the χ2-distribution is given by

f(x) =

{
0 for x ≤ 0 ,

e−x/2xk/2−1

2k/2Γ(k/2)
for x > 0 ,

where Γ denotes the Γ-function. It is the distribution of a sum of
the squares of k independent normal random variables.

• The density of the uniform distribution is given by

f(x) =

{
1
b−a for x ∈ [a, b] ,

0 else.

6.4 Expectation, Variance and Covariance

Definition 6.15. Let X be an n-dimensional random vector with associated
probability measure PX and g : Rn → R a function.

• If X is discrete, then the expectation is defined as follows

E[g(X)] :=
∑

a∈R(X)

g(a)PX(a) . (6.4)
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• If X is continuous, then the expectation is defined as

E[g(X)] :=

∫
Ω

g(x)dPX(x) . (6.5)

The integral is defined via a sequence of step functions

g(m)(x) =
lm∑
i=1

α
(m)
i χ

A
(m)
i

(x) ,

which satisfy g(m) ≤ g(m+1) and which are convergent to g:∫
Ω

gdPX = lim
m→∞

lm∑
i=1

α
(m)
i PX(A

(m)
i ) .

In particular if X is a random variable (n = 1) and g(x) = x, then

E[X] :=

∫
Ω

xdPX(x) .

If in addition the density of an absolutely continuous probability mea-
sure PX is f , then

E[X] :=

∫
Ω

xf(x)dx .

• The variance is defined as follows: Let X be a random variable. Then

var(X) := E[X2]− E[X]2 .

• Let X and Y be random variables, then

Cov(X, Y ) := E[XY ]− E[X]E[Y ] (6.6)

denotes the covariance.

Example 6.16. We consider again Example 6.13. We have a random Vari-
able X = X1+X2, consisting of two random variables X1 and X2 for throwing
a dice each. Thus we have
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i αi = |X−1({i})|
i = 2, . . . , 7 i− 1
i = 7, . . . , 12 13− i

else 0

Then, according to (6.4), the expectation of X is given by

E[X] =
1

36

12∑
i=2

iαi = 7;

Example 6.17. Let X be Nµ,σ2 be distributed. Then E[X] = µ and var(X) =
σ2.

6.5 Statistical Terminology

Definition 6.18. • A probability measure P on Rn is said to be the prod-
uct of P1, . . . ,Pn if

P(A1 × A2 × . . .× An) = P1(A1)P2(A2) . . .Pn(An) , ∀Ai ⊆ R .

Let X1, . . . , Xn be random variables on Ω, then ~X = (X1, . . . , Xn) is
called an n-dimensional random variable on Ω. In this case

P ~X(A) := PX1,...,Xn(A) := P( ~X−1(A)) , ∀A ∈ Rn .

• Random variables X1, . . . , Xn are statistically independent if

PX1,...,Xn = PX1 · · ·PXn .

• Suppose X1, . . . , Xn are random variables with probability densities
fX1 , . . . , fXn. The system is statistically independent if and only if the
stochastic vector (X1, . . . , Xn) has probability density fX1 · · · fXn.

• Suppose that X and Y are stochastically independent. Then Cov(X, Y ) =
0.

Definition 6.19. • A sample of size n is a statistically independent se-
quence X1, . . . , Xn of random variables, all of them identically dis-
tributed. The common probability distribution of the Xi is called prob-
ability distribution of the sample.

Let g : Rn → R be a function, then g(X1, . . . , Xn) is called statistics.
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• Concrete realizations (that are outcomes of experiments) are denoted by
x1, . . . , xn. Note that samples are written with capitals and realizations
with small letters.

Example 6.20. A statistics of fundamental importance is the sample mean:

X =
X1 + . . .+Xn

n
. (6.7)

Definition 6.21. For every sample X1, . . . , Xn of size n ≥ 2 the statistics

S2 =
1

n− 1

n∑
i=1

(Xi −X)2 (6.8)

is called sample variance.

Proposition 6.22. If X1, . . . , Xn is a sample from a population with mean
µ and variance σ2, then

E[S2] = σ2 . (6.9)

Proof. First, we note that

E[X] = E

[
1

n

n∑
i=1

Xi

]
=

1

n
E

[
n∑
i=1

Xi

]

=
1

n

n∑
i=1

E [Xi] =
1

n

n∑
i=1

µ = µ .

and

E
[
(X − µ)2

]
= var[X] = var

[
1

n

n∑
i=1

Xi

]

=
1

n2
var

[
n∑
i=1

Xi

]
=

1

n2

n∑
i=1

var[Xi] =
σ2

n
.

(6.10)
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Now, we have

n∑
i=1

(Xi − µ)2 =
n∑
i=1

((Xi −X) + (X − µ))2

=
n∑
i=1

(Xi −X)2 + 2(X − µ)
n∑
i=1

(Xi −X)︸ ︷︷ ︸
=0

+
n∑
i=1

(X − µ)2

=
n∑
i=1

(Xi −X)2 + n(X − µ)2 .

Thus, it follows from (6.10)

nσ2 =
n∑
i=1

E
[
(Xi − µ)2

]
= E

[
n∑
i=1

(Xi − µ)2

]

= E

[
n∑
i=1

(Xi −X)2

]
+ nE

[
(X − µ)2

]︸ ︷︷ ︸
σ2/n

,

which gives the assertion.

Note that the expectation of S2 is not dependent on n and therefore it is
called unbiased estimator.

6.6 Maximum Likelihood Estimation

Definition 6.23. Let X1, . . . , Xn be a sample from a population with density
f . The likelihood function associated with this sample is the probability of
the n-vector (X1, . . . , Xn). That is, the likelihood function is

L(x1, . . . , xn) := f(x1) · · · f(xn) , ∀(x1, . . . , xn) ∈ Rn . (6.11)

The according probability is defined as

P((X1, . . . , Xn) ∈ A) =

∫
A

L(x1, . . . , xn) dx1 · · · dxn .
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We draw a sample X1, . . . , Xn from a population with probability density
f(·, θ), where θ ∈ Θ is a parameter (for instance (µ, σ2) if the sample is
normally distributed). The likelihood depends now on θ and therefore we
write now Lθ instead of L.

Definition 6.24. The experiment results in an outcome (x1, . . . , xn) of X1, . . . , Xn.
Maximum likelihood estimation consists in choosing an element

θ̂ = θ̂(x1, . . . , xn) ∈ Θ , (6.12)

which maximizes the function

θ → Lθ(x1, . . . , xn) . (6.13)

Example 6.25. • Given an exponentially distributed sample with pa-
rameter θ. A sample (X1, . . . , Xn) results in an output (x1, . . . , xn).
We construct the maximum likelihood estimation. The probability den-
sity is given by

f(x; θ) =

{
1
θ
e−x/θ if x ≥ 0 ,

0 else .

Consequently, the likelihood function is given by

Lθ(x1, . . . , xn) =
1

θn
e−(x1+x2+...+xn)/θ .

Let us assume that we know from tests that xi > 0 for all i = 1, 2, . . . , n.
By differentiation of Lθ with respect to θ we derive the optimality con-
dition

0 =
∂

∂θ
Lθ(x1, . . . , xn) =

(
x1 + . . .+ xn

θn+2
− n

θn+1

)
e−(x1+x2+...+xn)/θ .

The solution of this equation is

θ̂ =
x1 + . . .+ xn

n
.

Therefore, the maximum likelihood estimator is given by

θ̂(X1, . . . , Xn) = X ,

where X is the sample means (6.7).
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• We draw a sample X1, . . . , Xn of N(µ, σ2)-distributed population, where
µ and σ are unknown. Given the outcome (x1, . . . , xn) of the sample
(X1, . . . , Xn) we wish to make the maximum likelihood estimation of
the 2-vector (µ, σ2). The probability density is

fµ,σ2(x) =
1

σ
√

2π
e−(x−µ)2/(2σ2) , ∀σ > 0 .

Consequently, the likelihood function is given by

Lµ,σ2(x1, . . . , xn) :=
1

σn(2π)n/2
e−

∑n
i=1(xi−µ)2/(2σ2) . (6.14)

Maximimization of Lµ,σ2 is equivalent to maximizing

logLµ,σ(x1, . . . , xn)

=− n

2
log(2π)− n log(σ)−

∑n
i=1(xi − µ)2

2σ2
.

Differentiation with respect to µ and σ2 gives

∂

∂µ
logLµ,σ2(x1, . . . , xn) =

(x1 + x2 + . . .+ xn)− nµ
σ2

,

∂

∂σ
logLµ,σ2(x1, . . . , xn) = −n

σ
+

∑n
i=1(xi − µ)2

σ3
.

These derivatives vanish for

µ = x =
x1 + x2 + . . .+ xn

n
,

σ2 =
1

n

n∑
i=1

(xi − x)2 .

In summary, we have shown that the maximum likelihood estimator is
given by

θ̂ = θ̂(x1, . . . , xn) =

(
x,

1

n

n∑
i=1

(xi − x)2

)
.

Therefore, the maximum likelihood estimator is given by

θ̂(X1, . . . , Xn) =

(
X,

n− 1

n
S2

)
,

where X and S2 are the sample mean (6.7) and variance (6.8), respec-
tively.
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6.7 Decision Making with Tests

A statistical hypothesis test is a method of making decisions using data from
a scientific study.

Example 6.26. The first example concerns a clairvoyant test. A person
is shown 25-times the backside of cards, which are randomly chosen. The
person is asked about the colors, clubs (Kreuz), spade (Pik), hearts (Herz),
square (Karo). The number of hits is denoted by the random variable X.

• We formulate the

null hypothesis H0, that the person is not a clairvoyant, and

the alternative hypothesis H1 that the person is a clairvoyant.

For each card the probability to guess the right color is p = 1/4.

• For c = 0, 1, 2, . . . , 25 the probability that the person guesses exactly
k = 0, 1, . . . , n = 25 times right is given by the bonomial distribution
(6.3):

B(k | p, n) :=

(
n

k

)
pk(1− p)n−k , ∀k = 0, 1, . . . , n .

In particular we have for B(k|1/4, 25)

k = 0 1 2 3 4 5 6
0.0008 0.0063 0.0251 0.0641 0.1175 0.1645 0.1828

7 8 9 10 11 12 13
0.1654 0.1241 0.0781 0.0417 0.0189 0.0074 0.0025

14 15 16 17 18 19 20
0.0007 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000

21 22 23 24 25
0.0000 0.0000 0.0000 0.0000 0.0000

As a consequence the probability that the person guesses more than c
times right is

P(X ≥ c) =
25∑
i=c

(
n

i

)(
1

4

)i(
3

4

)n−i
.
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We summarize the probabilities P(X ≥ c) in the table:

c = 0 1 2 3 4 5 6
1 0.99 0.99 0.97 0.90 0.79 0.62
7 8 9 10 11 12 13− 25

0.44 0.27 0.15 0.07 0.03 0.00 0.00

• Before the test we define the probability of an error of the decision.
Typical values for decision making are between 1% and 5%. We accept
the alternative references if the person guesses k0 times right, where k0

is chosen to satisfy P(X ≥ k0) ≤ 0.05 = 5%. This means, that if the
person guesses less than 12 right, he is not considered a clairvoyant.

There are two typical errors in statistical tests:

Definition 6.27. First order error: If H0 is correct and the decision is
made for H1. This would occur in the above example if a person that
is not a clairvoyant but guesses at least 13 times right.

Second order error: If H0 is false and the decision is made for H0. This
would mean that the person is a clairvoyant, but not considered as such.
For instance faking the guesses by giving systematically wrong answers.

We are now specific and consider particular hypotheses:

Definition 6.28. A statistical hypothesis H is a conjecture about the prob-
ability distribution.

In many practical applications it is assumed that the data is normally
distributed. Then the testing is for the values of the mean µ and/or the
variance σ2.

The following example formulates the hypothesis in a testing framework:

Example 6.29. A typical question is whether a population is N(500, 50)-
distributed or the population is N(490, 50)-distributed?

We draw two samples (X1, X2) and specify to accept that the population is
N(500, 50)-distributed if either one of the realizations x1 or x2 of the samples
X1, X2, respectively, is greater than 496. Otherwise we accept H1. Setting

G :=
{

(x1, x2) ∈ R2 : x1, x2 ≤ 496
}
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we can restate the decision rule as follows: if (x1, x2) ∈ G then H1 is accepted
and if (x1, x2) /∈ G then H0 is accepted.

For this example it is possible to calculate analytically first and second
order errors:

α =P(acceptance of H1 | H0 is true)

=P((X1, X2) ∈ G | µ = 500, σ2 = 50)

=
1

100π

(∫ 496

−∞
exp

(
−(s− 500)2

100

)
ds

)2

=︸︷︷︸
s−500=−

√
50t

50

100π

(∫ ∞
4/
√

50

exp

(
−t

2

2

)
dt

)2

=

(
1√
2π

∫ ∞
4/
√

50

exp

(
−t

2

2

)
dt

)2

=

(
1

2
− 1

2
erf(0.4)

)2

=0.817

The second order error is determined as follows

β =P(acceptance of H0 | H1 is true)

=P((X1, X2) /∈ G | µ = 490 , σ2 = 50)

=1− 1

100π

(∫ 496

−∞
exp

(
−(s− 490)2

100

)
ds

)2

=0.356 .

We summarize the essential new terms in an abstract definition.

Definition 6.30. A hypothesis test is an ordered sequence

(X1, . . . , Xn;H0, H1, G) ,

where X1, . . . , Xn is a sample, H0 and H1 are hypotheses, and G is a critical
set. The level of significance of the hypothesis test is the number

α = PH0
X1,...,Xn

(G) = P((X1, . . . , Xn) ∈ G | H0) . (6.15)
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We shall say that the critical region is of size α1. Note, that this is the
probability of first order errors.

Definition 6.31. Distribution Tests: From now on let

(f(·, θ))θ∈Θ

be a family of probability densities. Moreover, we shall assume that H0 and
H1 are statements of the type:

H0 : θ ∈ Θ0 and H1 : θ ∈ Θ1 ,

where
Θ = Θ1 ∪Θ0 and Θ0 ∩Θ1 = {} .

Let

α(θ) := PθX1,...,Xn
(G) := P((X1, . . . , Xn) ∈ G | θ) , ∀θ ∈ Θ0 ,

β(θ) := PθX1,...,Xn
(Gc) := P((X1, . . . , Xn) ∈ Gc | θ) , ∀θ ∈ Θ1 .

then θ → 1− β(θ) denotes the power function.2

6.8 Regression

Regression models involve the following variables:

1. The unknown parameters, denoted as β ∈ Rk, which may represent a
scalar or a vector.

2. The independent variables, ~X ∈ Rn.

3. The dependent variable, ~Y ∈ Rn.

A regression model relates Y to a function of X and β:

Y ≈ f(X, β) . (6.16)

To carry out regression analysis, the form of the function f must be speci-
fied. Sometimes the form of this function is based on knowledge about the

1The superscipt H0 means that it is a conditional probability under the assumption
that H0 is true.

2Typical values are α = 0.05 or β < 0.5.
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relationship between Y and X that does not rely on the data. If no such
knowledge is available, a flexible or convenient form for f is chosen.

In order to perform a regression analysis the user must provide informa-
tion about the dependent variable Y :

• If n data points of the form (Y,X) are observed, where n < k, most clas-
sical approaches to regression analysis cannot be performed: since the
system of equations defining the regression model is under-determined,
there are not enough data to recover β.

• If exactly N = k data points are observed, and the function f is linear,
the equations Y = f(X, β) can be solved exactly rather than approxi-
mately. This reduces to solving a set of n equations with n unknowns
(the elements of β), which has a unique solution as long as the X are
linearly independent. If f is nonlinear, a solution may not exist, or
many solutions may exist.

• The most common situation is where n > k data points are observed. In
this case, there is enough information in the data to estimate a unique
value for β that best fits the data in some sense, and the regression
model when applied to the data can be viewed as an overdetermined
system in β.

In the last case, the regression analysis provides the tools for finding a solution
for unknown parameters β that will, for example, minimize the distance
between the measured and predicted values of the dependent variable Y
(also known as method of least squares).

Example 6.32. A person is carrying out n measurements and summarizes
the results in the following table:

x x1 x2 . . . xn
y y1 y2 . . . yn

Theoretically, if there are no read off errors, there can be expected a linear
relation between x and y:

y = ax .

We wish to find out an estimate â for the number a.
We denote the error in the estimation by

ei := yi − âxi =: yi − ŷi .
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We therefore seek for an estimation â which minimizes the expression∑n
i=1 |ei|, or something similar. The problem with this approach is that

f : a→
n∑
i=1

|yi − axi|

is not differentiable with respect to a. This method is actually called robust
regression, and is a very appealing method for estimation if there are noise
components with high outliers.

It is more common to minimize the quadratic functional

f : a→
n∑
i=1

|yi − axi|2 .

Differentiation with respect to a shows that â satisfies

f ′(â) = −2
∑
i=1

(yi − âxi)xi ,

and thus

â =
n∑
i=1

yixi/
n∑
i=1

x2
i ,

which is called the least squares estimator.

The general linear regression model one assumes that

yi = β1xi1 + β2xi2 + · · ·+ βkxik + εi , ∀i = 1, . . . , n ,

where xij is the i-th observation on the j-th independent variable.
Writing this in matrix notation we get

~y = X~β .

The least squares estimator β̂ minimizes the functional

f : β →
∥∥∥~y −X~β

∥∥∥2

2
.

β̂ then satisfies the normal equation

X tX~β = X t~y . (6.17)
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Note that now X tX ∈ Rk×k is quadratic and symmetric. In this case we can
explicitly write down the solution:

β = (X tX)−1X tY .

It is important to confirm the goodness of the fit. Typical test include the
R-squared, analysis of the residuals and hypotheses testing.

Remark 6.33. Numerical the normal equation (6.17) can be solved with
Cholesky factorization and QR-decomposition.

For the QR decomposition we use that β̂ is the solution of the equation

Rβ = QT~y ,

where X = QR is the QR decomposition.

A good introduction to mathematical statistics is [10].
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