Übungen zu Funktionalanalysis

Nicolas Thorstensen 10. Übungsblatt Januar 2013

- 1. Sei X Banachraum, Y ein normierter Raum und $T_n: X \to Y$ mit $n \in \mathbb{N}$ ein linearer stetiger Operator. Zeige die Äquivalenz für
 - (a) Für jede Reihe $\sum_{n=1}^{\infty} x_n$ die in der Norm konvergiert gilt $T_n(x_n) \to 0$ in der Norm.
 - (b) $\sup_{n\in\mathbb{N}}\|T_n\|<\infty$
- 2. Sei X Banachraum und $(x_n^*)_{n\in\mathbb{N}}\subseteq X^*$ eine Folge von linearen stetigen Funktionalen. Zeige die Äquivalenz für
 - (a) Für jede absolut konvergente Reihe in X gilt die Reihe $\left(\sum_{k=1}^{n} x_{k}^{*}(x_{k})\right)_{n \in \mathbb{N}}$ ist beschränkt.
 - (b) Die Folge $(x_n^*)_{n \in \mathbb{N}} \subseteq X^*$ ist beschränkt in der Norm.
- 3. (a) Zeige, dass $C^1([0,1])$ mit der Norm $||f|| := ||f||_{\infty} + ||f'||_{\infty}$ ein Banachraum ist. Ist auch $(C^1([0,1]), ||f||_{\infty})$ ein Banachraum ?
 - (b) Zeige, die Abbildung

$$T: (C^1([0,1]), \|.\|_{\infty}) \to (C([0,1]), \|.\|_{\infty}), \quad f \to f',$$

ist graphenabgeschlossen, aber nicht stetig.

- 4. Kann im Prinzip der gleichmäßigen Beschränktheit und im Satz von der offenen Abbildung auf die angegebene Vollständigkeit der betrachteten Räume verzichtet werden?
- 5. Sei $T \in \mathcal{B}(X,Y)$. Zeigen Sie: Es gibt eine Konstante c > 0, sodaß $||Tx|| \ge c||x||$ für alle $x \in X$, genau dann, wenn T injektiv ist und abgeschlossenes Bild in Y hat.