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ABSTRACT. Integral invariants have been proven to be useful for shape match-
ing and recognition, but fundamental mathematical questions have not been
addressed in the computer vision literature. In this article we are concerned
with the identifiability and numerical algorithms for the reconstruction of a
star-shaped object from its integral invariants. In particular we analyse two
integral invariants and prove injectivity for one of them. Additionally, numer-
ical experiments are performed.

1. Introduction. Integral invariants and corresponding signatures have been in-
troduced by Manay et al. [1] as a tool for shape matching and classification (see
also [10] for further applications). They enjoy similar invariance properties as dif-
ferential invariants, but are notably more robust with respect to noise and also
allow for scaling in order to capture features of different size. The numerical results
obtained in the cited articles confirm their usefulness for shape classification and
feature detection.

Contrary to the field of differential invariants, where vast amounts of literature
exist (see the reference list in [4]), hardly any analytical results on the integral
counterparts have been published. Moreover, the existing results are mainly con-
cerned with the limiting behaviour of the invariants as the scale approaches zero
(see [4, 5]). In particular, the question whether a shape can be uniquely determined
by a suitable integral invariant has not been treated yet.

In the following we discuss this problem for two integral invariants (see Defini-
tion 2.2), the cone and the circular area invariant. In particular, we consider the
case, where the object 2, the invariant of which is to be computed, is star-shaped
with respect to a specified reference point xg, that is,

Q={xo+tp:0<t<7(p), cpeS"*l} c R"
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for some given radial function v : S"~! — R.. Then the set © can be identified
with the function 7. Moreover, it is natural to regard the invariant of € as a
mapping on the sphere as well.

It is shown in Lemma 3.1 that, up to a nonlinear (but rather trivial) transforma-
tion, the cone area integral invariant for star-shaped objects is equivalent to com-
puting integrals of the radial function over spherical caps. The question, whether a
function on S”~1 is uniquely determined by its integrals over all spherical caps of a
given aperture ¢ has been treated in [8], where the uniqueness is proven for all but
countably many apertures 0 < & < 27 (cf. Theorem 3.3).

Although this result shows that the required injectivity holds in the case of
the cone area integral invariant, new problems arise by closer investigation of the
properties of the invariant. First, although the set of parameters where the injec-
tivity does not hold is small, it is nevertheless dense in the interval (0,2m) of all
possible apertures. Thus, every implementation of the cone area invariant could
lose the injectivity property because of unavoidable numerical inaccuracies. Sec-
ond, it can be shown that the invariant is compact when regarded as operator
J: LS 1) — LY(S"~1), which implies that its inverse can never be continuous.

For further investigations on the invertibility of .J, we consider the inverse prob-
lem of solving the operator equation J[y] = J°, where J° € L'(S"~1) is some given
data. In other words, we try to (numerically) reconstruct an object from a given
invariant. For the reconstruction we employ an iterative regularization technique.

The second part of the article is concerned with the circular area integral invari-
ant, which is defined as the area of intersection of 2 with balls of a given radius
R > 0 centered at the boundary of the object. Here the situation is different, since,
contrary to the cone invariant, no injectivity results are available. The reason for
this is the rather complex structure of the invariant when formulated as function on
the sphere. Thus, we directly employ nonlinear Landweber iteration for the solution
of the operator equation J[y] = J°.

To substantiate the applicability of the presented theoretical results, we present
at the end of the corresponding section the output of the numerical experiments for
each discussed integral invariant.

2. Integral invariants. For the definition of integral invariants we follow [1]. In
contrast to [4], we only consider integral invariants that are defined by integration
with respect to the n dimensional Lebesgue measure £” and not with respect to
the Hausdorff measure H"~!. We denote by e; := (1,0,...,0) the first unit vector
of R™.

Definition 2.1. Let f: R>g x R” — R satisfy the following conditions:

e For every r > 0 the function x — f(r,x) is locally summable.
e For every compact subset K C R™ and ry > 0 we have

Tim [ [£(rx) — f(ro,x) dL"(x) = 0.
0oJK

e The function f is rotationally symmetric around ey, that is, f(r,x) = f(r,Ux)
whenever U € O(n) is an orthogonal matrix satisfying Ue; = e;.

In the following we refer to a function f satisfying above conditions as kernel func-
tion.
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RECONSTRUCTION OF SHAPES FROM INTEGRAL INVARIANTS 343

Definition 2.2. Let f be a kernel function. For an open and bounded subset Q2 C
R™ with Lipschitz boundary 9Q and xo € R™ we define a mapping I[Q] : 0Q — R,
the integral invariant of €, by

e = [ fxexal e ),

where Ry : R" — R” is any rotation satisfying Ryy = ||y||e1.

In the definition above the point xg may either be fixed or depend on €2, as e.g.
the choice xg = cm(€2) the center of mass of .

Note that the first item in Definition 2.1 implies that I[Q](x) is finite for every x.
The first and second item together imply the continuity of the function x — I[Q](x),
and the last item well-definedness in the sense that I[2](x) does not depend on the
choice of the rotation Rx_x,.

A set Q is star-shaped with respect to xg, if there exists a function v : S"~' —
R~ such that

(1) 0= {xo+v(p)p:peS}.

If Q is a star-shaped set, then it is reasonable to regard an integral invariant not as
function on 9 but rather on S"~'. Hence, in this case we define

J(e) == IQ](x0 + v(®)p) -

In this paper we focus on two different integral invariants, the cone area invariant
and the circular area invariant (see Figure 1). The first is defined by its kernel
function

e, X
. 1 if {e1, x) > cos(e/2),
fConc(Tv X) = ||X||
0 else,

which is the characteristic function of a cone of aperture € in direction e, and the
latter by the kernel function
1 if [[x—rei|| <R,
0 else,

f(?irclc(n X) = {

which is the characteristic function of a ball of radius R around re;. Here, 0 < & <
2 and 0 < R < 0.

3. Cone area invariant.

Injectivity. In the following we assume that 0 C R™ is star-shaped with respect
to x¢. For simplicity we additionally assume that xo = 0. By v : S"7! — Ry we
denote the parameterization of 9§ defined in (1).

Lemma 3.1. The cone area invariant can be written as

Thle) = /c @,

n

where
Celp) i={T€S" 1 (1,9) > cos(e/2)}
denotes the spherical cap in direction @ with aperture €.
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FIGURE 1. (2D Visualization of different integral invari-
ants) Left: Circular area integral invariant. For each point located
on the curve v the area of intersection of 2 with a ball of radius
R is measured. Right: Cone area integral invariant. For each di-
rection ¢ € S"~! the area of intersection of a cone with aperture &
and the domain (2 is measured.

Proof. Denote by K.(¢) := {tT : t > 0, 7 € C.(p)} the cone with aperture
¢ in direction . Using the definition of J[y] we obtain by changing into polar
coordinates that

Thl(e) = £"(2 0 Ke(¢)) =/W( L=

:/CE((P) /OV(T) s"LdL(s) dH N (T) =%/ AT dH ()

Ce(v)
O

The description of the cone area invariant derived in the lemma above proves
useful both for theoretical and numerical reasons.

We first consider the question of injectivity of the invariant regarded as mapping
J L (S" 1Y) — LYS" 1), where L (S"!) denotes the space of all real valued
functions v € L"(S"1) satisfying (@) > 0 for almost every ¢. To that end we
require the notion of Gegenbauer polynomials:

Definition 3.2. Let ¢t € (—1,1), m € Z, and v > 0. The polynomials defined by
dm
P[V] 1) = [v] 1 —t2 —(v—1/2) % 1—t2 m+4v—1/2
WI(1) 1= (1 — ) (1 - 1) ,
where
vl (=2)"T(v+m)T(m+ 2v)
moe m!T(v)T(2m + 2v) ’

are called Gegenbauer polynomials (see [9, p. 19]).

We denote by N, the set of all zeros of all Gegenbauer polynomials P,[,? / 21], m € N.
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RECONSTRUCTION OF SHAPES FROM INTEGRAL INVARIANTS 345

Theorem 3.3. Let n > 3 and |cos(e/2)| < 1. If cos(e/2) € N, then there exists a
function 0 # f € LY(S"~1) such that

(2) / f(r)yaH" (1) =0 forall g € S 1.
C:(¢)

Conversely, if cos(e/2) € Ny, and (2) holds, then f = 0.
Proof. See [, p. 59]. O

In other words, Theorem 3.3 states that for n > 3 the linear functional L. :
Ll(Snfl) — Ll(Snfl),

3) Lelfl(p) = /C @@,
(¢

is injective if and only if cos(e/2) € N,,.

Corollary 3.4. Assume that n > 3 and |cos(e/2)| < 1. The cone area invariant
J L7 (S"1) — LY(S™™1) s injective, if and only if cos(e/2) & N,,.

Proof. From Lemma 3.1 it follows that J is the composition of the two mappings
fin t L7(S"71) — LL(S"71), v = 14", and L.. From Theorem 3.3 it follows that
L. is injective if and only if cos(e/2) &€ N,,. Moreover, the mapping p,, is bijective.
This proves the claim. O

In the case n = 2 an analogous result can be shown:

Theorem 3.5. The mapping J : L2 (S') — L(S") is injective if and only if €/ is
irrational.

Proof. In the proof of the theorem we regard a function v € LP(S') as 27-periodic
function 5 € L] (R) satisfying f02ﬂ|:y(t)|p dL(t) < oo via the identification J(t) =
7 ((cos(t), sin(t))).

Assume first that e /7 is rational, e.g. e /7 = k1 /ko with k1, ko € N. For —1 < ¢ <

1 define 4. (t) := /1 + ccos(2ka t). A simple calculation shows that J[y.](t) = /2
regardless of the value of ¢, i.e., J is not injective.

Now let €/ be irrational. Then there exist increasing sequences {k;};en C N and
{l;}jen C Nsuch that 27l; < (kj+1)e < 2wl;+1/j. Denote by §; := (k;+1)e—27l;.
Then the sequence {d;}en converges to zero. Thus,

1 kj 1 k; 1 [lmtDe
lim — »  JF|(me +¢/2) = lim — > = / F2(t) dL (t)
e B jmoely “=2 e
1 (klj-'rl)e’i

= lim — / F2(t)dLh(t)

J—0o0 21] 0

271'lj 1 (s]‘

= lim — / FA(t)dL' (t) + lim — / F2(t) dL(t)

J—00 2lj 0 J—00 2lj 0

_ %/0 " S2ydci(e)

for every 2m-periodic function 5 € LZ (R). In particular, the integral of 32 over the
interval (0, 27) is uniquely determined by the integral invariant J[%]. This, however,
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implies that for every Lebesgue point ¢t of 32 (see [7, 7.6]) the value

t+5;
2(t) = lim + / 52(s) dC(s)

k;

2 2
— lim _(Z J)(t +me +2/2) — 1 / 72(s) dL‘l(s))
J m=0 0
is uniquely determined by J[7] as well, which implies the injectivity of J on L2 (S').
O

There are two noteworthy remarks to be made on the previous results: First, they
all provide a necessary and sufficient condition for the injectivity of the cone area
invariant. Whenever this condition fails one can construct examples of functions 71,
2, which cannot be distinguished by means of the particular cone area invariant.
Second, the set N,, is dense in (—1,1) with dense complement, which implies that
arbitrarily close to every € there are parameters where the cone area invariant is
injective as well as parameters where it is not. Thus, it can be suspected that
in all cases the inverse problem of solving the operator equation J[y] = J° with
respect to « for some given cone area invariant J° is ill-posed. In fact, writing J as
the composition of the homeomorphism pu, and the linear mapping L. defined in
the proof of Corollary 3.4, one can show that L. is compact, which shows that its
inverse cannot be continuous.

Note that the cone area invariant is closely related to the spherical Radon trans-
form R on the n — 1 dimensional sphere defined by

Rlgle.n)i= [ glryan2o).
a C27‘(‘P)
We obtain
1 6/2 1
Tale) =5 [ Rt o).
For several results concerning the spherical Radon transform we refer to [9].

Inversion. In the following we treat the inverse problem of solving the equation
Iy =J°

for some given J° € L'(S"~1). Since the problem is ill-posed, we apply a regu-

larization method for its solution. We use the simple nonlinear Landweber scheme

(see [2]) defined by

(4) Yirr =i + pDJI [y (J° = J[n]), €N,

where DJ denotes the Fréchet derivative of J (see [6, Def. 10-34]), i > 0 an appro-
priate constant, and 7y an initial guess, for instance in case of a star-shaped domain
the constant function - — 1, which corresponds to the unit ball.

In order to perform the iteration (4) we need the adjoint of the derivative of .J.

Lemma 3.6. The adjoint DJ[y]* : L=°(S"~ ') — L™ (S*'), n* :=n/(n—1), of J
at v € L (S"™1) is the linear operator defined by

DJR]*(9) = {T =" (T) /CE(T)Q(@ dH" ()

INVERSE PROBLEMS AND IMAGING VOLUME 2, No. 3 (2008), 341-354



RECONSTRUCTION OF SHAPES FROM INTEGRAL INVARIANTS 347
Proof. From Lemma 3.1 it follows that
DIl = (o [ e )
Ce ()
The assertion is then a consequence of Fubini’s Theorem. O

We have also implemented an iterative Gauss-Newton scheme, but the results
and the computational effort have been comparable to those obtained with the
Landweber iteration.

Numerical examples. In the following we focus on the two dimensional case,
where the boundary of the object of interest can be identified with a curve. In
particular, we study two different curves which emphasize the capability of the
cone area integral invariant: the first curve represents an asymmetric one with lots
of details in contrast to the second one which is symmetrical to a high degree.
Figure 2 shows the result of the reconstruction for both curves in the absence of
noise and sufficiently many iteration steps. As can be seen on the image on the right,
the reconstruction works such good that the two plots (original and reconstruction)
can hardly be distinguished. The invariant of the reconstructed radial functions is
shown on the left hand side of Figure 2. Additionally, we have plotted the difference
between the invariants of the reconstruction and the orginal curve.

Since the inverse problem is known to be ill-posed the impact of noise on the
reconstruction process is of interest. Table 1 lists the relative L?- and L*°-errors
of the reconstructed radial functions for both curves shown in Figure 2. Also, the
errors are listed in case noise is added to the integral invariant. In order to obtain
satisfactory results in the presence of noise, a stopping rule for the iteration has to
be implemented. To this end we compute in each step the residual r; := J° — J[v,].
The iteration is stopped when the ratio ||r;+1||z2/]|7i]|r2 exceeds for the first time
the value 0.999.

TABLE 1. Error measures for two different curves and several noise
levels. For both curves of Figure 2 the relative L?- and L>°-error
of the reconstructed radial function to the original one are listed.
Parameter setting: p = 0.2 and nsampting points = 500.

Curve Noise Level & Iterations L2-Error L*>°-Error
0.0% 0.2 50000 1.34% 8.94%

a 2.5% 0.2 (347+31) (3.30+£0.08)% (13.57+0.87)%
5.0% 0.2 (250+£19) (3.89+0.15)% (14.69 +1.60)%
0.0% 0.2 50000 1.02% 2.29%

b 2.5% 0.2 (898+16) (3.884+0.16)% (8.40+0.31)%
5.0% 0.2 (599+21) (5.03+0.23)% (10.74+1.00)%
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FIGURE 2. (Cone area integral invariant) Reconstruction of
two different curves. Upper row: Invariant of the reconstruction.
Middle row: Residual of the invariant of the reconstruction with
respect to the invariant of the original (Range: 1% of the invariant
data). Lower row: Reconstructed and original curve. Parameter
setting: p = 0.2, € = 0.2, Nsampling points = 900 and 7 = 50000

(iteration steps).
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RECONSTRUCTION OF SHAPES FROM INTEGRAL INVARIANTS 349

4. Circular area invariant.

Inversion. In the case of the circular area invariant no injectivity results are known.
Thus, we directly treat the inverse problem of solving the equation

I =J°

for some given data J° € L™(S" 1), again for the case of a star-shaped set Q. To
that end we have to derive an explicit formula for the circular area invariant. Recall
that the circular area invariant is the function ¢ — L™ (2N Br(v(¢)e)) defined on

LS.
In the following we denote (see Fig. 3)
T,(p) == {T € S"': there exists t € R with t7 € Br(y(¢)p) N Q} .
Moreover, we define for 7 € T, (¢)

(5) (e, ) i= B2 = 1(0)2(1 — (0, 7)),
and for ¢, T € S*1

o (o7 e dmin{y(T)(P) (o, T) + (e, T} i T €T (),
) e {0, itr ¢ T (p).

Y(p){p,T)En (. T)

\ Ny (,T)
R i
\ -
(@) \ 4
Y(p)P N \ SN
. N\ X\
A s N =
AL N DAL
N 5\\ 5\\
s Q0 S Q
Ty (¢)

FIGURE 3. Sketch of the set T, (¢) and the function 7, (¢, 7).

Lemma 4.1. Let p € S"" 1. Then T € T, (¢p) if and only if R* > v()?(1— (e, 7)?)
and

Y(ET) = (@) (. £7) — 4 (e, T) -
Moreover, for T € T, (@) we have
sy(p,T) = sup{t eR:tre BR(7(¢)¢) N Q} ,
—sy(p,—7) =inf{t € R: t1 € Br(v(p)p) NQ} .

INVERSE PROBLEMS AND IMAGING VOLUME 2, No. 3 (2008), 341-354
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Proof. Let 7 € S"! be fixed and denote Hy := {t € R : tT € Br(y(p)¢)} and
Hy :={teR:tr € Q}. Then T € T,(y) if and only if H; N Hy is non-empty.

By definition the set Hj is non-empty if and only if there exists ¢ € R such that
[t — v(p)e|/? < R2. This inequality is solvable for R? > v(¢)%(1 — (¢, 7)?), in
which case

Hi={teR:y(p){p.7) —ny(e,7) <t < (@) (. T) + ny(0,T)} .

Moreover, Hy = {t € R: —y(—7) <t < v(7)}. Therefore Hy N Hy is non-empty, if

and only if —y(=7) < 5(¢) (¢, 7) + 17 (¢, T), and 7(7) = v(p) (¢, T) = 1y (e, T),
and its upper and lower bound are given by min{~(7),v(¢) (¢, T) + n,(,T)} =

sy(, 7) and max{—y(—7),7(¢) (p,T) — 1y(¢, T)} = —s,(p,—T), respectively,
which proves the assertion. |

Lemma 4.2. The circular area invariant can be written as

1 n n—
7) Tole) =5 [ sens,(e.m)lsy (o, m)l" drr ()
Proof. Similarly as in the case of the cone area invariant we have
1 n
®) Jhle) = / [(sup{t > 0: 17 € Balr(g)e) n0))

— (inf{t > 0: tr € Br(1(9)p) NQ})"| dH" (7,

where we define the integrand to be zero whenever R-o7 N Br(7(¢)p) NQ = 0.
Assume first that v(¢) < R, which implies that 0 € Br(v(¢)®) and therefore
in particular 7. (7) = S*~!. Then it follows from (8) and Lemma 4.1 that

Thle) =~ /SH (sup{t > 0: t7 € Br(v(@)p) NQ})" dH" 1(7)

n

1 _
:—/S 7137(<p,1')"dH" 1(1').

n

Since in this case s, is strictly positive, the assertion follows.
Now let 7(¢) > R. Then QN Bg(7(®)e) is contained in the cone R>oT: (¢) up
to a set of Lebesgue measure zero, where

Tf(p) = {T € () : (p,7) >0} .
From Lemma 4.1 it follows that
sup{t > 0:¢tT € Br(v(¢)p) NQ} = s5,(p,7) >0
and
inf{t > 0:tr € Br(v(¢)p) NQ} = —s,(p,—7) > 0.

Since T (¢) is (up to a set of zero Hausdorff measure) the disjoint union of T.F (¢)
and —T (), the claim follows from (8). O

For the application of the Landweber method it is necessary to compute the
adjoint DJ[y]* : L™ (S~ 1) — L™ (S" 1), n* = n/(n — 1), of the derivative of J at
a given function 7.

To that end we divide the set 77, into

TV (@) = {7 € Ty () : () < () (o, ) + 17 (0, T)} .
TP (@) = {1 € Ty () : () > 7(p) (0, T) + 17 (0,T)} -

INVERSE PROBLEMS AND IMAGING VOLUME 2, No. 3 (2008), 341-354
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Then (cf. the definitions of 7, and s, in (5) and (6))

2(T), it e TV (),
57 = 120 (e, 7) + B2 =121 = (0. 7)), it 7 e TP (),
0, else .

If we compute the derivative Ds, (/) of s, in direction 8 : S"~! — R, we obtain for
almost every (¢, 7) € S~ x Sn—1

Br). it 7 € TV (),
) o o 1@ (e n))) e
Do), ) = 8t (orm) - ZEL BT i e 2y,
0, else.
Now define
k(l)(% T) = XTP@,:) (1) 'Yn_l(T) )

)1 - <w>2>> |

K .7) = X (1) s ) () - LE L

Then we can write

DIR(B) = [so ~ [ ) sy are )

n—1

o) [ ke

Consequently, its adjoint is given by

DI @) = [r= [ K8 (o))

cr) [ i)

Now denote
Tv(l’*)(T) ={peS"l:Te€ T§1)(¢)} .
Then
L 0ens@arte= [ yim e aee).
Therefore

9) DIN(B") = [TH/T VTHT)B (@) dHTH ()

()
20 [, e ((re) - X )]

From the numerical point of view, problems arise, since the integrands are discon-
tinuous and the second integrand may be unbounded.

Numerical experiments indicate that the discretized functional J is not injective,
if the reference point x( is chosen to be zero, independently of . Therefore, we
consider the additional assumption xo = cm(f2). This assumption is incorporated
in the Landweber iteration by shifting the iterate 7; such that the center of mass

INVERSE PROBLEMS AND IMAGING VOLUME 2, No. 3 (2008), 341-354
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of the corresponding domain () is zero. Note that this shift is well-defined provided
the update is small enough.

Numerical examples. The Landweber iteration was tested on the same radial
functions as in the case of the cone area integral invariant. The results of the
reconstruction for a relatively large circle radius R = 2 can be seen in Figure 4.
In case of smaller radii the reconstruction works significantly worse, for too small
radii the Landweber iteration does not converge. However, this may be due to
discretization errors that become more pronounced with decreasing R, and also due
to the regularization that has to be introduced because of the singular integrand in
the adjoint (see (9)).

In the case of noisy data the circular area integral invariant provides good re-
constructions with errors in the range of the noise level (see Table 2). Here, the
same stopping rule has been used as for the cone invariant. The precise choice of
the stopping criterion, however, turns out to be rather irrelevant. In all the cases,
the norm of the residual first decreases and then immediately increases again. All
stopping rules that take into account this behaviour perform similarly.

TABLE 2. Error measures for two different curves and several noise
levels. For both curves of Figure 4 the relative L?- and L>-error
of the reconstructed radial function to the original one are listed.
Parameter setting: 1 = 0.05 and Nsampling points = 500.

Curve Noise Level R  Iterations L?-Error L>-Error
0.0% 2.0 1000 0.00013% 0.0019%

a 2.5% 2.0 (1214 16) (1.90+0.08)% (3.08 %+ 0.29)%
5.0% 2.0 (T7+16) (3.714+0.13)% (6.04 + 0.44)%
0.0% 2.0 1000 0.0032% 0.014%

b 2.5% 2.0 (130+£50) (2.56+0.15)% (5.37 % 0.95)%
5.0% 2.0 (72419) (4.68+031)% (8.63+ 1.37)%

5. Summary of the results. The results of the Landweber iteration show that
the reconstruction based upon the cone area integral invariant works well in the
absence of noise (see Figure 2). In case of noisy data J, the iteration yields reason-
ably good results for moderate noise levels, although the reconstruction process in
general tends to produce spikes, which subsequently increases the L°-error of the
reconstructed radial function (see Table 1), even more in the prensence of noise.

In case of the circular area integral invariant, we obtain a perfect reconstruction
as long as the radius R of the defining ball is large enough. Moreover, the influence of
small variations of the invariant on the reconstruction is rather small. This indicates
that the invariant is well suited for describing features of a size comparable to R.

From our point of view, the quality of the numerical results give reason to focus
on further investigation of integral invariants. A particularly interesting part seems
to be the question of the injectivity of the circular area integral invariant, where
connections to other mathematical areas can be established (see [1]).
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FIGURE 4. (Circular area integral invariant) Reconstruction
of two different curves. Upper row: Invariant of the reconstruction.
Middle row: Residual of the invariant of the reconstruction with re-
spect to the invariant of the original (Range: 0.1%o of the invariant
data). Lower row: Reconstructed and original curve. Parameter
setting: © = 0.05, R = 2.0, Ngampling points = 900 and i = 1000
(iteration steps).
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