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The finite energy Fourier-, Hankel-, sine-, and cosine-transformed
bandlimited signals are specific realizations of the abstract repro-
ducing kernel Hilbert space (RKHS). Basic properties of the abstract
RKHS are applied to the detailed study of bandlimited signals. The
relevancy of the reproducing kernel in extremum problems is dis-
cussed. New and known results in sampling expansions, minimum
energy and non-uniform interpolations, and truncation error bounds
are presented from a unified point of view of the RKHS. Some gen-
eralizations and extensions are stated.
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Vs 1t sampling function

J» Bessel function of the first kind and order
v,y = —3%

L Bound linear funetional

T Index set (integral)

70(8) Nearest integer to s

By Truncation error

In communication and information theories, bandlimited (deter-
ministic and random) signal models are used for analysis and repre-
sentations. These models are used because often they represent fairly
well the actual signals encountered in practice. Furthermore, many
mathematical properties can and have been derived from these models.
This paper deals with some applications of reproducing kernel Hilbert
space methods to bandlimited signal models.

The basic mathematical properties of the reproducing kernel Hilbert
space (henceforth abbreviated as RKHS) were studied by Moore (1935),
Bergman (1950), and Aronszajn (1950). Applications of RKHS methods
to second-order stochastic processes were given by Logve (1948). RKHS
methods have been found useful in time series, detection, filtering, and
prediction problems. (Parzen, 1961, 1962 and Kailath, 1967).

In Section I, two equivalent definitions of the abstract RIKHS are
stated. Finite-energy, bandlimited signals associated with Fourier-,
Hankel-, sine-, and cosine-transforms are shown to be specific realiza-
tions of the abstract RKHS.

In Section II, the relevancy of the reproducing kernel in some extre-
mum problems is discussed. For a given single sampling instant, ¢,
the minimum energy signal that satisfies an interpolation requirement
at t and the signals with a given upper energy bound that maximize
the square of the signals’ value at ¢ are easily obtained. When there are
n distinet sampling instants, the solutions to these two problems are
obtained from orthonormalization and the solution of a classical eigen-
value equation involving the reproducing kernel indexed by the sam-
pling instants.

In Section III, various properties of sampling expansions in RKHS
are discussed. A simple relationship between sampling expansion and
complete orthonormal expansion is obtained. Sampling expansions
for the four classes of bandlimited signals are stated. General as well
as specific (Shannon sampling expansion) truncation error bounds are
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calculated. Finally, necessary and sufficient conditions are given for a
finite expansion of the reproducing kernel indexed by the sampling
instants to satisfy the minimum energy and interpolation propetries.

The results in Sections I, IT, and III are often stated in the simplest.
and not in the most general, terms. Various generalizations and ex-
tensions are discussed in Section IV.

I. PRELIMINARY

A Hilbert space is a complete infinite-dimensional inner-product space.
The elements of this space can be functions defined on a set 7. In
particular, the abstract reproducing kernel Hilbert space (RKHS), H,
is a Hilbert space of functions defined on a set T such that there exists a
unique function, K(s, t), defined on 7' X T with the following properties:

K(-,t)eH, YieT. (1)
x(t) = (z, K(-, 1)), VieT, VzeH. (2)

The function K(s, ¢) is called the reproducing kernel of the abstract
RKHS. (Aronszajn, 1950).

An equivalent definition of the abstract RKHS can also be given. The
abstract proper functional Hilbert space, H, is a Hilbert space of func-
tions defined on a set 7T such that the linear functional, z(?), is bounded
for every x ¢ H and every ¢ e T. From the Riesz linear functional repre-
sentation theorem, it is clear that the abstract reproducing kernel Hilbert
space is equivalent to the abstract proper functional Hilbert space. For
simplicity, we assume the scalars and the functions are all real-valued in
the RKHS.

In signal analysis, the signals are often characterized in terms of some
properties in the Fourier-transformed domain. The class of finite-
energy, Fourier-transformed bandlimited signals can easily be shown to
be a specific realization of the abstract RKHS. The reproducing kernel
is given by the familiar sine function.

- TuroreM 1. Let H, be the class of Ly( — o, ) functions such that their
Fourier-transforms

A
Flw) = lim. | f(t)e ™' dt, felLs(—A,A),
A—>0 —A

vanish almost everywhere outside of (—w, w). Then H, s a reproducing
kernel Hilbert space on Ty = (— o, »). The unique reproducing kernel
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Ki(s, t) is given by
Ki(s, t) = [sin w(t — 8)]/m(t — s). (3)

Proof. From the inverse Fourier-transform, any f ¢ Hy is given by

f(t) = lim. if F(w)emt dw, FeL(—m =)
27&' —7

If F e Ly( —m, w), then F e Ly( —m, 7). Schwarz inequality shows

io1s A[[irera] [[ieraw]” <

for any f e Hy and any finite ¢. Thus, H; is a proper functional Hilbert
space. Then H, is a specific realization of the abstract RKHS. The re-
producing kernel given by Eq. (3) is obtained after applying the convo-
lution theorem to the inverse Fourier-transform of the indicator function
of (—m, m).

In two-dimensional signal analysis, the signals are sometimes charac-
terized in terms of some properties in the Bessel-transformed domain.
The classes of finite-energy, Bessel-, sine-, and cosine-transformed band-
limited signals can be shown to be specific realizations of the abstract
RKHS in the same manner as that of Theorem 1.

CoROLLARY 1. Let H, be the class of Ly(0, ») functions such that thewr
Hankel-transforms of order v, v = —3,

F(w) = lim. fo ’ ()T, (0t)f(8) dt,  fe Ls(0,4),

vanish almost everywhere outside of (0, m). [The inverse Bessel-transform s
given by

f(¢) = lim. f (wt)"2T(wt)F(w) do,  te (0, ©)F e Ls(0, 1r):|.
0
Then H, is a reproducing kernel Hilbert space on Te = (0, ). The unique

reproducing kernel is given by

Ky(s, t) = w(ts)m (tJV(S'Ir)J,.'(t'Ir) — SJy(tw)J,,’(s';r)).

82— t2

COROLLARY 2. Let H; be the class of La(0, ») functions such that thewr
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sine-transforms

F(w) = lim. (?_r)m fo “sinwtf() &, feLa(0, ),

A~>0

vanish almost everywhere outside of (0, w). [The inverse sine-transform 1is
given by

f(t) = lim. (1%)1/2 fo ’ sin wtF(w) dw,t € (0, © ), F € Ly(0, w)]-

Then Hj is a reproducing kernel Hilbert space on T's = (0, « ). The unique
reproducing kernel is given by

_1fsina(t —s) _sinx(t+s)
Rals 0 = 1 (g2 - L),

COROLLARY 3. Let H, be the class of L:(0, =) functions such that their
cosine-transforms

F(w) = lim. (%)m ‘/O‘A cos wif (t) dt,  feLx(0,A),

A>®

vanish almost everywhere outside of (0, ). [The inverse cosine-transform s
given by

f(t) = lim. (12—'_)1/2 ‘[' cos wtF(w) dw, te (0, © ), F e Ls(0, 1r):| .

Then H, is a reproducing kernel Hilbert space on Ty = (0, w). The unique
reproducing kernel Ky(s, t) is given by

1 sin w(t — 8) , sin #(¢t + s)
o0 - L (052 4 S 0).

I1I. EXTREMUM PROBLEMS

In a given class of signals there are certain properties of the signals
which are obtained from the solutions of extremum problems. If this
class of signals is a RKHS, then the reproducing kernel plays an im-
portant role in these extremum problems. Suppose K is the reproducing
kernel of a RKHS H, where H is a subspace of a Hilbert space Y. Then
it turns out that the projection of any y ¢ Y onto H is given by the inner
product of y and K. (Aronszajn, 1950). For example, in H, , the class of
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Fourier bandlimited signals, maximum concentration properties of these
signals over finite time intervals were obtained from self-adjoint com-
pact integral equations where the kernel of the integral operator is given
by the reproducing kernel Ki(s, t). (Slepian and Pollak, 1961 and
Landau and Pollak, 1961). In this section we shall consider two extre-
mum problems in the abstract RKHS in which the sampling instants are
specified. In these problems the reproducing kernel of the space again
plays an important role

First consider a simple version of these two problems Suppose ¢ is a
fixed point in the set T of the abstract RKHS H. What signal f ¢ H with
the specified value f(t) = M, where M is a real constant, has the smallest
energy ||f]|*» On the other hand, what signals feH with energy
[ £1I* £ E have the maximum value for f*(¢)? A

From Eq. (2) and the Schwarz inequality, it is clear that the solutions
to both problems are the same. In the first case, the signal f(s) =
MK(s, t)/K(4, t) has the minimum energy ||f||> = M? in the subspace
of H with the constraint of f(¢) = M. (Note that K(t,t) = || K|* = 0,
unless K vanishes identically and thus H is void.) In the second case,
f(s) = :}:FWK(s £)/K(t, t) has the maximum Valuef (t) = E in the
subspace of H with the constraint of | f||° < E. .«

Now consider the above two problems when there are n distinet, but
arbitrarily-specified sampling instants, t;¢ 7,2 = 1, --- , n, and n real,
finite, but arbitrarily-specified sampled values, M ;, % = 1, --- , n. Then
the above two problems are generally not equivalent. Theorem 2 and
Theorem 3 deal with these two problems.

In the first problem what signal fe H sa,tlsfymg f(t) M,
1= 1,---,n, (when t; and M; are specified), has the smallest energy
| £11** The solutlon to a slightly extended version of this problem is given
by Theorem 2 as the unique signal f e H which interpolates over a finite
number of points and approximates any other specified signal g ¢ H with
minimum energy. When g = 0, Theorem 2 reduces to the first problem.
The proof of Theorem 2 is based on the well-known Gram-Schmidt
orthonormalization procedure so often used in interpolation theory. The
proof of Theorem 2 is omitted since it is similar to Theorems 9.4.1 and
9.4.3 of Davis (1963).: : :

THEOREM 2. Consider the abstract repr oducmg kernel H ’le@?t space H
and the reproducing. kernel K (s, t) .defined on a set-T. Let n be any finite
positive integer, the sampling instants {t, , - - - ,1,} be any set of finite distinct
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points in T, the sample values {M 1yt My} be-any set o)-real finite con-
stants, and any g € H. Denote H', the subspace of H under the interpolation
constraints, to be. ‘ : o

H' = (feHif(t) = Miyi = 1, ,n).
Then
fo(s) = g(s) + de (S)
is the unique element in H' that attains
min|[f —g|* = Ifo —g|* = 2 dJ,
SeH' t=1

where for i = 1, --- , m,

_ K, t) - K(ta, t1)
(GG K(ti, tam1) -+ K(tn, tar) |’
- . my - ce e My .
m; = M; — g(t;)
G: = det [K(ts, )] jmtic,  Go = 1
I((tl, tl) e K(tn; tl)
' (Gia G2 | K(t, ta1) -+ K(tn, taa) |
K('Sa tl) Tt K(S; tn) B
In the second problem,: for specified distinct samphng instants
ti, 2 = 1,---, n, what s1gnals feH with- energy IlfIIP < E yield the

maximum Value of D rafi(t:)?

TuEorREM 3. Consider the abstract reproducing kernel Hilbert space H
with the reproducing kernel K(s, t). defined on a set T. Let n be any finite
positive number and the sampling instants, {t, - - - , t.}, be any set of finite
distinct points in T. Denote H", the subspace of H under the energy con-
straint, to be o

H' = {feH: /] = B, |
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where K 1s a finile positive number. Then

n

Jo(s) = d:[E/?\n (‘; o%,.,-)]m 3 0K (s, 1) (4)

are elements in H” that altain

max 3 F(6) = 2 1(t) = M, (5)

fed? i=1

where \, 18 the largest eigenvalue and 0, ts the corresponding eigenvector of
the matrix equation

KO0 = N0, where
K = [K(t:, t;})]sj=1,e-1m (6)
0.,-T=[0¢,1,---,0,~,,.], i=1,-°-,n.

Proof. From the defining property of the reproducing kernel and the
Schwarz inequality,

[Zrw] =[Liw, uo, k60 |
- [0, Zsoks, ) |

n 2 (7)
< 17| 25 S K (s, 1)
= 11 55 2 () K s, ).
In particular,
> ) > 3 AWK (ks 1)
= £ max S = A, (8)
111 P > )

where A, is a positive constant. Let fi(¢;), 7 = 1, - -+ , n, be such that

S = 4 (9)

and

T n

2 z;fl(ti)fl(ti)K(ti, ti) = A,.

t=m] g==]
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Then
> AK (e, 1) = Mfi(ta).
Let -
Me) = T AIE(s, 1), (10)
Then ‘
‘2:1: RA(t:) = AN? (11)
and
[R]* = A\, (12)

Thus, for h(s) given by Eq. (10), the equality in Eq. (8) is attained.
It is known that the maximum of the normalized quadratic form given
by Eq. (8) is actually attained by the eigenvector, 0, , corresponding to
the largest eigenvalue, A, , of Eq. (6). Furthermore, the maximum of the
normalized quadratic form is given by A, . (Courant and Hilbert, 1932).
Thus, fi(t;)) = 0,,:,¢ = 1, -, n, and Eq. (4) follows from Egs. (9),
(10), and (11) while Eq. (5) follows from Eqgs. (9), (10) and (12).

IIT. SAMPLING EXPANSIONS

In Section I, the classes of finite-energy, Fourier-, Hankel-, sine-, and
cosine-transformed bandlimited signals were shown to be specific realiza-
tions of the abstract RKHS. For theoretical and practical reasons,
sampling expansions may be of interest in these classes of signals. A
class, 2, of functions defined on a set T is said to possess a sampling ex-
pansion for a set of sampling instants {¢; e T', 7 ¢ I}, if there exists a set of
sampling functions, {¥.(s, t:), ¢ € I}, such that

1. lllq;(s, t.;)eQ, ‘iEI.
_ 1, t1=173
2, ¢i(tj, t’t) - 0, i # .7
3. For any f e, thereis a uniformly convergent expansion given by
f(s) = 2srf(t)¥l(s, t:),  seT.
Theorem 4 states one simple relationship between complete orthonormal
expansions and sampling expansions in RKHS.

TurorEM 4. Consider the abstract reproducing kernel Hilbert space H
with the reproducing kernel K (s, t) defined on a set T'. Let {¢i(s, t:), tie T,
i e I} be a complete orthonormal system in H. If there are non-zero real con-
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stants c; , such that

$i(s, t:) = cK(s, 1), del, (13)
and ' »
[K(t,t)| S ec< o, teT, (14)

then the complete orthonormal expansion iofﬁany’ f e H given by

f(s) = Zamst), seT,  ai= (f, ¢:), (15)

isa sampling expansion. o '
Proof. From Eqgs. (13) and (15),
ai = (f, ¢:) = ci(f(s), K(s, t:)) = eif(4:).
Let yi(s, t:) = capi(s, ). Then

G, = (606, 8, K (s, 1)

(¢1(8) t) ¢J(s: t])) _{0, . :77 ; ’f

Finally, in a RKHS convergence in norm implies uniforni convergence
it K(t,'t) satisfies Eq. (14). (See'Davis, 1963, Theorein 12.6.4). !
In particular, the four sets of functlons
i {sm (s — 1)
U w(s — 1)
tz(QS)UZJ (7rs)
NCEED

JseT, 0 <i< w}

seTa, Where {t:} A;aifel.t'hel_;f)és}_iti»ve z_érdé_ of: Iy,

Vo

V.

‘1'_—_' 1.< 00}

sin 7(s — 7).

(s + 1) w(s — 1)
{sm s 2s sin w(s — 7)
ws (s + 1) w(s — 1) ‘
are complete and orthonormal in H; , where J = 1,2, 3,4, respectively.
Since conditions required by Egs. (13) and (14) in Theorem 4 are satis-

fied, we obtain the following four samphng expansions:

COROLLARY 4. In RKHS H, ; any, f € H 1, POSsesses a samplmg ex'pan-
svon given by

,_/HL\DIH f—’H -

, S€E. T3, ?/ <°°}

,se"'T4, 12i<»

fo) = Z e )"31—“—("(?_—”) —e<s<w | (16)
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CororLLARY 5. In RKHS H, , any f e H 2, POSSESSES . sampling -expan-
ston gien by T .

f(s) = Ei;f(tz) 2(8&)”2 J,,(f,_rs):

wd pa(wt;) (82 — s2)’

where {wt;} are the positive zeros of J, , v-= —3.

Cororrary 6. In RKHS H; , any f e Hs', possesses a sampling expan-
sion given by

0<s< o, (17)

. i sin (s — %) _
J(s) = Zf(z)( e 0<rse

COROLLARY 7. In RKHS H;,any feH, ) possesses a samplmg ea:pan-
ston given by .

sin s 2s sin w(s — 1)

J(s) = f(0) —I—Zf(z) GED oG 0<s<e
- The sampling expansion given by Eq. (16) is generally known as the
Shannon sampling theorem and was derived by Whittaker, E. (1912).
The sampling expansion given by Eq. (17) was. first discussed by
Whittaker, J. (1935). For othel references and dlscussmns see Yao and
Thomas (1965). ;

In practice, we have only 8 ﬁmte number of terms in any samphng
expansion. Theorem 5 gives an upper bound on the truncation error
when a finite number of terms are used in place of all the terms in the
sampling expansion of Theorem 4.

TrEOREM 5. Consider the abstract RKHS H and the samplmg expansion

,<s>—i2df(t@)¢1(s,t@>, sel, feH

of Theorem 4. Let I' be a proper subset of I with some finite number of
integers. The truncation error, E(s), is defined by

| Er(s) = WZ_I,) F(Eils, t:).

Then _ .

[Er(s)] = [B — 2 UL 20 oK(s, ta)],  feH” (18)
iel’ » ie(I—I")

is valid for any feH where H = {feH: ||f|* = E} Furthermore, if

(B — D ier ¢ 22(15)] s non-negative, there 78 a f e H" which attains the
upper bound of Ep(s). :
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Proof. The hypercircle inequality of Golomb and Weinberger (1959)
(See Dayvis, 1963, Theorem 9.4.7) states

|Lf = Lfo|* < [E — || /ol E (L), (19)

where L is a bounded linear functional in a Hilbert space S, feS” =
{ge8:|lgll* £ E}, fois an element of smallest norm satisfying

(fo, ¢:) = bs, iel,

{b;, i eI'} are fixed constants, and {@., 7 € I} is a complete orthonormal
system for S. Now, take H = S, H" = 8", b; = cif(t:),

fo(s) = i; f(t:)edi(s, t:) = 2; F(t)¥i(s, t:),
f(s) = L, ), JeH",

and Lf = (f(u), K(u, s)) = f(s). Then Eq. (18) follows from Eq. (19).
The attainment of the upper bound follows in the same manner as the
attainment of the equality in the hypercirele inequality.
In the case of the Shannon sampling expansion, the result given in
Theorem 5 can be used to calculate a simple upper truncation bound.
CoroLLARY 8. Consider the RKHS Hy and the sampling expansion

- f(s) = :émf()smzs(s )), —®o <s< ®, feH.

Let I' = {i(s) — M =< i < 1y(s) + N}, where io(s) is the nearest in-

teger to time s, and M and N are positive integers. The truncation error,
E y n(8), 18 given by

io(8)+N+1 . . '
Eun(s) = S =9 i< w, feH.
fmm0,ig (6)—M—1 w(s — 1) :

ForanyfeH" = {feH, :||f|* £ E}, an upper bound of E y n(s) is given

by
E¥*[ 1 2 12 . . 1
- [Zlf + E‘N—T_—l':l y Se (’&0(3); %(3) + §:|

| Eun(8)| < LE;/Z [Wz___—_l_ " %:Im’ (zo(s) 3 10(8)]



RKHS—BANDLIMITED MODELS Y41

where
tg(8)+N+1,0

Eo= 2 f(i)<E< .
i=—00,7¢9(8)+M—1
Proof. From Theorem 5, in the case of the Shannon sampling ex-
pansion, ¢; = 1 for all integers. Since | sin #(s — 7)| is bounded by one
and

fola) N+, 1 1 2 ) . 1
i_—w,io‘%)—-uﬂ (s — 1) < I:H T 2N — l] ’ se (Zo(s)’ (s) + §:| ’

19 (s)+N+1,0
1 2 1 . 1 .
.-N,,-.,zs):_u_l) G— o [2M g N]’ S <’°(s) — g hls) ]
the upper bound of E y »(s) follows immediately from Theorem 5.
Finally, we consider a sampling expansion problem in H; that relates

various interpolation and minimum energy properties of Theorems 2, 3,
4, and 5. A finite Shannon sampling expansion given by

TORYPW LS N (20)

where C = 1,¢;, = 4, ¢ = 1, ---, n, f e Hy, satisfies the following two
properties:

Interpolation Property g(t:) = f(t:), i =1,---,n, (21)
Minimum Energy Property ||g||>’= min | &}~ (22)
heh

€hy,
h(ti)=f(t:),
i=l,-:"n

In general, if the sampling instants, ¢;, ¢ = 1, - -, n, are distinet but
arbitrary real points, the expansion given by Eq. (20) need not have
the interpolation and minimum energy properties of Eqs. (21) and (22).
A necessary and sufficient condition for the expansion given by Eq. (20)
to satisfy the conditions of Egs. (21), (22) is given in Theorem 6.

THEOREM 6. A necessary and sufficient condition for a finite expansion
given by Eq. (20) with arbitrary distinct real {t:;2 =1, ---,n}, to satisfy
the interpolation and minimum energy properties of Egs. (21), (22), is that
C =1/, f(t:) = 6n,i4 = 1,---, n, where \, is the largest eigenvalue
and 8, is the corresponding eigenvector of the matrix equation,

Ko = \o,

K = [sm w(t; — t;)

, 0" =10, ---,0.]
w(t: — t;) ]i.j=1.-'-n [6: ]
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Proof. Sufficiency: Let f(t;) = 6,,; and C = 1/\,. Then Eq. (19)
becomes

3 w(t; — t;)
and Eq. (21) is satisfied. From Eq. (7); for any h e Hy ,

[Z; hz'(ti)T s Iny [Z 3 muh(s) Sm_f(_t_—”]

o) = (1/0) 2 s st~ 0 = 00 = S8,

A = w(t: — 1))
Thus }
min B = (/M) 2 6.e. T (23)
heHy, o = T
RGOt o ' S

4=l

By direct calculatlon o

gl = (VM)ZZGMBMS—EL“—-——) (1/>\)Zo,u. (24)

(t - t])
Thus, Eqgs. (23), (24) show that the property of Eq. (22) is satisfied by
Eq. (20). ‘ '
Necessity: Suppose Eq. (20) satisfies Eq. (21). That is,
P in w(t; — & .
() = gt;) =C Zf(ti) M, j=1,-,n

‘ i=] 7T(tj - tq,)

Then

has eigehi;é,lue (1/ C)- "a,nd cbrrespondmg elgehifectdr f ~where
= [f(t1), - , f(ta)] Suppose Eq (20) satisfies Eq. (22). Then

Mol el _ro
qu)huj;;'mzhu) _*" - (26,)

TFrom Eqs..(23), (24), (25), and (26) then C - =, 1/>\ andf = 0

In particular,if ¢, = 4,7 = 1; -+ - , n, then K(¢; — ¢;) = sin 1r(_,t, —t)/
w(t; — t;) = dyand N, = 1 = C Then 6,,:,7 =1, -+, n, can take on
any finite value. This conclusion clearly agrees Wlth the previously
known results. :
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JV. GENERALIZATIONS

- Thus far, we have considered some of the more elementary aspects
of reproducing kernel Hilbert spaces and bandlimited signals. It is clear
that many generalizations are possible in several directions. Besides
Fourier-, Hankel-, sine-, and cosine- transformed bandlimited 31gnals,
other umtary-transformed bandlimited signals can also be shown to be
specific realizations of. RKHS. Furthermore, if a class of bandlimited
signals is a. RKHS; then that class of bandpass signals is also a RKHS.
The réproducing kernel in that case is obtained from the inverse trans-
form of the indicator function of the support of the s1gna1s in the trans-
formed domain.

If the number of sampling instants, n, is allowed to become 1nﬁn1te,
then many of the above results are still valid. The proofs of some of
these results then become considerably more involved. There are also
analogous results in most of the above cases when constraints are im-
posed on the derivatives of the signals as well as the signals.

In conclusion, this paper has considered various new and known re-
sults in bandlimited signals and sampling expansions from the point
of view of the RKHS. The actions of the reproducing kernel in extremum
problems were emphasized. The RKHS approach simplified matters in
some cases but offered a unified point of view in all cases.

Recervep: July 7, 1967
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