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Notations

� Let Ω ⊂ Rn be a Euclidean subspace,M⊂ Rn as smooth manifold,
TM the corresponding tangent bundle, I ⊂ R an interval. A
time-dependent vector �eld can be denoted by

u :M× I → TM, u(x , t) ∈ TxM,

u : Ω× I → Rn, u(x , t) ∈ Rn.

� A steady vector �eld can be denoted by

u :M→ TM, u(x) ∈ TxM,

u : Ω→ Rn, u(x) ∈ Rn.
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Notations

� Path line: A particle at x0 ∈M at time t0 follows a path line that
xpath(·; x0, t0)) that satis�es

dxpath(t; x0, t0)

dt
= u(x(t; x0, t0), t)

� Stream line (at time instance τ): A particle at x0 ∈M at time t0

follows a stream line that xstream(·; x0, t0)) that satis�es

dxstream(t; x0, t0)

dt
= u(x(t; x0, t0), τ)

� Streak line: A set of particle is released at x0 ∈M at times s ∈ [t0, t].
The streak line contains those points at time instance t that have been
released x0 at time s:

xstreak(s; x0, t) = xpath(t; x0, s)

Illustration: http://crcv.ucf.edu/projects/streakline_eccv/

� For steady vector �elds all de�nitions are identical
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Example

For visualization use shading/lighting from before
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Example

Streak Lines
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Computation of Path Lines

� Integral equation for path lines x(t):

x(t) =

∫ t

t0

u(x(s), s)ds.

� Forward discretization:

x(tk+1) = x(tk) +

∫ tk+1

tk

u(x(s), s)ds ≈ x(tk+1) = x(tk) + u(x(tk), tk)∆t

� Backward discretization:

x(tk) = x(tk+1)−
∫ tk+1

tk

u(x(s), s)ds ≈ x(tk) = x(tk+1)− u(x(tk+1), tk+1)∆t

� For the evaluation of u(x(tk), tk), interpolation is necessary
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Texture Visualization of Vector Flows

(c) High Resolution Visualization by LIC
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Texture Visualization of Vector Flows

Spot Noise Visualization

J.J. van Wijk: Spot Noise: Texture Synthesis for Data Visualization,
Computer Graphics (1991). Filtered image D : Rn → R can be represented by

D(x) =

N∑
i=1

aih(x − xi)

where ai are randomly distributed intensities (with mean value zero) and

xi ∈ Ω randomly distributed points. The spot function h : Ω→ R may contain

information on the vector �eld (e.g., streched in direction of the vector �eld

u(xi) at spot xi by a factor 1 + |u(xi)| and in orthogonal direction by

1/(1 + |u(xi)|)).
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Texture Visualization of Vector Flows

Sample Spots
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Texture Visualization of Vector Flows

General Space-Time Correlation via Integration

Compute �ltered slice Dt : Rn → R by

Dt(x) =

∫ ∞
−∞

K(s)I (Z(s; x , t))ds

where K : R→ R is some convolution kernel (along time), I : Rn → R
denotes an intensity (which is chosen to be constant along some trajectory

Y (·; x , t)), and Z(·; x , t) denotes another trajectory with Z(t; x , t) = (x , t).
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Texture Visualization of Vector Flows

� Line Integral convolution (LIC):
Choose Y (s; x , t) = (x , s) and I (x , t) = Φ(x). Φ is a random �eld with
values Φ(x) ∈ [0, 1] (e.g., white noise). The trajectory
Z(s; x , t) = (x̄(s; x , t), s) is the path line of the vector �eld u.
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Texture Visualization of Vector Flows

Illustration of Initialization
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Texture Visualization of Vector Flows

Illustration of Speed
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Texture Visualization of Vector Flows

Comparison of Spot Noise and LIC (see, e.g., W. de Leeuw, R. van Liere:
Comparing LIC and Spot Noise)
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Texture Visualization of Vector Flows

Comparison of Spot Noise and LIC
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Texture Visualization of Vector Flows

� Image Based Flow Visualization (IBFV):
Choose Y (s; x , t) = (x , s) and, e.g., I (x , t) = Ψ((t + Φ(x)) mod 1) for
some function Ψ. The trajectory Z(s; x , t) = (x̄(s; x , t), s) is the path
line of the vector �eld u.
https://www.youtube.com/watch?v=OQ12UjmVt1M

� Lagrangian Eulerian Advection (LEA):
Choose Y (s; x , t) = (x̄(s; x , t), s) to be the path line of the vector �eld
u and, e.g., I (x , t) = Ψ((t + Φ(x)) mod 1) for some function Ψ. The
trajectory Z(s; x , t) = (x , s) is parallel to the time axis.

� LEA and IBFV are dual.
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Texture Visualization of Vector Flows

Illustration of IBFV for di�erent Ψ
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Texture Visualization of Vector Flows

� Dynamic Line Integral convolution (DLIC):
Choose Y (s; x , t) = (ȳ(s; x , t), s) to be the path line of a secondary
vector �eld v . and I (x , t) = Φ(x). Φ is a random �eld with values
Φ(x) ∈ [0, 1] (e.g., white noise). The trajectory
Z(s; x , t) = (x̄(s; x , t), s) is the path line of the vector �eld u.

� DLIC makes sense for the representation of electric �elds that are driven
by time-dependent charge distributions.
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Example

3D texture visualization
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Notations

� Let Ω ⊂ Rm, I ⊂ R an interval. A time-dependent second-order tensor
�eld can be denoted by

T : Ω× I → Rn×p, u(x , t) ∈ Rn×p.

We choose n = p and (mostly) symmetric tensors (6-D).

� A steady second-order tensor �eld can be denoted by

T : Ω→ Rn×p, u(x) ∈ Rn×p.

� Examples: Deformation tensor (not symmetric), Stress tensor (force
per unit area in a point x ∈ Ω acting on surfaces of arbitrary direction
going through x , symmetric), Di�usion Tensor (DT-MRI: di�usion
direction of water molecules in body tissue at a location x ∈ Ω,
symmetric), Gradiometry (symmetric)
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Shape Spaces and Invariants

Representation of tensor �elds via ellipsoids/glyphs (eigenvalues and
eigenvectors of T(x) determine the major axes and lengths of the ellipsoid at
point x) or representation by slices and colors to indicate main directions.

In general, di�erent anisotropy metrics in�uence the shape and
representation of tensor information.



Vector Flow Representations Tensor Field Representations

Shape Spaces and Invariants

Tensor invariants are properties of the tensor or functions that stay invariant
under orthogonal coordinate transformations

� eigenvalues λ1 ≥ λ2 ≥ λ3

� determinant

� trace

� characteristic polynomial
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Shape Spaces and Invariants

Shape Space The vector space with eigenvalues λ1, λ2, λ3 denoting its threes
axes is called shape space. Coordinates in a di�erent reference frame are
called shape descriptors.

Basis in Shape Space Any set of three linearly independent invariants

Ii(λ1, λ2, λ3), i = 1, 2, 3, de�ne a basis in shape space via ∇Ii , i = 1, 2, 3.

Each invariant describes a two-dimensional subset (level set) in shape space.
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Shape Spaces and Invariants

Glyphs Iconic �gures that illustrate tensor information via shape, color,
transparency, etc.

� Ellipsoids (isosurface
x2
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= 1 or the set {Ty |y ∈ R3, |y | = 1})

� Deformation glyph (the set {(1 + T)y |y ∈ R3, |y | = 1}), allows
representation of negative eigenvalues

� Anisotropy measures: linear anisotropy, planar anisotropy, isotropy
(sphere):

cl =
λ1 − λ2

λ1 + λ2 + λ3
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2(λ2 − λ3)

λ1 + λ2 + λ3
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Shape Spaces and Invariants

Ambiguity of Ellipsoidal representation:
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Shape Spaces and Invariants

� Superquadrics:
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If cl ≥ cp:

α = (1− cp)γ , β = (1− cl)
γ , q1(x) = 1

If cl < cp:

α = (1− cl)
γ , β = (1− cp)γ , q3(x) = 1
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Shape Spaces and Invariants

Shapes of Superquadrics (Superquadric Tensor Glyphs, G.

Kindlemann (2004)):
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Shape Spaces and Invariants

Tensor Shapes for superquadrics with di�erent γ:
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Fibre Tracking

Streamline Integration: Let e1(x) be the normalized eigenvector to the
largest eigenvalue λ1 of T(x). Fibre trajectory

x(t) =

∫ t

0

e1(x(s))ds.

Forward scheme

x(tk+1) = x(tk) + e1(x(tk))∆t.

Fibre Tracking: Choose initial point x(t0) to be a maximum of cl(x). Choose
a threshold K ∈ [0, 1] such that a point x is considered part of a �bre if
cl(x) ≥ K . Compute �bre starting from x(t0) and use forward (or backward)
scheme to compute x(t1). If x(t1) ≥ K , it is part of the �bre, iterate until the
�bre stops.
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Fibre Tracking

Smoothing along Fibre: Instead of e1(x) use a smoothed version ē1(x) in the
streamline Integration. ē1(x) denotes the principal eigenvalue of a smoothed
tensore �eld T̄ (x). The smoothing should emphasize information along the
�bre, e.g. by moving least squares (MLS): T̄ (x) is obtained by minimizing the
functional

F(F ) =

∫
R3

K(y − x)(T (y)− F (y − x))2dy ,

where T̄ (x) = F (0), and the kernel K depends on the location x (e.g., by
adapting the shape of K to the eigenvectors and eigenvalues of T̄ (x(ti−1)) in
the previous time step of the streamline integration)

The choice of K to be a scaled Gauss kernel relates to linear di�usion. How

could nonlinear di�usion be inlcuded in the above procedure?
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Fibre Tracking

Fibre Tracking result for un�ltered and MLS �ltered setting

−→ Do LIC representations of the eigenvector �eld e1 re�ect �bres?
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