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Abstract

Motivated from the theoretical and practical results in compressed
sensing, efforts have been undertaken by the inverse problems commu-
nity to derive analogous results, for instance linear convergence rates, for
Tikhonov regularization with ℓ

1-penalty term for the solution of ill-posed
equations. Conceptually, the main difference between these two fields
is that regularization in general is an unconstrained optimization prob-
lem, while in compressed sensing a constrained one is used. Since the two
methods have been developed in two different communities, the theoretical
approaches to them appear to be rather different: In compressed sensing,
the restricted isometry property seems to be central for proving linear con-
vergence rates, whereas in regularization theory range or source conditions
are imposed. The paper gives a common meaning to the seemingly differ-
ent conditions and puts them into perspective with the conditions from
the respective other community. A particularly important observation is
that the range condition together with an injectivity condition is weaker
than the restricted isometry property. Under the weaker conditions, linear
convergence rates can be proven for compressed sensing and for Tikhonov
regularization. Thus existing results from the literature can be improved
based on a unified analysis. In particular the range condition is shown
to be the weakest possible condition that permits the derivation of lin-
ear convergence rates for Tikhonov regularization with a–priori parameter
choice.
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1 Introduction

The problem of solving ill-posed linear operator equations of the form

Ax = y† (1)

is constantly encountered in various mathematical applications. If the available
data y are a perturbation of some true data y†, the ill-posedness prohibits a
direct solution by inverting A. As a remedy, regularization methods are used,
which calculate from y an approximation xδ of the solution of (1), thereby also
permitting a certain defect Axδ − y 6= 0.

Regularization methods rely on a regularization functional R that is adapted
to the particular application and the solution x† to be recovered. Both in
theory and practice, estimates for the data error in y have to be available,
i.e., the constant δ in the inequality ‖y† − y‖ ≤ δ has to be known. Using
an appropriate regularization functionals and appropriately taking into account
δ, makes regularization methods stable with respect to data perturbations and
convergent to x† when δ tends to zero (see for instance [17, 23, 30]).

In this paper, we consider three kinds of regularization methods:

Residual method: Fix τ ≥ 1 and solve the constrained minimization problem

R(x) → min subject to ‖Ax − y‖ ≤ τδ . (2)

Tikhonov regularization with discrepancy principle: Fix τ ≥ 1 and minimize
the Tikhonov functional

Tα,y(x) := ‖Ax − y‖2 + αR(x) , (3)

where α > 0 is chosen in such a way that Morozov’s discrepancy principle
is satisfied, i.e., ‖Axα − y‖ = τδ with xα ∈ arg minx Tα,y(x).

Tikhonov regularization with a–priori parameter choice: Fix C > 0 and mini-
mize the Tikhonov functional (3) with a parameter choice

α = Cδ . (4)

Classical regularization methods assume sufficient smoothness of the solution
x† of (1) and therefore use a squared Sobolev norm for the regularization term
R. In the recent years, however, sparse regularization has been established as
a powerful alternative to the standard methods [12, 1, 4, 19, 20, 24]. Here the
core assumption is that the solution x† has a sparse expansion with respect to
some given basis or frame (φλ)λ∈Λ of the domain X of the operator A. In this
context, sparsity signifies that only a few coefficients 〈φλ, x†〉 of the solution
x† are non-zero. This criterion of sparsity can be implemented with all three
regularization methods by using the regularization term

R(x) := ‖x‖ℓ1 :=
∑

λ∈Λ

|〈φλ, x〉| . (5)
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Sparsity is also the base of the active field of compressed sensing [8, 10,
14]. In this application, the nullspace of A, ker(A), is assumed to be high
dimensional, and as a consequence, solving (1) is a vastly under-determined
problem. Still, under certain conditions it is possible to recover x† exactly, by
solving the convex minimization problem

R(x) = ‖x‖ℓ1 → min such that Ax = y† . (6)

Indeed, it has been shown that, under certain assumptions, the solution of (6) is
the sparsest solution of Ax = y†, that is, the solution with the smallest number
of non-zero coefficients (see [8, 13]). In [10], this exact reconstruction property
is shown under the assumptions that the true solution x† is sufficiently sparse
and the operator A is close to being an isometry on certain low dimensional
subspaces of X . The latter condition is generally termed the restricted isometry
property of A.

The same property allows the derivation of stability results for the con-
strained minimization problem (2) with ℓ1-regularization term (see [9, 14, 18,
32]), i.e., for

R(x) = ‖x‖ℓ1 → min such that ‖Ax − y‖ ≤ τδ . (7)

In this context the restricted isometry property implies the existence of a con-
stant c > 0, only depending on the number s of non-zero coefficients of the
solution x† of (1), such that the solution of the constrained minimization prob-
lem xδ of (7) satisfies (see [9])

‖xδ − x†‖ ≤ cδ . (8)

In [20] the linear convergence rate (8) for the ℓ1 residual method has been
derived recently under different assumptions: Instead of restricted isometry, the
following two assumptions are postulated. First, restricted injectivity of A,
and second, that x† satisfies a range condition, which is commonly imposed in
regularization theory. In the general context, for arbitrary convex regularization
functionals, this condition states that there exists some η such that

A∗η ∈ ∂R(x†) . (9)

Here A∗ denotes the adjoint of the linear operator A, and ∂R(x†) denotes the
subdifferential of the convex functional R at x†.

Also in the case of Tikhonov regularization with a–priori parameter choice
α = Cδ, a linear convergence rate has been derived under the assumptions of
range condition (9) and restricted injectivity (see [19, 30]).

These results underline that the convergence analysis for both methods,
constrained and unconstrained, can be performed under the same conditions.
The relations between constrained and unconstrained regularization go even
beyond this connection. Indeed, it can be shown that the constrained mini-
mization problem (7) is equivalent to Tikhonov regularization, when the regu-
larization parameter α is chosen according to the Morozov discrepancy principle
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(see Proposition 2.2 below). As a consequence, the convergence rates results for
constrained regularization (as for instance in [6, 31, 32]) carry over directly to
Tikhonov regularization with Morozov’s parameter selection criterion.

In this paper we carefully investigate the conditions under which linear con-
vergence rates for constrained and unconstrained sparsity regularization have
been derived. In particular, we study the relation between the range condition
(9), restricted injectivity, and the restricted isometry property from compressed
sensing. Having shown that restricted isometry can be considered a special case
of a range condition, we consider the question whether the latter is necessary for
obtaining linear rates (8). As a partial answer, we state in Theorem 4.7 that,
for Tikhonov regularization with a–priori parameter choice strategy, the range
condition combined with restricted injectivity is indeed not only sufficient, but
also necessary for a linear convergence rate. Thus, the stated conditions are
weakest possible for linear convergence rates.

As a consequence of the previous discussion, most existing linear convergence
rates results for compressed sensing can be generalized by replacing the assump-
tion of restricted isometry property by the assumptions of restricted injectivity
and the range condition.

2 Notational Preliminaries

Let X and Y be separable Hilbert spaces with inner product 〈·, ·〉 and norm ‖·‖,
and let A : X → Y be a bounded linear operator. Assume that we are given
an orthonormal basis

(

φλ

)

λ∈Λ
⊂ X of the space X . Here, Λ is some index set;

since X is separable, it follows that Λ can at most be countable.
We use the following definitions of sparsity:

Definition 2.1. For x ∈ X , the set

supp(x) := {λ ∈ Λ : 〈φλ, x〉 6= 0}

denotes the support of x with respect to the basis
(

φλ

)

λ∈Λ
⊂ X . If |supp(x)| ≤ s

for some s ∈ N, then the element x is called s-sparse. It is called sparse, if it is
s-sparse for some s ∈ N, that is, |supp(x)| < ∞.

For a subset of indices Λ′ ⊂ Λ, we denote by

XΛ′ := span{φλ : λ ∈ Λ′} ⊂ X

the (closed) subspace spanned of all basis elements φλ with λ ∈ Λ′. With the
restriction of the inner product on X to XΛ′ , this space is again a Hilbert space.
Moreover, we denote by iΛ′ : XΛ′ → X the embedding defined by iΛ′ x = x. Its
adjoint operator is the projection πΛ′ : X → XΛ′ , which is defined by

πΛ′ (x) =
∑

λ∈Λ′

〈φλ, x〉φλ .
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In addition, we denote for an operator A : X → Y by AΛ′ := A ◦ iΛ′ : XΛ′ → Y
its restriction to XΛ′ . Then the adjoint of AΛ′ is an operator

A∗
Λ′ := (AΛ′ )∗ : Y → XΛ′ .

Before we present some linear convergence rates results, we first cite the
equivalence of the residual method and Tikhonov regularization with a–posteriori
parameter choice strategy. For simplicity, we assume in the following that the
parameter τ required for the residual method and for the application of Moro-
zov’s discrepancy principle equals 1.

Proposition 2.2. Assume that the operator A : X → Y has dense range. Then
the residual method and Tikhonov regularization with an a–posteriori parameter
choice by means of the discrepancy principle are equivalent in the following
sense:

Let y ∈ Y and δ > 0 satisfy ‖y‖ > δ. Then xδ solves the constrained
problem (2), if and only if ‖Axδ − y‖ = δ and there exists α > 0 such that xδ

minimizes (3).

Proof. This follows by applying [23, Theorems 3.5.2, 3.5.5] where D = ℓ1(Λ) ⊂
ℓ2(Λ) and L : D → ℓ1(Λ) is the identity operator on ℓ1(Λ).

The condition ‖y‖ > δ appears frequently in regularization theory. It states
that the signal to noise ratio ‖y‖/δ must be greater that 1. In other words,
more information has to be contained in the data than in the noise.

3 Sparse Regularization

In this section we review, and slightly refine, the convergence rates results for
ℓ1–regularization, which have been derived in [19, 20]. In addition, we compare
these results with general convergence rates results with respect to the Bregman
distance (see [6, 19, 20, 21, 22, 24, 25, 27, 28, 30]).

To that end, we require the notion of the subdifferential of the convex
function R at x ∈ X , denoted by ∂R(x) ⊂ X . It consists of all elements
ξ ∈ X , called subgradients, satisfying 〈φλ, ξ〉 = sign

(

〈φλ, x〉
)

for λ ∈ supp(x)
and 〈φλ, ξ〉 ∈ [−1, 1] for λ 6∈ supp(x). Every subgradient being an element of the
Hilbert space X , it follows that the sequence of coefficients (〈φλ, ξ〉)λ is square
summable. In particular, the value 〈φλ, ξ〉 = ±1 can be attained only finitely
many times. Thus the subdifferential ∂R(x) is non-empty if and only if x is
sparse.

Lemma 3.1. Let x† ∈ X satisfy Ax† = y†. Assume that A∗η ∈ ∂R(x†) for
some η ∈ Y . Then x† is an R-minimizing solution of the equation Ax = y†.

Proof. This is a special case of [16, Chap. III, Prop. 4.1], applied to the function
J(x,Ax) = R(x) if Ax = y† and J(x,Ax) = +∞ else.
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Definition 3.2. Let x†, x ∈ X and assume that ∂R(x†) 6= ∅. For ξ ∈ ∂R(x†)
we define the Bregman distance of x and x† with respect to ξ as

DR
ξ (x, x†) := R(x) −R(x†) − 〈ξ, x − x†〉 .

Remark 3.3. Because the functional R is positively homogeneous, it follows
that R(x†) = 〈ξ, x†〉 for every ξ ∈ ∂R(x†). Thus, the Bregman distance of x
and x† with respect to ξ simplifies to

DR
ξ (x, x†) = R(x) − 〈ξ, x〉 =

∑

λ∈Λ

(

|〈φλ, x〉| − 〈φλ, ξ〉〈φλ, x〉
)

.

The following two results are concerned with convergence rates with respect
to the Bregman distance for the residual method and for Tikhonov regularization
with a–priori parameter selection (4). The first lemma has been derived in [6,
Theorem 3] for arbitrary convex functionals R (see also [20, Section 5]). It can
be applied to obtain convergence rates for the residual method and, by means
of Proposition 2.2, the same convergence rate holds for Tikhonov regularization
with the a–posteriori parameter choice in form of the discrepancy principle.

Lemma 3.4. Let x† ∈ X satisfy Ax† = y†. Assume that x† is sparse and that
A∗η ∈ ∂R(x†) for some η ∈ Y . Let y ∈ Y satisfy ‖y − y†‖ ≤ δ for some δ ≥ 0.
Then

DR
A∗η(xδ , x†) ≤ 2‖η‖δ (10)

for every
xδ ∈ arg min{R(x) : ‖Ax − y‖ ≤ δ} .

Next we state the corresponding result for Tikhonov Regularization with
a–priori parameter choice. The given estimate is a slight improvement over [30,
Proposition 3.41].

Lemma 3.5. Let x† ∈ X satisfy Ax† = y†. Assume that A∗η ∈ ∂R(x†) for
some η ∈ Y . Moreover, let α > 0 and assume that y ∈ Y satisfies ‖y − y†‖ ≤ δ
for some δ ≥ 0. Then

‖Axα − y‖ ≤
√

2δ2 + 2δα‖η‖ + α2‖η‖2 , (11)

DR
A∗η(xα, x†) ≤ (δ + α‖η‖/2)

2

α
, (12)

for every xα ∈ arg min Tα,y.

Proof. The estimate (11) is a special case of [30, Equation (3.34)] with β1 = 0
and β2 = ‖η‖. The estimate (12) for the Bregman distance is a slight refine-
ment of [30, Equation (3.35)]. It can be derived following [30, Proof of Propo-
sition 3.41] by applying Young’s inequality in said proof with

√
2‖Axα − y‖

instead of ‖Axα − y‖.
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Remark 3.6. In [6, Equation (3.3)], the even sharper estimate DR
A∗η(xα, x†) ≤

(

δ2 + α2‖η‖2/4
)

/α is claimed. Carrying out the proof in [6], however, also only
results in (12).

Lemmas 3.4 and 3.5 provide bounds for the Bregman distance of regularized
solutions and exact solutions of Ax = y†. Because the functional R is not
strictly convex, the Bregman distance of two different elements can vanish.
Thus, the estimates yield no estimates in terms of the norm. In the following,
we will clarify what kind of estimates they do entail.

To that end we define, for η ∈ Y , the set

Γ[η] :=
{

λ ∈ Λ : |〈φλ,A∗η〉| ≥ 1
}

(13)

and the number
mη := max

{

|〈φλ,A∗η〉| : λ 6∈ Γ[η]
}

. (14)

Because A∗η ∈ X , and (φλ)λ is an orthonormal basis, the sequence of coeffi-
cients |〈φλ,A∗η〉| converges to zero, and therefore the number mη is well defined
and satisfies mη < 1.

Now assume that η ∈ Y is such that A∗η ∈ ∂R(x†). Then we can estimate,
for x ∈ X , the Bregman distance by (cf. Remark 3.3)

DR
A∗η(x, x†) =

∑

λ∈Λ

(

|〈φλ, x〉|−〈φλ,A∗η〉〈φλ, x〉
)

≥ (1−mη)
∑

λ6∈Γ[η]

|〈φλ, x〉| . (15)

Therefore, if the Bregman distance of x and x† converges linearly to zero, so does
the right hand side of (15). With the notation of Lemma 3.4 we consequently
obtain that the projection πX\Γ[η]x

δ of xδ converges linearly to zero. Similarly,
with the notation of Lemma 3.5 the projection πX\Γ[η]xα converges linearly. No

information, however, can be obtained from (15) about the projections of xδ

and xα to the space XΓ[η].
In contrast, in [19, 20, 30], we have derived linear convergence rates on the

whole space X , assuming an additional injectivity condition originally intro-
duced in [5, 24]. We follow the argumentation there, but using a slightly weaker
condition.

Condition 3.7. The element x† ∈ X solves the equation Ax = y†. In addition,
the following conditions hold:

1. Source condition: There exists some η ∈ Y such that A∗η ∈ ∂R(x†).

2. Restricted injectivity: The mapping AΓ[η] = A ◦ iΓ[η] : XΓ[η] → Y is
injective.

Remark 3.8. 1. The first item of condition 3.7 implies that |〈φλ,A∗η〉| ≤ 1.
Therefore we can rewrite Γ[η] as

Γ[η] = {λ ∈ Λ : |〈φλ,A∗η〉| = 1} .
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2. If Condition 3.7 is satisfied, then XΓ[η] is finite dimensional and AΓ[η] is
injective. Consequently, it has an inverse

A−1
Γ[η] : ran(AΓ[η]) → XΓ[η] .

In particular, the operator norm of A−1
Γ[η], ‖A−1

Γ[η]‖, exists and is finite.

Lemma 3.9. Let x† and η satisfy Condition 3.7. Then

‖x − x†‖ ≤ ‖A−1
Γ[η]‖‖Ax − y†‖ +

1 + ‖A−1
Γ[η]‖‖A‖

1 − mη
DR

A∗η(x, x†) (16)

for every x ∈ X. Here mη ∈ [0, 1) is defined by (14).

Proof. The estimate (16) follows from the proof of Theorem 3.54 in [30], when
uδ

α(δ) there is replaced by an arbitrary x, F = A, C = ‖A−1
Γ[η]‖, wmin = 1, and

γ1 = γ2 = 0. Then (16) is a direct consequence of (3.60), (3.61), and (3.62)
in [30].

Remark 3.10. Lemma 3.9 is a typical example of an a–posteriori error esti-
mate. Such estimates are widely used in numerics of partial differential equa-
tions (see e.g. [33]), where the error of some numerical approximation to the
exact solution of a partial differential equation is estimated. There, typically,
a finite dimensional subspace Xh, for instance the finite element space, is con-
sidered. A–posteriori estimates look very similar as those in Lemma 3.9, after
replacing the Bregman distance errors by boundary data errors and the source
condition by smoothness assumptions. In the PDE context, A denotes evalua-
tion of the PDE.

A–posteriori error estimates can be used for local grid refinement as an in-
dicator for refinement strategy, for instance, when the evaluation of A for the
finite element approximation, produces significant errors relative to the given
right hand side. A similar motivation has been considered for quadratic reg-
ularization in [29] for nonlinear ill–posed problems. The estimates there have
also the same structure as here.

Proposition 3.11. Let Condition 3.7 be satisfied, and let y ∈ Y satisfy ‖y† −
y‖ ≤ δ. Then we have for all xδ ∈ argmin{R(x) : ‖Ax − y‖ ≤ δ} that

‖xδ − x†‖ ≤ cηδ (17)

with

cη = 2

(

‖A−1
Γ[η]‖ +

1 + ‖A−1
Γ[η]‖‖A‖

1 − mη
‖η‖
)

.

Proof. This follows from Lemmas 3.4 and 3.9.
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Proposition 3.12. Let Condition 3.7 be satisfied and consider the parameter
choice α = Cδ for some C > 0. Then we have for all y satisfying ‖y − y†‖ ≤ δ
and all xα ∈ arg min Tα,y that

‖Axα − y‖ ≤ c(1)
η δ , ‖xα − x†‖ ≤ c(2)

η δ , (18)

where
c(1)
η :=

√

2 + 2C‖η‖ + C2‖η‖2 ,

c(2)
η := ‖A−1

Γ[η]‖c(1)
η +

1 + ‖A−1
Γ[η]‖‖A‖

1 − mη

(

1 + C‖η‖/2
)2

C
.

Proof. This follows from Lemmas 3.5 and 3.9.

Remark 3.13. Notice that the linear convergence of the residuum ‖Axα − y‖
only requires x† to satisfy the source condition (see Lemma 3.5). Conversely,
we shall see in the next section that the source condition is in fact equivalent to
the linear convergence of the residual.

4 Necessary Conditions

In the previous section we have verified that Condition 3.7 implies linear con-
vergence of ‖x† − xα‖ as α → 0. In the following we shall see that Condition
3.7 is in some sense the weakest possible condition that guarantees this linear
rate of convergence.

First we prove the necessity of the source conditions for obtaining conver-
gence rates for Tikhonov regularization with a–priori parameter choice:

Lemma 4.1. Let (δk) be a sequence of positive numbers converging to zero
as k → ∞. Moreover, let (yk) ⊂ Y satisfy ‖yk − y‖ ≤ δk and let xk ∈
argmin Tαk,yk

, with αk ≥ Cδk for some fixed C > 0.
If ‖xk − x†‖ → 0 as k → ∞ and if there exists a constant c > 0 such that

‖Axk − yk‖ ≤ cδk, then ran(A∗) ∩ ∂R(x†) 6= ∅.

Proof. Denote ηk := (yk − Axk)/αk. By assumption the sequence (ηk)k∈N is
bounded in Y and thus admits a subsequence (ηkl

)l∈N weakly converging to
some η ∈ Y . Since A is a bounded operator, and therefore also the adjoint A∗,
this implies that A∗ηkl

weakly converges to A∗η in X , in signs A∗ηkl
⇀ A∗η.

The assumption xkl
∈ arg min Tαkl

,yk
implies that

0 ∈ ∂Tαkl
,ykl

(xkl
) = A∗(Axkl

− ykl
) + αkl

∂R(xkl
) ,

and therefore A∗ηkl
∈ ∂R(xkl

). The multifunction ∂R is maximal monotone
and therefore its graph is sequentially strongly-weakly closed (see [11, Chap-
ter V, p. 175]). Because xkl

→ x† and A∗ηkl
⇀ A∗η as l → ∞, this implies

that A∗η ∈ ∂R(x†) and proves the assertion.
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Remark 4.2. The proof of Lemma 4.1 is similar to the proofs given in [15] for
entropy regularization and in [26] for ℓp regularization with p > 1. In fact, the
above result is equally true for every proper, convex, and lower semi-continuous
regularization functional. Under this assumption the same proof applies, be-
cause the subdifferential of every such functional is maximal monotone (see [3,
Chapter II, Theorem 2.1]).

As a next step, we show the necessity of the restricted injectivity condi-
tion 3.7.2. To this end, we show that Condition 3.7 is equivalent to the follow-
ing:

Condition 4.3. The element x† ∈ X solves the equation Ax = y†. In addition,
the following conditions hold:

1. Strong source condition: There exists some η̂ ∈ Y with

A∗η̂ ∈ ∂R(x†) and |〈φλ,A∗η̂〉| < 1 for λ 6∈ supp(x†) . (19)

2. The restricted mapping Asupp(x†) is injective.

Remark 4.4. In [5], a similar condition has been applied in order to derive a
linear rate of convergence for an iterative soft-thresholding algorithm for min-
imizing the ℓ1-Tikhonov functional. There, a sequence x† satisfying the first
condition in 4.3 has been called to possess a strict sparsity pattern.

The proof of the equivalence of Conditions 3.7 and 4.3 mainly relies on the
following Lemma.

Lemma 4.5. Assume that x† ∈ X is the unique R-minimizing solution of the
equation Ax = y†. Moreover, assume that x† is sparse.

Denote the support of x† by Ω := supp(x†). Then the following hold:

• The restricted mapping AΩ is injective.

• For every finite set Ω′ ⊂ Λ with Ω ∩ Ω′ = ∅ there exists θ ∈ Y such that

〈φλ,A∗θ〉 = sign(〈φλ, x†〉) for λ ∈ Ω and |〈φλ,A∗θ〉| < 1 for λ ∈ Ω′ .
(20)

Proof. The proof is divided in two parts. First we show the injectivity of AΩ,
then we prove (20).

• In order to verify that AΩ is injective, we have to show that ker(A)∩XΩ =
{0}. After possibly replacing some of the basis vectors φλ by −φλ we may
assume without loss of generality that sign(〈φλ, x†〉) = 1 for every λ ∈ Ω.

Since x† is the unique R-minimizing solution of Ax = y†, it follows that

R(x† + tw) > R(x†) for all w ∈ ker(A) \ {0} and all t 6= 0 . (21)
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Because Ω is a finite set, the mapping

t 7→ R(x† + tw) =
∑

λ∈Ω

|〈φλ, x†〉 + t〈φλ, w〉| + |t|
∑

λ6∈Ω

|〈φλ, w〉|

is piecewise linear. Taking the one sided directional derivative with respect
to t, it follows from (21) that for every w ∈ ker(A) \ {0}

∑

λ∈Ω

〈φλ, w〉 +
∑

λ6∈Ω

|〈φλ, w〉| > 0 .

For deriving the last inequality, we have used that all basis elements have
been normalized such that sign(〈φλ, x†〉) = 1. Applying the last inequality
to −w instead of w, we deduce that, in fact,

∑

λ6∈Ω

|〈φλ, w〉| >
∣

∣

∣

∑

λ∈Ω

〈φλ, w〉
∣

∣

∣
for every w ∈ ker(A) \ {0} . (22)

In particular, it follows that
∑

λ6∈Ω|〈φλ, w〉| > 0 for every w ∈ ker(A)\{0}.
Thus, for every w ∈ ker(A) \ {0} there exists some λ 6∈ Ω such that
〈φλ, w〉 6= 0, and therefore ker(A) ∩ XΩ = {0}. This, however, amounts
to saying that the restricted mapping AΩ is injective.

• Now let Ω′ ⊂ Λ be any finite subset with Ω ∩Ω′ = ∅. Inequality (22) and
the finiteness of Ω∪Ω′ imply the existence of a constant µ with 0 < µ < 1
such that

µ
∑

λ∈Ω′

|〈φλ, w〉| ≥
∣

∣

∣

∑

λ∈Ω

〈φλ, w〉
∣

∣

∣
for every w ∈ ker(A) ∩ XΩ∪Ω′ . (23)

Assume now for the moment that ξ is an element in ran(A∗
Ω∪Ω′ ). Then

there exists θ ∈ Y such that ξ = A∗
Ω∪Ω′θ. The identity

πΩ∪Ω′ ◦ A∗ = (A ◦ iΩ∪Ω′)∗ = A∗
Ω∪Ω′

therefore implies that

〈φλ, ξ〉 = 〈φλ,A∗
Ω∪Ω′θ〉 = 〈φλ,A∗θ〉 for every λ ∈ Ω ∪ Ω′ .

By assumption, XΩ∪Ω′ is finite dimensional and therefore the identity

ran(A∗
Ω∪Ω′ ) =

(

ker(AΩ∪Ω′ )
)⊥

holds true, where ·⊥ denotes the orthogonal
complement in XΩ∪Ω′ .

This shows that (20) is equivalent to the existence of some

ξ ∈ ran(A∗
Ω∪Ω′ ) =

(

ker(AΩ∪Ω′)
)⊥ ⊂ XΩ∪Ω′

with

〈φλ, ξ〉 = sign(〈φλ, x†〉) = 1 for λ ∈ Ω and |〈φλ, ξ〉| < 1 for λ ∈ Ω′ .
(24)

11



In the following we make use of the element ζ ∈ XΩ∪Ω′ defined by 〈φλ, ζ〉 =
1 for λ ∈ Ω and 〈φλ, ζ〉 = 0 for λ ∈ Ω′.

If ζ ∈ (ker(AΩ∪Ω′ ))⊥, then we choose ξ := ζ and (24), and in conse-
quence (20), follows.

If, on the other hand, ζ 6∈
(

ker(AΩ∪Ω′ )
)⊥

, then there exists a basis
(

w(1), . . . , w(s)
)

of ker(AΩ∪Ω′) such that

1 = 〈ζ, w(i)〉 =
∑

λ∈Ω

〈φλ, ζ〉〈φλ, w(i)〉 =
∑

λ∈Ω

〈φλ, w(i)〉 for every 1 ≤ i ≤ s .

(25)
Consider now the constrained minimization problem on XΩ′ ,

max
λ∈Ω′

|〈φλ, ζ̂〉| → min subject to 〈ζ̂ , w(i)〉 = −1 for i ∈ {1, . . . , s} . (26)

Because of the equality 〈ζ, w(i)〉 = 1, the admissible vectors ζ̂ in (26) are

precisely those for which ξ := ζ + ζ̂ ∈
(

ker(AΩ∪Ω′ )
)⊥

. Thus, the task
of finding ξ satisfying (24) reduces to showing that the value of (26) is
strictly smaller than 1.

Now note that the dual of the convex function ζ̂ 7→ maxλ∈Ω′ |〈φλ, ζ̂〉| is
the function

XΩ′ ∋ ζ̂ 7→















0 , if
∑

λ∈Ω′

∣

∣〈φλ, ζ̂〉
∣

∣ ≤ 1 ,

+∞ , if
∑

λ∈Ω′

∣

∣〈φλ, ζ̂〉
∣

∣ > 1 .

Recalling that 〈ζ̂ , w(i)〉 =
∑

λ∈Ω′ 〈φλ, ζ̂〉〈φλ, w(i)〉, it follows that the dual
problem to (26) is the following constrained problem on R

s (see for in-
stance [2, Sec. 5.3]):

S(p) := −
s
∑

i=1

pi → min subject to
∑

λ∈Ω′

∣

∣

∣

s
∑

i=1

pi〈φλ, w(i)〉
∣

∣

∣
≤ 1 . (27)

From (25) we obtain that

∑

λ∈Ω

s
∑

i=1

pi〈φλ, w(i)〉 =

s
∑

i=1

pi = −S(p)

for every p ∈ R
s. Taking w =

∑s
i=1 piw

(i), inequality (23) therefore
implies that

µ
∑

λ∈Ω′

∣

∣

∣

s
∑

i=1

pi〈φλ, w(i)〉
∣

∣

∣
≥
∣

∣

∣

∑

λ∈Ω

s
∑

i=1

pi〈φλ, w(i)〉
∣

∣

∣
=
∣

∣

∣

s
∑

i=1

pi

∣

∣

∣
= |S(p)|

for every p ∈ R
s. Then from (27) it follows that |S(p)| ≤ µ for every

admissible vector p ∈ R
s for the problem (27). Thus the value of S(p) in
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(27) is greater or equal than −µ. Since the value of the primal problem (26)
is the negative of the value of the dual problem (27), this shows that the
value of (27) is at most µ.

This proves that the value µ of (26) is strictly smaller than 1 and, as we
have shown above, this proves the assertion (24).

Proposition 4.6. Assume that x† is the unique R-minimizing solution of the
equation Ax = y†. Moreover, let there exist some η ∈ Y satisfying A∗η ∈
∂R(x†). Then Condition 4.3 is satisfied.

Proof. The injectivity of Asupp(x†) follows from Lemma 4.5.
Define now

Ω′ := Γ(η) \ supp(x†) =
{

λ ∈ Λ \ supp(x†) : |〈φλ,A∗η〉| = 1
}

.

Because A∗η ∈ ∂R(x†) ⊂ ℓ2(Λ), the set Ω′ is finite. Let now θ ∈ Y satisfy (20),
and define

η̂ =
(

1 − 1 − mη

2‖θ‖∞

)

η +
1 − mη

2‖θ‖∞
θ .

Then one easily verifies that η̂ satisfies the required condition (19).

Theorem 4.7. Let x† ∈ X satisfy Ax† = y†.
Then the following statements are equivalent:

1. x† satisfies Condition 4.3.

2. x† satisfies Condition 3.7.

3. For every C > 0 there exists c(1) > 0 such that

‖xα − x†‖ ≤ c(1)δ

whenever xα ∈ arg minx Tα,y(x) with ‖y† − y‖ ≤ δ and α = Cδ.

4. x† is the unique R-minimizing solution of the equation Ax = y†. More-
over, for every C > 0 there exists c(2) > 0 such that

‖Axα − y†‖ ≤ c(2)δ

whenever xα ∈ arg minx Tα,y†(x) with ‖y† − y‖ ≤ δ and α = Cδ.

Proof. Item 1 obviously implies Item 2. The implication 2 =⇒ 3 has been
shown in Proposition 3.12. Moreover, the implication 3 =⇒ 4 is trivial, the
operator A being linear and bounded.

Now assume that Item 4 holds. Consider sequences δk → 0 and (yk)k∈N ⊂ Y
with ‖yk−y‖ ≤ δk. Choose any xk ∈ arg minx Tαk,yk

(x), where αk = Cδk. Then
the uniqueness of x† implies that xk → x† (see [19, Prop. 7]). As a consequence,
Lemma 4.1 applies, which shows the existence of η ∈ Y with A∗η ∈ ∂R(x†).
Again using the uniqueness of x†, Proposition 4.6 now implies that Condition 4.3
holds, which concludes the proof.
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5 Application to Compressed Sensing

The restricted isometry property (also known as uniform uncertainty principle)
is the key ingredient in compressed sensing for proving linear error estimates for
the ℓ1-residual method in finite dimensional spaces (see [8]). Below we introduce
and exploit this notation on arbitrary separable Hilbert spaces.

Definition 5.1. The s-restricted isometry constant ϑs of A is defined as the
smallest number ϑ ≥ 0 that satisfies

(1 − ϑ)‖x‖2
2 ≤ ‖Ax‖2 ≤ (1 + ϑ)‖x‖2

2 (28)

for all s-sparse x ∈ X . The (s, s′)-restricted orthogonality constant ϑs,s′ of A is
defined as the smallest number ϑ ≥ 0 such that

|〈Ax,Ax′〉| ≤ ϑ‖x‖‖x′‖ (29)

for all s-sparse x ∈ X and s′-sparse x′ ∈ X with suppx ∩ suppx′ = ∅.

Because A is a bounded operator, the estimates (28) and (29) are satisfied for
ϑ ≥ ‖A‖2, which implies that ϑs and ϑs,s′ are well defined. Moreover, for every
Ω ⊂ Λ with |Ω| ≤ s, the estimates ‖A−1

Ω ‖ ≤ 1/
√

1 − ϑs and ‖AΩ‖ ≤ √
1 + ϑs

hold.

Definition 5.2 (See [10]). The mapping A satisfies the s-restricted isometry
property, if ϑs + ϑs,s + ϑs,2s < 1.

The following Proposition is an important auxiliary result, which states that
the s-restricted isometry property implies Condition 3.7 to hold for every s-
sparse element.

Proposition 5.3. Assume that A satisfies the s-restricted isometry property
and let x† be an s-sparse solution of the equation Ax = y†. Then x† satisfies
Condition 4.3. Moreover, the required source element η̂ ∈ ∂R(x†) can be chosen
in such a way, that

‖η̂‖ ≤ Ws :=

√
s√

1 − ϑs

ϑs,s

1 − ϑs − ϑs,2s
, (30)

|〈φλ,A∗η̂〉| ≤ Ms :=
ϑs,s

1 − ϑs − ϑs,2s
< 1 for λ 6∈ supp(x†) . (31)

Notice that the bounds Ms and Ws are independent of x† and η̂, and that (31)
implies the inequality mη̂ ≤ Ms (see (14) for the definition of mη̂).

Proof. In a finite dimensional setting, Proposition 5.3 follows from [10, Proof of
Lemma 2.2]. The arguments given there, however, also apply to an infinite di-
mensional setting. Nevertheless, a proof of this important result for the general
setting is given in Appendix A, as the notation of [10] significantly differs from
ours.
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Theorem 5.4. Assume that A satisfies the s-restricted isometry property and
that x† is an s-sparse solution of the equation Ax = y†. Then we have for all y
satisfying ‖y† − y‖ ≤ δ, and all xδ ∈ argmin{R(x) : ‖Ax − y‖ ≤ δ} that

‖xδ − x†‖ ≤ csδ , (32)

where

cs =
2√

1 − ϑs

(

1 +
√

s ϑs,s
1 + (1 − ϑs)

−1/2‖A‖
1 − ϑs − ϑs,s − ϑs,2s

)

. (33)

Note that the constant cs is independent of the particular element x†.

Proof. Lemma 5.3 implies that every s-sparse element x† fulfills Condition 4.3
with a source element η̂ ∈ Y that satisfies the estimates ‖η̂‖ ≤ Ws and mη̂ ≤ Ms.
Together with the inequality ‖A−1

supp(x†)
‖ ≤ (1 − ϑs)

−1/2 and Proposition 3.11

it follows that (32) holds with

cs = 2

(

(1 − ϑs)
−1/2 +

1 + (1 − ϑs)
−1/2‖A‖

1 − Ms
Ws

)

.

Insertion of the definitions of Ms and Ws (see (30) and (31)) shows the equal-
ity (33) and concludes the proof.

Remark 5.5. Notice the qualitative difference between Proposition 3.11 and
Theorem 5.4: In Proposition 3.11, the constant cη depends on x†, whereas the
estimate of Theorem 5.4 holds uniformly for all s-sparse x†. On the other hand,
Proposition 3.11 may provide convergence rates for certain sparse solutions,
even if A does not satisfy any restricted isometry property.

Uniform linear estimates have first been obtained in [8] for the ℓ1 residual
method. Applying Lemma 5.3 and Proposition 3.12, we now show that the same
type of result also holds for ℓ1 Tikhonov regularization, where such uniform rates
have not been given so far.

Theorem 5.6. Assume that A satisfies the s-restricted isometry property and
that x† is s-sparse, and consider the parameter choice α = Cδ for some C > 0.
Then, for all y satisfying ‖Ax† − y‖ ≤ δ and all xα ∈ argmin Tα,y, we have

‖Axα − y‖ ≤ c(1)
s δ , ‖xα − x†‖ ≤ c(2)

s δ , (34)

where

c(1)
s :=

√

2 + 2CWs + C2W 2
s ,

c(2)
s := (1 − ϑs)

−1c(1)
s +

1 + (1 − ϑs)
−1‖A‖

1 − Ms

(1 + CWs/2)2

C
.

(35)

Here Ms and Ws are defined in (30) and (31).

Proof. Lemma 5.3 states that every sparse element satisfies Condition 4.3 and
the required source element η̂ ∈ Y satisfies the estimates ‖η̂‖ ≤ Ws and
mη̂ ≤ Ms. Together with the inequality ‖A−1

supp(x†)
‖ ≤ (1− ϑs)

−1/2 and Propo-

sition 3.12, this shows the assertions.
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Finite Dimensional Results

We now assume that Λ is finite, which is usually assumed in the compressed
sensing literature. In this case, linear convergence already follows from the
uniqueness of a R minimizing solution (6).

Proposition 5.7. Assume that Λ is finite and the solution x† of the equation
Ax = y† is unique. Then Condition 4.3 is satisfied for x†. In particular the
ℓ1-residual method and ℓ1-Tikhonov regularization with α = Cδ for some fixed
C > 0 converge in X linearly towards x†.

Proof. The proof follows from Proposition 4.5 with Ω′ = Λ \ supp(x†).

In a finite dimensional setting, several modifications of the s-restricted iso-
metry property (see Definition 5.2) have been introduced and used to derive
linear convergence rates for the ℓ1-residual method (see [8, 7]). As the linear
convergence rate of the ℓ1-residual method in particular implies unique recov-
ery of x† ∈ X , each of these modifications implies Condition 4.3, and thus
one also obtains linear convergence of ℓ1-Tikhonov regularization with a–priori
parameter choice α = Cδ.

Even more, it follows that the linear convergence of the ℓ1 residual method
is in fact equivalent to any of the conditions given in Theorem 4.7.
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A Proof of Proposition 5.3

Following [10] we will construct the required source element η̂ =
∑∞

k=1(−1)kηk

by recursively defining ηk ∈ Y by means of the following lemma. To that end, we
recall the restricted isometry constants ϑn and ϑn,n′ introduced in Definition 5.1.

Lemma A.1. Let n ∈ N be such that the constant ϑn from the restricted isom-
etry property satisfies ϑn < 1. Moreover, let Ω ⊂ Λ satisfy |Ω| ≤ n.

Then, for every ξ ∈ XΩ and every n′ ∈ N there exist an element η ∈ Y and
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a set Ω′ ⊂ Λ with |Ω′| ≤ n′ and Ω ∩ Ω′ = ∅, such that

πΩA∗η = ξ , (36)

‖η‖ ≤ 1√
1 − ϑn

‖ξ‖ , (37)

‖πΩ′A∗η‖ ≤ ϑn,n′

1 − ϑn
‖ξ‖ , (38)

|〈φλ,A∗η〉| ≤ ϑn,n′√
n′(1 − ϑn)

‖ξ‖ for λ 6∈ Ω ∪ Ω′ . (39)

Proof. Define η := AΩ(A∗
ΩAΩ)−1ξ. The identity A∗

Ω = (A ◦ iΩ)∗ = πΩ ◦ A∗

implies that
πΩ(A∗η) = A∗

ΩAΩ(A∗
ΩAΩ)−1ξ = ξ ,

which shows (36). Because (1−ϑs)‖ζ‖2 ≤ ‖Aζ‖2 for all ζ ∈ XΩ, it follows that

‖(A∗
ΩAΩ)−1‖ ≤ 1

1 − θn
.

Thus
‖η‖2 =

〈

AΩ(A∗
ΩAΩ)−1ξ,AΩ(A∗

ΩAΩ)−1ξ
〉

=
〈

(A∗
ΩAΩ)−1ξ, (A∗

ΩAΩ)(A∗
ΩAΩ)−1ξ

〉

≤ ‖(A∗
ΩAΩ)−1‖‖ξ‖2

≤ 1

1 − ϑn
‖ξ‖2 ,

which is (37).
Let now J ⊂ Λ be any subset with |J | ≤ n′ and J ∩ Ω = ∅. Then we have

for every z ∈ XJ that

|〈A∗
Jη, z〉| = |〈A∗

JAΩ(A∗
ΩAΩ)−1ξ, z〉|

= |〈AΩ(A∗
ΩAΩ)−1ξ,AJz〉|

≤ ϑn,n′ |〈(A∗
ΩAΩ)−1ξ, z〉| ≤ ϑn,n′

1 − ϑn
‖ξ‖‖z‖ .

This implies that

‖A∗
Jη‖ = max

z∈XJ

|〈A∗
Jη, z〉|
‖z‖ ≤ ϑn,n′

1 − ϑn
‖ξ‖ . (40)

Now define

Ω′ :=

{

λ ∈ Λ \ Ω : |〈φλ,A∗η〉| >
ϑn,n′√

n′(1 − ϑn)
‖ξ‖
}

.

Then (39) is satisfied.
Now assume that there exists some J ⊂ Ω′ with |J | > n′. Then the definition

of Ω′ would imply that ‖πJA∗η‖ = ‖A∗
Jη‖ >

ϑn,n′

1−ϑn
‖ξ‖, which contradicts (40).

This shows that |Ω′| ≤ n′ and, using (40), that (38) holds.
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Proof of Proposition 5.3. Set Ω0 := supp(x†) and inductively define ηk ∈ Y and
Ωk ⊂ Λ as follows:

In the case k = 1, one applies Lemma A.1 with n = n′ = s and

ξ =
∑

λ∈Ω0

sign(〈φλ, x〉)φλ .

This shows that there exist η1 ∈ Y and Ω1 ⊂ Λ with |Ω1| ≤ s and Ω0 ∩Ω1 = ∅,
such that

πΩ0
(A∗η1) =

∑

λ∈Ω0

sign(〈φλ, x〉) φλ ,

‖η1‖ ≤
√

s√
1 − ϑs

,

‖πΩ1
(A∗η1)‖ ≤

√
s ϑs,s

1 − ϑs
, (41)

|〈φλ,A∗η1〉| ≤
ϑs,s

(1 − ϑs)
for λ 6∈ Ω0 ∪ Ω1 .

In the case k > 1 one applies Lemma A.1 with n = 2s, n′ = s, Ω = Ω0∪Ωk−1

and ξ = πΩk−1
(A∗ηk−1). One obtains an element ηk ∈ Y and a set Ωk ⊂ Λ with

|Ωk| ≤ s and Ωk ∩ (Ωk−1 ∪ Ω0) = ∅, such that

πΩ0∪Ωk−1
(A∗ηk) = πΩk−1

(A∗ηk−1) , (42)

‖ηk‖ ≤ 1√
1 − ϑs

‖πΩk
(A∗ηk−1)‖ , (43)

‖πΩk
(A∗ηk)‖ ≤ ϑs,2s

1 − ϑs
‖πΩk−1

(A∗ηk−1)‖ , (44)

|〈φλ,A∗ηk〉| ≤
ϑs,2s√

s (1 − ϑs)
‖πΩk−1

(A∗ηk−1)‖ for λ 6∈ Ω0 ∪ Ωk−1 ∪ Ωk .

(45)

Using (41) and (44), it follows from induction that

‖πΩk
(A∗ηk)‖ ≤

√
s ϑs,s

1 − ϑs

(

ϑs,2s

1 − ϑs

)k−1

. (46)

Let

η :=

∞
∑

k=1

(−1)kηk . (47)

Then it follows from (43) and (46), that

‖η‖ ≤
∞
∑

k=1

‖ηk‖ ≤ 1√
1 − ϑs

∞
∑

k=1

‖πΩk
(A∗ηk)‖

≤ 1√
1 − ϑs

√
s ϑs,s

1 − ϑs

∞
∑

k=0

(

ϑs,2s

1 − ϑs

)k

=
1

1 − ϑs − ϑs,2s

√
s ϑs,s√
1 − ϑs

.
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This shows that the sum in (47) converges absolutely and that η satisfies es-
timate (30). Moreover, the equalities πΩ0

(A∗η1) =
∑

λ∈Ω0
sign(〈φλ, x〉)φλ and

πΩ0
(A∗ηk) = πΩ0

πΩk
(A∗ηk−1) = 0 for k > 1 (see (42)) imply that

πΩ0
(A∗η) =

∑

λ∈Ω0

sign(〈φλ, x〉) φλ .

It remains to show that 〈φλ,A∗η〉 ≤ Ms for λ 6∈ supp(x†). To that end, note
that 〈φλ,A∗ηk〉 = 〈φλ,A∗ηk+1〉 if λ ∈ Ωk. Therefore,

〈φλ,A∗η〉 =

∞
∑

k=1

(−1)k〈φλ,A∗ηk〉 =
∑

{k:λ6∈Ωk∪Ωk−1}

(−1)k〈φλ,A∗ηk〉 .

Consequently, (45) and (46) imply that

|〈φλ,A∗η〉| ≤
∑

{k:λ6∈Ωk∪Ωk−1}

∣

∣〈φλ,A∗ηλ〉
∣

∣

≤ ϑs,s

1 − ϑs

∞
∑

k=0

(

ϑs,2s

1 − ϑs

)k

=
ϑs

1 − ϑs − ϑs,2s
= Ms ,

which concludes the proof.
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