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Abstract: We investigate a quantitative thermoacoustic tomography process. We aim to recover the electric
susceptibility and the conductivity of a medium when the sources are in the microwaves range. We focus on
the case where the source signal has a slow time-varying envelope. We present the direct problem coupling
equations for the electric field, the temperature variation and the pressure (to bemeasured via sensors). Then
we give a variational formulation of the inverse problemwhich takes into account the entire electromagnetic,
thermal and acoustic coupled system, and perform the formal computation of the optimality system.

Keywords: Thermoacoustic tomography, inverse problem, optimal control, Maxwell’s equations

MSC 2010: 35M33, 35Q61, 49N45, 80A23, 93C20

1 Introduction
In this paperwe investigate amodel to describe the so-called thermoacoustic tomographyprocess as precisely
as possible, in the very case where the sources are in the microwaves range [13, 20, 27, 35]. Let us briefly
recall the principle of photo/thermoacoustic tomography (we refer to [21, 22, 28, 33, 34] for amore complete
description).

Photoacoustic and thermoacoustic tomographies (PATandTAT) consist in transmitting a time-modulated
electromagnetic wave (generally a pulse in the optical or near-infrared domain for PAT and in the microwave
domain for TAT), whose energy is locally absorbed by the tissue absorbers, transformed into heat and then
into acoustic (generally ultrasonic) waves via the thermo-expansion mechanism.

The physical model routinely used in PAT is similar to the one in TAT, apart from the fact that the recon-
structions performed are based on input signals in different frequency bands. In TAT, one reconstructs refrac-
tion indices and absorption coefficients, in PAT, one reconstructs diffusion and absorption coefficients.

Most of quantitative PAT methods assume that the initial pressure distribution has been reconstructed
and then perform the identification of the absorption and/or diffusion coefficients. To achieve this goal one
can usemanymeasurements, for instance different lightning sources [4] or different wavelength sources [37].
Some authors assume that the Green function associated to the acoustic wave is known and perform the
inversion with the pressure measurements [15, 31, 32]. Most models are based on the diffusion equation but
there are some works that use the radiative transfer equation (RTE) as in [30]. The simplifiedmodel from PAT
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that only involves the pressure effects, does not take into account the optical inhomogeneity of the medium.
It is then necessary to go one step further in the modelling of the medium, which will allow to reconstruct
absorption coefficients. This has been achieved in [7] where the full coupled model has been investigated.

The aim of this paper is to focus on the TAT case and to provide a complete model coupling electro-
magnetic source effects, heat transfer and pressure equations, for quantitative thermoacoustic tomography.
Though the equations are well known, such a model that fully describes the whole direct problem is new
to our knowledge. The heat transfer equations were first presented in the context of PAT in [10] but then
neglected under the assumption of instantaneous heating. Indeed, the quantitative PAT methods, currently
available, assume that the initial pressure distribution, i.e., the amount of absorbed radiation, has been first
reconstructed and then perform the identification of the absorption and diffusion coefficients using mainly
the diffusion approximation of the radiative transfer equation, see for example [1, 3, 16, 26, 38], or the elec-
tromagnetic parameters using Maxwell’s equations [12].

For quantitative reconstructions in TAT, we refer to [5] where the authors neglect the thermal effects
and handle the scalar Helmholtz equation. Furthermore, they use a linearized version to deal with the
inverse problem to recover the absorption coefficient. In [6], they present a similar approach for the vectorial
Maxwell’s equation and reconstruct the absorption coefficient and the refractive index of thematerials. In [2],
the Helmholtz equation is considered and an optimal control algorithm is proposed to recover the absorption
coefficient from the local knowledge of the absorbed radiation. An iterative scheme, using the Helmholtz
equation, to reconstruct the conductivity is also presented in [17].

In this paper, we present the direct problem, where the thermal effects are fully kept. Nevertheless, we
focus on the very case where the source pulse has a slowly time varying envelope, which is the most relevant
situation from a practical point of view [24, 36]. We also propose a way to solve the corresponding quantita-
tive inverse problem using a variational formulation as in [7], thus taking into account the complete coupled
model. The paper is organized as follows: we first set the description of the different processes, namely, the
electromagnetic, heating and acoustic ones. Thenwe specify themathematicalmodel andpresent the equiva-
lentminimization problem. The paper endswith the (formal) optimality conditions for the discretized system
of equations.

2 The thermoacoustic model

2.1 Electromagnetic propagation

To describe the propagation of the electromagneticwaves due to an illumination by a radio-frequency source,
we consider the classicalmacroscopicMaxwell’s equations (inSI units) and the constitutive relationsbetween
the electric displacement D, the electric field E, the magnetic induction B and the magnetic field H. All these
vectors are three-dimensional real-valued functions of position x and time t.

2.1.1 Maxwell’s equations

We assume that the medium is non-magnetic, linear dielectric, isotropic and inhomogeneous. Let Ω ⊂ ℝ3 be
a bounded domain with smooth boundary such that the exterior domainℝ3 \ Ω is connected. The domain Ω
contains the support of the inhomogeneity we aim at recovering with the TAT technique. This domain may
be possibly disconnected.

In the sequel,
∙ the external current density Jex satisfies supp Jex(t, ⋅ ) ∩ Ω = 0 for any t > 0 and is assumed to be known.
∙ χ : ℝ ×ℝ3 → ℝ, (t, x) Ü→ χ(t, x), consists in a combination of the electric susceptibility ξ and the con-

ductivity σ which may vary according to the medium (this will be specified in the sequel). The exterior
part χex : ℝ ×ℝ3 → ℝ is assumed to be constant (but not necessarily equal to 0) with respect to space in
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the exterior domain, the so-called background medium. Then we can identify Ω as the support of χ − χex.
This implies that χ̂ − χ̂ex has (spatial) compact support as well. Here χ̂ denotes the Fourier transform of χ
with respect to time (whose definition is recalled in the sequel in equation (2.1)). In addition, we assume
χ(t, ⋅ ) = 0 and χex(t, ⋅ ) = 0 for t < 0.

∙ ϵ0, μ0 are the known permittivity and permeability of vacuum, respectively. On can see examples of typ-
ical values of all the physical quantities in Section 2.3.

∙ c0 = 1/√ϵ0μ0 is the speed of light in vacuum.
∙ as the medium is non-magnetic, we set the magnetic permeability μ of the medium to μ(t, x) = μ0 for

every (t, x) ∈ ℝ ×ℝ3.
Let us now recall Maxwell’s equations. For every (t, x) ∈ ℝ ×ℝ3, the electric field E, the magnetic field H and
the electric displacement D satisfy

curlx E(t, x) = −μ0
∂H
∂t

(t, x),

curlx H(t, x) =
∂D
∂t

(t, x) + J(t, x),

where we decompose the electric current density J into J := Jin + Jex. The interior part Jin corresponds to the
current density generated by ohmic losses while Jex is due to the electromagnetic primary excitation.

As the medium is considered to be linear, isotropic, inhomogeneous and non-magnetic, we get, for every
(t, x) ∈ ℝ+ ×ℝ3,

D(t, x) = ϵ0(E(t, x) +
∞

∫
0

ξ(τ, x)E(t − τ, x) dτ) = ϵ0(E + ξ ∗t E)(t, x),

where ∗t denotes the time convolution operator (indeed ξ(t, ⋅ ) = 0 for t < 0). This reads, in the frequency
domain,

D̂(ω, x) = ϵ0(1 + ̂ξ (ω, x))Ê(ω, x), (ω, x) ∈ ℝ ×ℝ3,
where ̂f stands for the Fourier transform of a function f with respect to t

̂f (ω, x) =
∞

∫
−∞

f(t, x)eiωt dt, (2.1)

and i2 = −1. Similarly,

Jin(t, x) =
∞

∫
0

σ(τ, x)E(t − τ, x) dτ = (σ∗tE)(t, x), (t, x) ∈ ℝ+ ×ℝ3,

or in the frequency domain,
̂Jin(ω, x) = σ̂(ω, x)Ê(ω, x), (ω, x) ∈ ℝ ×ℝ3.

Thus, the exact definition of χ is given very easily in the frequency domain by

χ̂(ω, x) = ̂ξ (ω, x) + i
ϵ0ω

σ̂(ω, x), (ω, x) ∈ ℝ\{0} ×ℝ3. (2.2)

Remark 2.1. We do not specify the mathematical framework by now. We assume that χ belongs to a suitable
space that allows to define χ̂. This is the case, for example, if (ξ( ⋅ , x), σ( ⋅ , x)) ∈ L2(ℝ) and σ is differentiable
(with respect to time).

For any given ω, the electromagnetic fields satisfy for any point x inℝ3

curlx Ê(ω, x) = iωμ0Ĥ(ω, x),

curlx Ĥ(ω, x) = −iωϵ0(1 + χ̂(ω, x))Ê(ω, x) + ̂Jex(ω, x),

that is, for every (ω, x) ∈ ℝ ×ℝ3,

curlx curlx Ê(ω, x) −
ω2

c20
(1 + χ̂(ω, x))Ê(ω, x) = iωμ0 ̂Jex(ω, x). (2.3)
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If we assume that the support of all the sources Jex is bounded and that the sources and the inhomo-
geneities are all located within a finite distance from the origin of the coordinate system, then boundary
conditions at infinity are provided by the Silver–Müller radiation condition

lim
|x|→∞

(x × curlx Ê − i ω
c0

√1 + χ̂ex|x|Ê) = 0, (2.4)

uniformly in x/|x|. Here, a × b denotes the ℝ3 vectorial product, while a ⋅ b denotes the ℝ3 scalar product
and |a| the (euclidean) associated norm of vectors a, b ∈ ℝ3.

2.1.2 Heating function

Let us now focus on the heating function (density of absorbed power (W/m3)) caused by the electromagnetic
source excitation. The total electromagnetic energy density is given by E = 1

2 (E ⋅ D + μ0H ⋅ H). By virtue of
Maxwell’s equations, we get for every (t, x) ∈ ℝ+ ×ℝ3,

−divx Q(t, x) = μ0(H ⋅
∂H
∂t )

(t, x) + (E ⋅
∂D
∂t )

(t, x) + (E ⋅ J)(t, x),

where Q(t, x) = E(t, x) × H(t, x) is the Poynting vector [18]. Therefore, considering Maxwell’s equations, we
obtain

−divx Q(t, x) =
1
2(E ⋅

∂D
∂t

−
∂E
∂t

⋅ D)(t, x) + ∂E∂t (t, x) + (E ⋅ J)(t, x).

The absorbed power out of the electromagnetic source excitation is given by

Π(t, x) := 1
2(E ⋅

∂D
∂t

−
∂E
∂t

⋅ D)(t, x) + (E ⋅ Jin)(t, x),

since the term ∂E
∂t describes the rate of change of the energy and the term Jex only concerns the external

sources.
However, due to the difference between the electromagnetic and thermal time scales, the absorbed

density Πa has to be computed by the mean of an average on a time interval of critical length Tc sufficiently
large,

Πa(t, x) := ⟨Π⟩Tc (t, x) =
1
Tc

t

∫
t−Tc

Π(τ, x) dτ. (2.5)

2.1.3 Slowly time-varying envelope approximation

The critical time Tc depends on the time scale coupling the different phenomena (electromagnetic, ther-
mal and acoustic). Indeed, the acoustic and the electromagnetic waves have different wave velocities. From
a numerical point of view, Tc will give the ratio between the time steps of acoustic and electromagnetic com-
putations. This average value can be considered to be equal to the rate of the energy density deposited in
the material at position x, during the total duration of one period or pseudo-period of the illumination pro-
cess. It can be made precise in the case where the electromagnetic signal presents a slowly time-varying
envelope. This assumptionmakes sense when the high-frequency electromagnetic excitation signal is modu-
lated by a pulse whose temporal width is several decades of times longer than the high-frequency oscillation
period Tc = 2π/ωc. In that case, the source has a narrow bandwidth in Wc := [ωc − ∆c , ωc + ∆c]. Such situ-
ations occur in microwave setups, which rely on high power pulse-modulated carrier frequency generators,
usually operating in the GHz frequency range, with pulse duration in the μs range in order to ensure suf-
ficient energy deposition into the sample, with the drawback of reducing the spatial resolution to the mm
range [9, 19, 20, 24, 27, 29, 35, 36].

The excitation density current takes the form

Jex(t, x) = ℜ(jex(t, x)e−iωc t), (2.6)
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where ℜ stands for the real part and the complex amplitude jex has a slowly varying envelope on a short
period Tc. Let us recall that if A(t, x) = ℜ(a(t, x)e−iωc t) is a signal with a slowly varying envelope, then

!!!!!!!
∂2a
∂t2

(t, x)
!!!!!!!
≪ ωc

!!!!!!!
∂a
∂t

(t, x)
!!!!!!!
≪ ω2

c |a(t, x)|, (t, x) ∈ ℝ ×ℝ3.

Note that the above relation comes from
∂2(a(t, x)e−iωc t)

∂t2
= [

∂2a(t, x)
∂t2

− 2iωc
∂a(t, x)
∂t

− ω2
ca(t, x)]e−iωc t .

In practice, the rate of the energy density time-averaged over the short period Tc is of interest. Before
deriving the form of Πa for this specific form of Jex, we address the following properties:
∙ The electromagnetic properties of the medium, given by χ or equivalently by ξ and σ, are assumed to be

constantwith respect to the frequency in the rangeWc anddepend only on the central frequency, namely,
̂ξ (ω, x) ≃ ̂ξ (ωc , x), σ̂(ω, x) ≃ σ̂(ωc , x), ω ∈ Wc .

∙ If the current density is given by equation (2.6), then the quantities E, D and Jin admit the same decom-
position with slowly varying amplitude:

E(t, x) = ℜ(e(t, x)e−iωc t), e(t, x) = eiωc t

π

∞

∫
0

Ê(ω, x)e−iωt dω,

D(t, x) = ℜ(d(t, x)e−iωc t), d(t, x) = eiωc t

π

∞

∫
0

D̂(ω, x)e−iωt dω,

Jin(t, x) = ℜ(jin(t, x)e−iωc t), jin(t, x) = eiωc t

π

∞

∫
0

̂Jin(ω, x)e−iωt dω.

This follows from the unique solvability of Maxwell’s equations and the fact that Ê, D̂ and ̂Jin are also
supported inWc. In particular,

d(t, x) ≃ ϵ0(1 + ̂ξ (ωc , x))e(t, x).

This comes from

d(t, x)e−iωc t = 1
π

∞

∫
0

D̂(ω, x)e−iωt dω

=
1
π ∫
Wc

ϵ0(1 + ̂ξ (ω, x))Ê(ω, x)e−iωt dω

≃
ϵ0
π
(1 + ̂ξ (ωc , x)) ∫

Wc

Ê(ω, x)e−iωt dω

= ϵ0(1 + ̂ξ (ωc , x))e(t, x)e−iωc t .

Similarly,

jin(t, x) ≃ σ̂(ωc , x)e(t, x).

∙ Let A(t, x) = ℜ(a(t, x)e−iωc t) and B(t, x) = ℜ(b(t, x)e−iωc t) be two slowly varying envelope signals. We
obtain for the averaged value over Tc for the product of these two functions

⟨A ⋅ B⟩Tc (t, x) ≃
1
2ℜ(a(t, x) ⋅ b(t, x)), (2.7)

since

A ⋅ B =
1
4 (ae

−iωc t + ae−iωc t) ⋅ (be−iωc t + be−iωc t)

=
1
4 (a ⋅ be−i2ωc t + a ⋅ bei2ωc t) + 1

4 (a ⋅ b̄ + ā ⋅ b).
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Here ā stands for the complex conjugate of a. The first two terms correspond to a signal with high fre-
quency components while the last two terms are slowly varying with respect to t. Thus, their short-time
average value is given by

⟨A ⋅ B⟩Tc (t, x) ≃
1
4 ⟨a ⋅ b̄ + ā ⋅ b⟩Tc (t, x),

resulting in (2.7). One can also show that ⟨A ⋅ ∂A∂t ⟩Tc (t, x) ≃ 0.
Therefore, the short-time averaged absorbed energy Πa defined in equation (2.5), using (2.2), (2.7) and

the above assumptions, is given by

Πa(t, x) ≃
ϵ0ωc
2 ℑ(χ̂(ωc , x))|e(t, x)|2 =

ϵ0ωc
2π2

ℑ(χ̂(ωc , x))
!!!!!!!!!

∞

∫
0

Ê(ω, x)e−iωt dω
!!!!!!!!!

2
. (2.8)

where ℑ(a) stands for the imaginary part of the complex number a.

2.2 Pressure and temperature equations

Once we have estimated the absorbed energy Πa, we may focus on the heating/pressure wave generation
processes. Temperature rise and pressure are coupled. Note that most of the TAT models of the literature do
not consider the heating process, which is often assumed to be instantaneous. This approximation can be
justified in the photoacoustic case, where time scales are quite different: roughly speaking the lightning (and
heating) process is much faster than the acoustic wave propagation. When the source is a radio-frequency
one, this assumption may not be relevant any longer.

According to [10], the temperature and the pressure are determined by coupled equations which derive
from the mass, momentum and energy conservation equations. Assuming that the variations in temperature
and pressure are weak, the nonlinear effects are neglected and we obtain the following set of equations, for
the temperature rise θ and the pressure perturbation p from the equilibrium steady state:

{{{
{{{
{

∂2

∂t2
(Kθp − βθ)(t, x) = divx(

1
ρ
∇p)(t, x), (t, x) ∈ ℝ+ ×ℝ3,

∂
∂t

(ρCpθ − θ0βp)(t, x) = divx(κ∇θ)(t, x) + Πa(t, x), (t, x) ∈ ℝ+ ×ℝ3,

where
∙ Kθ is the isothermal compressibility,
∙ β is the volume thermal expansivity,
∙ ρ is the mass density at steady state,
∙ κ is the thermal conductivity,
∙ θ0 is the background temperature,
∙ Cp is the isobar specific heat capacity (quantity of heat required to raise the temperature of a unit mass).
All these parameter are assumed to be independent of the time t, but may depend on the position x, see
Table 1 for some typical values of these parameters.

A combination of the above equations leads to

(ρKθ −
θ0β2

Cp
)
∂2p
∂t2

− ρ divx(
1
ρ
∇p) =

β
Cp
∂Πa
∂t

+
β
Cp

∂
∂t

divx(κ∇θ).

Let us introduce the acoustic wave velocity vs which is defined by

1
v2s

= ρKθ −
θ0β2

Cp

to obtain the thermoacoustic equation in heterogeneous media

1
v2s
∂2p
∂t2

− ρ divx(
1
ρ
∇p) =

β
Cp
∂Πa
∂t

+
β
Cp

∂
∂t

divx(κ∇θ).
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We further introduce the Grüneisen parameter Γ defined as

Γ =
βv2s
Cp

.

It is worth mentioning that vs and the Grüneisen parameter Γ may be spatially heterogeneous. The
coupled equations now read

{{{{
{{{{
{

∂2p
∂t2

− ρv2s divx(
1
ρ
∇p) − Γ ∂

∂t
divx(κ∇θ) = Γ

∂Πa
∂t

, (t, x) ∈ ℝ+ ×ℝ3,

∂θ
∂t

−
1
ρCp

divx(κ∇θ) −
θ0β
ρCp

∂p
∂t

=
Πa
ρCp

, (t, x) ∈ ℝ+ ×ℝ3.
(2.9)

The initial conditions are such that there are no temperature or pressure differences before the absorption of
the electromagnetic energy:

θ(0, x) = 0, p(0, x) = 0, ∂p
∂t

(0, x) = 0, x ∈ ℝ3.

Without loss of generality, we reformulate equation (2.9) by introducing

P(t, x) =
t

∫
0

p(τ, x) dτ,

which corresponds to the integrated pressure. As ∂P
∂t = p, integrating the first equation in (2.9) with respect

to t gives
{{{{
{{{{
{

∂2P
∂t2

− ρv2s divx(
1
ρ
∇P) − Γ divx(κ∇θ) = ΓΠa , (t, x) ∈ ℝ+ ×ℝ3,

∂θ
∂t

−
1
ρCp

divx(κ∇θ) −
θ0β
ρCp

∂2P
∂t2

=
Πa
ρCp

, (t, x) ∈ ℝ+ ×ℝ3,
(2.10)

with the initial conditions

θ(0, x) = 0, P(0, x) = 0, ∂P
∂t

(0, x) = 0, x ∈ ℝ3.

2.3 Typical values of soft tissues

To be able to fully understand the time scale and evolution of the various physical quantities, some typical
values of the various physical parameters are provided in Table 1. These typical values correspond to the ones
of soft tissues that can be found when one considers a biomedical application, as for example breast cancer
imaging [8, 11, 14, 23].

Parameter Symbol Value Units

Permittivity of the vacuum ϵ0 8.8510−12 F.m−1

Permeability of the vacuum μ0 1.2510−6 H.m−1

Electric susceptibility (fat/glandular) ξ 7.3 / 35.5 –
Conductivity (fat/glandular) σ 0.23 / 1.34 S.m−1

Isobar specific heat capacity Cp 3.5 - 4×103 J.K−1.kg−1

Isothermal compressibility Kθ ∼ 1
ρv2s

5×10−10 Pa−1

Volume thermal expansivity β 4×10−4 K−1

Mass density ρ 1000 kg.m−3

Thermal conductivity κ 0.4 W.m−1.K−1

Background temperature (20∘C) θ0 293 K

Table 1. Approximated values of the physical parameters. The electric susceptibility and conductivity are measured at 3 GHz
and at room temperature and correspond to fat and glandular tissues, respectively.
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The acoustic transducers are typically wide band sensors with a central frequency of the order of 1 to
10MHz, leading to anacousticwavelength λa in the range of 0.1 to 1mm(see [9, 27]).Meanwhile, the thermal
diffusivity Dθ = κ/(ρCp) is approximately equal to 10−7 m2s−1. Hence, the thermal confinement threshold
(λa/2)2/Dθ is of the order of 0.05 to 5 s (see [34]). For high-resolution imaging, the thermal confinement
duration is more or less ten times the duration of the illumination (which lasts few μ s). Thus, in those cases,
it seems rather difficult to neglect at first glance the coupling term between the thermal and acoustic effects.

3 Modelling of the inverse problem within the slowly time-varying
envelope approximation

3.1 The infinite-dimensional model

Aswe have already seen, if the electromagnetic signal presents a slowly time-varying envelope, meaning that
Jex takes the form (2.6), then Ê and χ̂ admit frequency support inWc = [ωc − ∆c , ωc + ∆c] and

χ̂(ω, x) ≃ χ̂(ωc , x) for all x ∈ ℝ3, ω ∈ Wc .

In the sequel, we denote χ̂c := χ̂(ωc , ⋅ ) and χ̂exc := χ̂ex(ωc , ⋅ ). We recall that χ̂c − χ̂exc has (spatial) compact
support.

So, putting together equations (2.3), (2.8) and (2.10), the direct problem reads: Solve the system

curlx curlx Ê −
ω2

c20
(1 + χ̂c)Ê = iωμ0 ̂Jex inWc ×ℝ3, (3.1a)

Πa(t, x) =
ϵ0ωc
2π2

ℑ(χ̂c)(x)
!!!!!!!!!
∫
Wc

Ê(ω, x)e−iωt dω
!!!!!!!!!

2
inℝ+ ×ℝ3, (3.1b)

∂2P
∂t2

− ρv2s divx(
1
ρ
∇P) − Γ divx(κ∇θ) = ΓΠa inℝ+ ×ℝ3, (3.1c)

∂θ
∂t

−
1
ρCp

divx(κ∇θ) −
θ0β
ρCp

∂2P
∂t2

=
Πa
ρCp

inℝ+ ×ℝ3, (3.1d)

with initial conditions
θ(0, x) = 0, P(0, x) = ∂P

∂t
(0, x) = 0 for all x ∈ ℝ3, (3.2)

together with the radiation condition

lim
|x|→∞

(x × curlx Ê − i ω
c0

√1 + χ̂ex |x|Ê) = 0,

where the convergence should be uniformly in x/|x|, see (2.4); to obtain the Fourier transform of the elec-
tric field Ê, the averaged absorbed energy Πα, the temperature rise θ (supported in Ω) and the integrated
pressure P.

Remark 3.1. There exist partial results for Maxwell’s equations (3.1a). We know, for example that for a fixed
frequency ωc, if χ̂c ∈ L∞(ℂ3) and ̂Jexc ∈ L2(ℂ3) are compact supported (up to a constant function) inℝ3, then
problem (3.1a) has a unique solution in Hloc(curlx ,ℝ3), see [25], where

Hloc(curlx ,ℝ3) = {V : ℝ3 → ℂ3 : V|B ∈ H(curlx , B) for all balls B ⊆ ℝ3}

and H(curlx , B) = {V ∈ L2(B) : curlx V ∈ L2(B)}.
There are no straightforward existence and/or uniqueness results for the coupled system (3.1c)–(3.1d).

If we fix one of the variables θ or P, the equations are classical and we get many existence and regularity
results under assumptions on the fixed unknown. However, the coupling imposes to use specific methods
(fixed point or diagonalization methods) that we do not want to check in the present paper. This will be
addressed in a forthcoming work where rigorous mathematical analysis will be performed.
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Remark 3.2. In the above derivation, we considered the total (electromagnetic) field. We did not use the
perturbed field (or scattered field) Es which is directly linked to χ̂ − χ̂ex since the dissipation Πa as a func-
tion of Es is much more complicated.

We are now interested in the inverse problem: given a known source Jex and integrated pressure measure-
ments Pobs on a set (0, T) ×W, recover χ̂c. Here, the setW denotes the area of the transducers. Following [7]
we define the functional J by

J(χ̂c) = F(χ̂c) + f(χ̂c).

Here f(χ̂c) stands for a regularizing term and F is a least square functional with respect to the measured
integrated pressure data. We set

F(χ̂c) =
1
2 ∫

(0,T)×W

(P[χ̂c](t, x) − Pobs(t, x))2 dx dt,

where Pobs is the measured pressure on (0, T) ×Wwhen the source signal is Jex. Here P[χ̂c] is the solution of
equations (3.1c)–(3.1d) with (3.2). We may define f as

f(χ̂c) =
α0
2 ∫

Wc×ℝ3

|χ̂ − χ̂ex|2(ω, x) dω dx =
2∆cα0
2 ∫
ℝ3

|χ̂c − χ̂exc |2(x) dx,

where α0 > 0, for example. Then the minimization problem reads

min
χ̂c∈Uad

J(χ̂c), (3.3)

where Uad is a closed set of admissible functions χ̂c such that χ̂c = χ̂exc outside Ω.
In the sequel, we set α = 2∆cα0 so that

f(χ̂c) =
α
2 ∫
ℝ3

|χ̂c − χ̂exc |2(x) dx.

3.2 Formal formulation of the inverse problem

The above formulation is of course quite formal. The study of problem (3.3) in an infinite-dimensional setting
is challenging and deserves to be precisely studied. Indeed, the operator T : χ̂c Ü→ P[χ̂c] is not easy to handle.
In particular, its continuity properties strongly depend on the functional framework and regularity properties
of the solutions of the strongly coupled system (3.1).

We now give a formal analysis of the inverse problem to present the whole reconstruction process. This
may be completely justified in a finite-dimensional (discrete) setting. It is not our concern to enter in the
discretization details and we keep the same notations as in the infinite-dimensional setting. However, as we
have numerics in mind, we have replaced ℝ+ by (0, T) with some terminal time T large enough, and ℝ3 by
some large ball B. We use a Dirichlet boundary condition on ∂B (recall that T is chosen large enough to
allow it). The discretization process is a challenging issue that we do not address in the present paper.

The direct problem now reads

curlx curlx Ê −
ω2

c20
(1 + χ̂c)Ê = iωμ0 ̂Jex inWc ×B, (3.4a)

Πa(t, x) =
ϵ0ωc
2π2

ℑ(χ̂c(x))
!!!!!!!!!
∫
Wc

Ê(ω, x)e−iωt dω
!!!!!!!!!

2
in (0, T) ×B, (3.4b)

∂2P
∂t2

− ρv2s divx(
1
ρ
∇P) − Γ divx(κ∇θ) = ΓΠa in (0, T) ×B, (3.4c)

∂θ
∂t

−
1
ρCp

divx(κ∇θ) −
θ0β
ρCp

∂2P
∂t2

=
Πa
ρCp

in (0, T) ×B, (3.4d)
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with initial conditions
θ(0, x) = 0, P(0, x) = ∂P

∂t
(0, x) = 0 inB,

and boundary conditions

Ê(ω, x) = 0, (ω, x) ∈ Wc × ∂B, P(t, x) = 0, ∂P
∂t

(t, x) = 0, θ(t, x) = 0, (t, x) ∈ (0, T) × ∂B.

Remark 3.3. We decided to set a Dirichlet boundary condition for the Ê field. This is the case for example if
either
∙ χ̂ex is lossless and the ballB is very large,
∙ χ̂ex is lossless and there is a metallic casing aroundB, or
∙ χ̂ex is lossy and the waves will be automatically damped.

Another possibility could be to use a Robin-type boundary, which can be seen as a first-order approxi-
mation of the Silver–Müller radiation boundary condition on a bounded surface:

n × curlx Ê − i ω
c0

√1 + χ̂exn × n × Ê = 0,

where n is the unit outward normal vector on ∂B.
Note that the issue is the same for the acoustic pressure, but as we are looking for p (or P) which only

correspond to the variation of the pressure with respect to the initial one, it seems rather natural to assume
that P = 0 on the boundary.

Theorem 3.1. AssumeUad is bounded or α > 0. Then the discrete minimization problem has at least a solution.

Proof. This is clear since either the admissible set Uad is bounded or J is coercive. Moreover, the continuity
properties are fulfilled in the discrete framework.

Uniqueness is a challenging problem, since the cost functional is not convex (because of the fitting data term).
Nevertheless, any solution χ̂∗c satisfies

∇J(χ̂∗c ) ⋅ (χ̂c − χ̂∗c ) ≥ 0 for all χ̂c ∈ Uad.

The next subsections are devoted to the computation of ∇J(χ̂∗c ) and the setting of a necessary optimality
system.

We first start to compute ∇F(χ̂∗c ) ⋅ χ̂c before tackling the term in ∇f(χ̂∗c ) ⋅ χ̂c. In the sequel χ̂∗c denotes an
optimal solution and Ê∗, P∗ and θ∗ are the corresponding solutions of (the discrete) system (3.4). We pre-
viously adopted the notation ⋅ for the ℝ3 inner product. However, in the sequel we omit this dot, to make
computations more readable. More precisely, if A = (Ak)1≤k≤3 and B = (Bk)1≤k≤3 are vector-valued functions
fromℝ3 toℝ3, we write A(x)B(x) instead of A(x) ⋅ B(x)(= ∑3

k=1 Ak(x)Bk(x)).

3.3 The (discrete) pressure-temperature system

The coupling between equations (3.4a)–(3.4b) and (3.4c)–(3.4d) is done via the Πa term. Let χ̂c ∈ Uad and
denote by Π̇a the derivative of Πa at χ̂∗c in the direction χ̂c:

Π̇a ⋅ χ̂c := lim
ρ→0+ Πa(χ̂

∗
c + ρχ̂c) − Πa(χ̂∗c )

ρ
.

Let us denote similarly Ṗ and θ̇ the derivatives of P and θ at χ̂∗c in the direction χ̂c. So

∇F(χ̂∗c ) ⋅ χ̂c = ∫
(0,T)×W

(P∗ − Pobs)Ṗ dt dx,

where P∗ = P[χ̂∗c ] and θ∗ = θ[χ̂∗c ]. The equations satisfied by Ṗ and θ̇ are
∂2Ṗ
∂t2

− ρv2s divx(
1
ρ
∇Ṗ) − Γ divx(κ∇θ̇) = ΓΠ̇a in (0, T) ×B,

ρCp
∂θ̇
∂t

− divx(κ∇θ̇) − θ0β
∂2Ṗ
∂t2

= Π̇a in (0, T) ×B,
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with initial and boundary conditions

θ̇(0, x) = 0, Ṗ(0, x) = 0, ∂Ṗ
∂t

(0, x) = 0, x ∈ B,

Ṗ(t, x) = 0, ∂Ṗ
∂t

(t, x) = 0, θ̇(t, x) = 0, (t, x) ∈ (0, T) × ∂B.

Let us define the adjoint system for (P∗, θ∗). We consider the following system for q∗ and ζ∗:

∂2q∗

∂t2
− θ0β

∂2ζ∗

∂t2
− divx(

1
ρ
∇(ρv2s q∗)) = (P∗ − Pobs)1(0,T)×W in (0, T) ×B, (3.5a)

−ρCp
∂ζ∗

∂t
− divx(κ∇(Γq∗)) − divx(κ∇ζ∗) = 0 in (0, T) ×B, (3.5b)

with initial and boundary conditions

ζ∗(T, x) = 0, q∗(T, x) = 0, ∂q∗

∂t
(T, x) = 0, x ∈ B, (3.6a)

q∗(t, x) = 0, ∂q∗

∂t
(t, x) = 0, ζ∗(t, x) = 0, (t, x) ∈ (0, T) × ∂B. (3.6b)

Then we get

Lemma 3.1. The gradient of F at χ̂∗c in the direction χ̂c is given by

∇F(χ̂∗c ) ⋅ χ̂c = ∫
(0,T)×B

(Γq∗ + ζ∗)Π̇a dt dx.

where (q∗, ζ∗) are defined by the adjoint equations (3.5)–(3.6), and Π̇a is the derivative of Πa at χ̂∗c in the
direction χ̂c.

Proof. Using integration by parts, we obtain

∇F(χ̂∗c ) ⋅ χ̂c = ∫
(0,T)×W

(P∗ − Pobs)Ṗ dt dx

= ∫
(0,T)×B

(P∗ − Pobs)Ṗ1(0,T)×W dt dx

= ∫
(0,T)×B

[
∂2q∗

∂t2
− θ0β

∂2ζ∗

∂t2
− divx(

1
ρ
∇(ρv2s q∗))]Ṗ dt dx

+ ∫
(0,T)×B

(−ρCp
∂ζ∗

∂t
− divx(κ∇(Γq∗)) − divx(κ∇ζ∗))θ̇

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
=0

dt dx

= ∫
(0,T)×B

{[
∂2Ṗ
∂t2

− ρv2s divx(
1
ρ
∇Ṗ)]q∗ − θ0β

∂2Ṗ
∂t2

ζ∗} dt dx

+ ∫
(0,T)×B

{(ρCp
∂θ̇
∂t

− divx(κ∇θ̇))ζ∗ − Γ divx(κ∇θ̇)q∗} dt dx

= ∫
(0,T)×B

[
∂2Ṗ
∂t2

− ρv2s divx(
1
ρ
∇Ṗ) − Γ divx(κ∇θ̇)]q∗ dt dx

+ ∫
(0,T)×B

(ρCp
∂θ̇
∂t

− divx(κ∇θ̇) − θ0β
∂2Ṗ
∂t2

)ζ∗ dt dx

= ∫
(0,T)×B

(Γq∗ + ζ∗)Π̇a dt dx.

Now, we have to estimate Π̇a introducing an adjoint equation for the electromagnetic part.
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3.4 (Discrete) Maxwell’s equations

Let us now define the adjoint state Φ∗ associated to E∗. To simplify the notation, we introduce the quantities

E∗(t, x) = ∫
Wc

Ê∗(ω, x)e−iωt dω and Ė(t, x) = ∫
Wc

̇Ê(ω, x)e−iωt dω. (3.7)

Then we set Φ∗ to be the solution of the equation

curlx curlx Φ∗(ω, ⋅ ) − ω
2

c20
(1 + χ̂∗c )Φ∗(ω, ⋅ ) = ℑ(χ̂∗c )(

T

∫
0

(Γq∗ + ζ∗)(t, ⋅ )E∗(t, ⋅ )e−iωt dt) inWc ×B (3.8)

with the homogeneous Dirichlet boundary conditions

Φ∗(ω, x) = 0, (ω, x) ∈ Wc × ∂B.

Proposition 3.1. The gradient of F at χ̂∗c in the direction χ̂c is given by

∇F(χ̂∗c ) ⋅ χ̂c =
ϵ0ωc
2π2

∫
B

{(
T

∫
0

(Γq∗ + ζ∗)(t, x)|E∗(t, x)|2 dt)ℑ(χ̂c(x))

+ 2(ℜ ∫
Wc

ω2

c20
Ê∗(ω, x)Φ∗(ω, x) dω)ℜ(χ̂c(x))

− 2(ℑ ∫
Wc

ω2

c20
Ê∗(ω, x)Φ∗(ω, x) dω)ℑ(χ̂c(x))} dx, (3.9)

where (q∗, ζ∗) are defined by the adjoint equations (3.5)–(3.6), and Φ∗ by (3.8).

Proof. Let us denote by ̇Ê the derivative of Ê at χ̂∗c in the direction χ̂c. The equations satisfied by Π̇a and
̇Ê are

curlx curlx ̇Ê −
ω2

c20
(1 + χ̂∗c )

̇Ê =
ω2Ê∗

c20
χ̂c inWc ×B,

Π̇a(t, x) =
ϵ0ωc
π2

(
1
2ℑ(χ̂c(x))

!!!!!!!!!
∫
Wc

Ê∗(ω, x)e−iωt dω
!!!!!!!!!

2

+ ℑ(χ̂∗c (x))ℜ[∫
Wc

̇Ê(ω, x)e−iωt dω ∫
Wc

Ê∗(ω, x)e−iωt dω]) in (0, T) ×B.

Equivalently, with the notation (3.7),

Π̇a(t, x) =
ϵ0ωc
2π2

ℑ(χ̂c(x))|E∗(t, x)|2 + ϵ0ωc
π2

ℑ(χ̂∗c (x))ℜ[Ė(t, x)E∗(t, x)] in (0, T) ×B.

So

∫
(0,T)×B

(Γq∗ + ζ∗)Π̇a(t, x) dt dx =
ϵ0ωc
2π2

∫
(0,T)×B

(Γq∗ + ζ∗)ℑ(χ̂c(x))|E∗(t, x)|2 dt dx

+
ϵ0ωc
π2

∫
(0,T)×B

(Γq∗ + ζ∗)ℑ(χ̂∗c (x))ℜ(Ė(t, x)E∗(t, x)) dt dx.

As the curlx curlx operator is self-adjoint, performing integration by parts gives

∫
(0,T)×B

(Γq∗ + ζ∗)(t, x)ℑ(χ̂∗c (x))Ė(t, x)E∗(t, x) dx dt

= ∫
(0,T)×B

(Γq∗ + ζ∗)(t, x)ℑ(χ̂∗c (x))(∫
Wc

̇Ê(ω, x)e−iωt dω)E∗(t, x) dx dt

= ∫
Wc×B

ℑ( ̂χ∗c (x))(
T

∫
0

(Γq∗ + ζ∗)(t, x)E∗(t, x)e−iωt dt) ̇Ê(ω, x) dω dx
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= ∫
Wc×B

(curlx curlx Φ∗ −
ω2

c20
(1 + χ̂∗c )Φ∗)(ω, x) ̇Ê(ω, x) dω dx

= ∫
Wc×B

(curlx curlx ̇Ê −
ω2

c20
(1 + χ̂∗c )

̇Ê)(ω, x)Φ∗(ω, x) dω dx

= ∫
Wc×B

ω2Ê∗Φ∗

c20
(ω, x)χ̂c(x) dω dx

= ∫
B

(∫
Wc

ω2

c20
Ê∗(ω, x)Φ∗(ω, x) dω)χ̂c(x) dx.

This gives the result since

∫
(0,T)×B

(Γq∗ + ζ∗)(t, x)ℑ(χ̂∗c (x))ℜ(Ė(t, x)E∗(t, x)) dt dx

= ℜ( ∫
(0,T)×B

(Γq∗ + ζ∗)(t, x)ℑ(χ̂∗c (x))Ė(t, x)E∗(t, x) dt dx)

= ℜ(∫
B

(∫
Wc

ω2

c20
Ê∗(ω, x)Φ∗(ω, x) dω)χ̂c(x)dx)

= ∫
B

ℜ(∫
Wc

ω2

c20
Ê∗(ω, x)Φ∗(ω, x) dω)ℜ(χ̂c(x)) dx

− ∫
B

ℑ(∫
Wc

ω2

c20
Ê∗(ω, x)Φ∗(ω, x) dω)ℑ(χ̂c(x)) dx.

3.5 The optimality system

For the regularization term f , we find that

∇f(χ̂∗c ) ⋅ χ̂c = αℜ(∫
B

(χ̂∗c − χ̂exc )(x)χ̂c(x) dx) = α∫
B

(ℜ(χ̂∗c − χ̂exc )ℜ(χ̂c) + ℑ(χ̂∗c − χ̂exc )ℑ(χ̂c))(x) dx. (3.10)

Thus, putting together the expressions (3.9) and (3.10), we have for every χ̂c ∈ Uad,

∇J(χ̂∗c ) ⋅ (χ̂c − χ̂∗c ) =
ϵ0ωc
2π2

∫
B

{(
T

∫
0

(Γq∗ + ζ∗)(t, x)|E∗(t, x)|2 dt)ℑ(χ̂c − χ̂∗c )(x)

+ 2(ℜ ∫
Wc

ω2

c20
Ê∗(ω, x)Φ∗(ω, x) dω)ℜ(χ̂c − χ̂∗c )(x))

− 2(ℑ ∫
Wc

ω2

c20
Ê∗(ω, x)Φ∗(ω, x) dω)ℑ(χ̂c − χ̂∗c )(x))} dx

+ α∫
B

[ℜ(χ̂∗c − χ̂exc )ℜ(χ̂c − χ̂∗c ) + ℑ(χ̂∗c − χ̂exc )ℑ(χ̂c − χ̂∗c )](x) dx ≥ 0. (3.11)

Decoupling with respect to real and imaginary parts, we get for any (υr , υi) real-valued functions such that
υr + iℑ(χ̂∗c ) = χ̂c ∈ Uad andℜ(χ̂∗c ) + iυi = χ̂c ∈ Uad,

∫
B

ℜ(
ϵ0ωc
c20π2

∫
Wc

ω2Ê∗(ω, x)Φ∗(ω, x) dω + α(χ̂∗c − χ̂exc )(x))(υr −ℜ(χ̂∗c ))(x) dx ≥ 0 (3.12a)

Brought to you by | Vienna University Library
Authenticated

Download Date | 12/12/17 2:22 PM



716 | H. Akhouayri et al., Quantitative thermoacoustic tomography with microwaves sources

and

∫
B

{
ϵ0ωc
2π2

(
T

∫
0

(Γq∗ + ζ∗)(t, x)|E∗(t, x)|2 dt)

− ℑ(
ϵ0ωc
c20π2

∫
Wc

ω2Ê∗(ω, x)Φ∗(ω, x) dω − α(χ̂∗c − χ̂exc )(x))}(υi − ℑ(χ̂∗c ))(x) dx ≥ 0. (3.12b)

We may now give first order necessary conditions to get a solution of the discretized problem (3.3).

Theorem 3.2. Let χ∗c be an optimal solution of the minimization problem (3.3). Then the following optimality
system is satisfied:
∙ State equations: (3.4) with the corresponding initial and boundary conditions.
∙ Adjoint equations: (3.5)–(3.6) for pressure and temperature, and (3.8) for electrical field.
∙ Projection equations: (3.11) (or equivalently (3.12)).

4 Conclusion
We have presented what we consider as a complete modelling of the thermoacoustic process with microwave
sources. Since the complete model is quite complex, we focused on the very case where the source signal
presents a slowly time-varying envelope which is practically relevant. We have presented the inverse and
the method to solve it in a formal way. Next steps are the complete theoretical mathematical analysis in an
infinite-dimensional framework and the numerical experimentation (solving the optimality system). This is
challenging since there are many open problems, in particular in terms of the overall numerical burden that
this coupling formalism will generate. However, the electromagnetic system (in the Fourier space) and the
pressure-temperature are slightly coupled. The next issue will be the mathematical study of the pressure-
temperature system together with (3.5)–(3.6) and the identification of Πa in a first step.

Funding: This work is supported by ANR (AVENTURES – ANR-12-BLAN-BS01-0001-01) and Partenariat
Hubert Curien AMADEUS, OEADWTZ FR14/2013.
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