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Abstract
We derive and analyse a new variant of the iteratively regularized Landweber iteration, for solving

linear and nonlinear ill-posed inverse problems. The method takes into account training data, which
are used to estimate the interior of a black box, which is used to define the iteration process. We prove
convergence and stability for the scheme in infinite dimensional Hilbert spaces. These theoretical
results are complemented by some numerical experiments for solving linear inverse problems for the
Radon transform and a nonlinear inverse problem for Schlieren tomography.
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1. Introduction

This paper is concerned with a generalization of the iteratively regularized Landweber iteration, as
introduced in [17], for solving (linear and nonlinear) ill–posed operator equations

F (u) = y. (1.1)

In the course of this paper, for the sake of simplicity of presentation, we restrict our attention to an
operator F : D(F ) ⊂ X → Y between real separable Hilbert spaces X and Y with inner products ⟨·, ·⟩
and norms ∥ · ∥, respectively. We denote with yδ noisy data and we assume that∥∥yδ − y

∥∥ ≤ δ.

Generalizations to the Banach space setting (see [19]) are formally similar, but technically more complicated,
and thus omitted here.
In the original form, the iteratively regularized Landweber iteration, as considered in [17] (see also [9]),
consists in computing the following iterative updates

uk+1 := uk − F ′(uk)∗(F (uk) − yδ
)

− λk(uk − u(0)), k ∈ N, (1.2)

where u(0) is an initial guess which incorporates a-priori knowledge on the solution to be recovered. In
presence of noise in the data (that is the available data are yδ), to guarantee that the iterative scheme
(1.2) is a regularization procedure, it has to be complemented with a stopping rule. The discrepancy
principle is often employed, i.e., the iteration is stopped after the first k∗ = k∗(δ, yδ) steps for which:∥∥F (uk∗) − yδ

∥∥ ≤ τδ <
∥∥F (uk) − yδ

∥∥ , 0 ≤ k < k∗,

for some τ > 1. Method (1.2) can be considered a modification of the Landweber iteration, i.e,

uk+1 := uk − F ′(uk)∗(F (uk) − yδ
)
, k ∈ N, (1.3)

when we put λk = 0 for all k ∈ N. However, opposed to the Landweber iteration (1.3), the convergence
rates analysis of (1.2) is indeed simpler, and requires less restrictive conditions on the operator F (see [9]).
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The reason for that is the presence of the damping term λk(uk − u(0)) which stabilizes the algorithm: The
modified Landweber iteration converges to a solution which is closest to u(0), which is not guaranteed for
the Landweber iteration itself without posing additional assumptions. However, the practical convergence
rates are even slower than for the Landweber iteration. The damping term λk(uk − u(0)) was originally
introduced as an additional stabilizing term in the Gauß-Newton’s method in [3]. Later, it has been
observed that it has a similar effect in all the iterative regularization methods when used as an add-on
factor. This observation is the motivation for this paper to introduce a data driven damping factor in the
Landweber iteration. We first note that the iteration (1.2) can be rewritten in the form

uk+1 := uk − 1
2 ∂u

(∥∥F (u) − yδ
∥∥2 + λk

∥∥∥u − u(0)
∥∥∥2
)

(uk), k ∈ N. (1.4)

Our objective is to include a damping factor gained from expert data (u(i), F (u(i)))1≤i≤n in the iteration
process. As a first attempt, one could generalize (1.4) by ignoring the image data (F (u(i))1≤i≤n), which
leads to

uk+1 := uk − 1
2 ∂u

(∥∥F (u) − yδ
∥∥2 + λk

n∑
i=1

∥∥∥u − u(i)
∥∥∥2
)

(uk), k ∈ N. (1.5)

From an analytical point of view, this does not offer significant benefits because we expect that in general
it will converge to the solution which is closest to the mean û =

∑n
i=1 u(i). Therefore, in order to include

the image data (F (u(i))1≤i≤n) as prior information as well, we follow a black box strategy. To be more
specific, we identify an operator Â, which maps each u(i) to F (u(i)), i = 1, . . . , n, and vice versa, to include
as a damping term in the Landweber iteration (1.3), i.e.,

uk+1 := uk − 1
2 ∂u

(∥∥F (u) − yδ
∥∥2 + λδ

k

∥∥∥Â(u) − yδ
∥∥∥2
)

(uk), k ∈ N, (1.6)

which, in explicit form, is equal to

uk+1 := uk − F ′(uk)∗(F (uk) − yδ
)

− λδ
kÂ′(uk)∗(Â(uk) − yδ

)
, k ∈ N. (1.7)

The objective of the second term in (1.7) is to give some bias for the expert data. We mention that system
identification and black box theory was considered extensively in the sixties of the last century, see for
instance [15]. Our main results concern the proof of strong convergence and stability for scheme (1.7),
essentially under the assumptions that F satisfies the usual tangential cone condition, see (2.3), and both
F and Â are Fréchet differentiable. These theoretical results are followed by some numerical experiments
for linear and nonlinear operator equations (1.1). To be more precise, we take the Radon (see [12]) and
the Schlieren (see [18]) operators as models of linear and nonlinear problems, respectively. Concerning
the operator Â, we do not tackle the problem in the full generality in the sense that all the numerical
experiments are realized by restricting attention to bounded linear operators between separable Hilbert
spaces X and Y , that is, taking Ã ∈ B(X, Y ), we consider

uk+1 := uk − F ′(uk)∗(F (uk) − yδ
)

− λδ
kÃ∗(Ãuk − yδ

)
, k ∈ N. (1.8)

We reserve to point the general case of nonlinear operators for future work. Specifically, given n pairs of
input-output relation (u(i), F (u(i))), and defining the functional

l(T̃ ) := 1
2

n∑
i=1

∥∥∥T̃ u(i) − y(i)
∥∥∥2

Y
,

where T̃ ∈ B(X, Y ) and y(i) = F (u(i)), we define Ã : X → Y as the bounded linear operator which
satisfies

l(Ã) = min
T̃ ∈B(X,Y )

l(T̃ ) = min
T̃ ∈B(X,Y )

[
1
2

n∑
i=1

∥∥∥T̃ u(i) − y(i)
∥∥∥2

Y

]
. (1.9)

The operator Ã can be projected onto a finite dimensional subspace and here represented by a matrix
A ∈ RM×N , where M, N ∈ N will be defined in Section 3. In fact, from classical results of functional
analysis, every bounded linear operator has a matrix representation of infinite dimensions, through
complete orthonormal bases in X and Y , see for example [10]. We refer the reader to Section 3 for
a more in-depth discussion. In all the numerical experiments we compare the outcomes of the data
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driven iteratively regularized Landweber scheme (1.8) with the classic iteratively regularized Landweber
scheme (1.2) and the Landweber iteration (1.3). This is a first attempt to include expert data in iterative
reconstruction algorithms. Nonlinear learning strategies might behave significantly better. However, for
the solution of linear ill–posed operator equations, the numerical reconstructions of (1.8) are significantly
better than the results of Landweber iterations (1.2) and (1.3). In the case of nonlinear operator equations
this approach is not as well suited, because we attempt to simulate a nonlinear input-output relation by a
linear operator Ã. This is a challenging topic to investigate for future research.
The outline of the paper is as follows: In Section 2 we analyze (1.7) in an infinite dimensional Hilbert space
setting and prove strong convergence and stability. In Section 3 we discuss the numerical implementation
of (1.8) and study applications to the Radon inversion, for the linear case, and to the Schlieren tomography,
for the nonlinear case, with full and limited data. In all the numerical examples we compare the outcomes
of (1.2), (1.3) and (1.8).

2. Iteratively Regularized Landweber Iteration

In this section we analyze the convergence of the iteratively regularized Landweber iteration, presented in
the introduction, which we recall here for the reader’s sake

uk+1 := uk − F ′(uk)∗(F (uk) − yδ
)

− λδ
kÂ′(uk)∗(Â(uk) − yδ

)
, k ∈ N,

u0 − initial guess,
(2.1)

where yδ are noisy data such that ∥∥yδ − y
∥∥ ≤ δ,

and λδ
k is a suitable parameter. Moreover, we assume that (1.1) has a solution u†, possibly not unique.

For the analysis, we basically follow the approach proposed in [9, Chapters 1, 3] because such iterates can
be considered a modified version of the Landweber scheme.
It is well-known that for iterative schemes and in case of noisy data, a stopping criterion has to be added
to the scheme (2.1) in order to obtain a regularization method. For that, we employ the discrepancy
principle for which the iteration is stopped after k∗ = k∗(δ, yδ) steps once∥∥F (uk∗) − yδ

∥∥ ≤ τδ ≤
∥∥F (uk) − yδ

∥∥ , 0 ≤ k < k∗, (2.2)

where τ is a positive number chosen suitably.
First, we introduce some assumptions on the operators F and Â to guarantee local convergence of the
iterative schemes as (2.1), and we define some constants which will appear in the convergence theorem.

Assumption 2.1 Let Bρ(u†) ⊆ B2ρ(u0), where Bρ(u†) denotes a closed ball of radius ρ and center u†.
We assume that

(i) F satisfies the tangential cone condition, that is

∥F (u) − F (v) − F ′(u)(u − v)∥ ≤ ν ∥F (u) − F (v)∥ , ∀u, v ∈ Bρ(u†), (2.3)

where ν > 0.

(ii) F and Â have continuous Fréchet derivative F ′ and Â′, respectively, with Lipschitz constants LF

and LÂ, i.e., for all u ∈ Bρ(u†) it holds

∥F ′(u)∥ ≤ LF , (2.4a)

∥∥∥Â′(u)
∥∥∥ ≤ LÂ. (2.4b)

(iii) We assume that data-driven model Â cannot fully explain the model for the true data, hence∥∥∥Â(u†) − y
∥∥∥ ≥ CN with CN > 0 . (2.5)

Here, we present an auxiliary estimate which will be needed to prove a monotonicity property and some
convergence results of (2.1).
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Lemma 2.2 Let Assumption 2.1 be satisfied. Then there exists a positive constant Cδ
Â

such that∥∥∥Â(uk) − yδ
∥∥∥ ≤ Cδ

Â
(2.6)

holds true for every uk ∈ Bρ(u†).

Proof: Equation (2.6) follows from the triangle inequality and the Lipschitz-continuity of Â′, in fact∥∥∥Â(uk) − yδ
∥∥∥ ≤

∥∥∥Â(uk) − Â(u†)
∥∥∥+

∥∥∥Â(u†)
∥∥∥+

∥∥yδ
∥∥

=
∥∥∥∥∫ 1

0
Â′(u† + t(uk − u†))(uk − u†) dt

∥∥∥∥+
∥∥∥Â(u†)

∥∥∥+
∥∥yδ
∥∥

≤LÂρ +
∥∥∥Â(u†)

∥∥∥+
∥∥yδ
∥∥ =: Cδ

Â
.

□

We first prove that, under some suitable assumptions on λδ
k, a monotonicity property is verified for the

scheme (2.1).

Proposition 2.3 Let Assumption 2.1 be satisfied. Assume that uk ∈ Bρ(u†) and∥∥F (uk) − yδ
∥∥ ≥ τδ, (2.7)

where τ > 0 and it is such that

Cτ := 1 − L2
F − ν − 1 + ν

τ
≥ 0 . (2.8)

Moreover, let us assume that there exists a positive constant Cδ
λ such that the following conditions hold:

λδ
kLÂCδ

Â
≤ ρ, (2.9a)

λδ
k ≤ Cδ

λ

∥∥F (uk) − yδ
∥∥2

, (2.9b)

Cτ − 2LÂCδ
Â

Cδ
λρ > 0. (2.10)

Then uk+1 ∈ Bρ(u†) and
∥∥uk+1 − u†

∥∥ ≤
∥∥uk − u†

∥∥.

Proof: Let us assume that uk ∈ Bρ(u†), then we have∥∥uk+1 − u†∥∥2 −
∥∥uk − u†∥∥2

≤2
(

−
〈
F (uk) − yδ, F ′(uk)(uk − u†)

〉
+
∥∥F ′(uk)∗(F (uk) − yδ)

∥∥2

− λδ
k

〈
Â(uk) − yδ, Â′(uk)(uk − u†)

〉
+ (λδ

k)2
∥∥∥Â′(uk)∗(Â(uk) − yδ)

∥∥∥2 )
≤2
(

−
∥∥F (uk) − yδ

∥∥2 +
〈
F (uk) − yδ, F (uk) − y − F ′(uk)(uk − u†)

〉
+ δ

∥∥F (uk) − yδ
∥∥+

∥∥F ′(uk)∗(F (uk) − yδ)
∥∥2

− λδ
k

〈
Â(uk) − yδ, Â′(uk)(uk − u†)

〉
+ (λδ

k)2
∥∥∥Â′(uk)∗(Â(uk) − yδ)

∥∥∥2 )
=: 2(TF + TÂ),

(2.11)
where TF and TÂ represent the terms in F and Â, respectively, in the right hand side of the second
inequality. Next, we study TF and TÂ separately, providing for both of them a bound in terms of the
square norm of the residual of F at the k-iteration. By using (2.3), (2.4a), (2.7) and (2.8) we get

TF = −
∥∥F (uk) − yδ

∥∥2 +
〈
F (uk) − yδ, F (uk) − y − F ′(uk)(uk − u†)

〉
+ δ

∥∥F (uk) − yδ
∥∥+

∥∥F ′(uk)∗(F (uk) − yδ)
∥∥2

≤ −
∥∥F (uk) − yδ

∥∥2 + ν
〈
F (uk) − yδ, F (uk) − y

〉
+ δ

∥∥F (uk) − yδ
∥∥+ L2

F

∥∥F (uk) − yδ
∥∥2

≤
∥∥F (uk) − yδ

∥∥ (−(1 − L2
F − ν)

∥∥F (uk) − yδ
∥∥+ (1 + ν) δ

)
≤ − Cτ

∥∥F (uk) − yδ
∥∥2

.

(2.12)
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On the contrary, to estimate the term TÂ, we utilize (2.4b), (2.6), (2.9a) and (2.9b) from what it follows

TÂ = − λδ
k

〈
Â(uk) − yδ, Â′(uk)(uk − u†)

〉
+ (λδ

k)2
∥∥∥Â′(uk)∗(Â(uk) − yδ)

∥∥∥2

≤λδ
kLÂ

∥∥∥Â(uk) − yδ
∥∥∥(ρ + λδ

kLÂ

∥∥∥Â(uk) − yδ
∥∥∥)

≤2λδ
kLÂCδ

Â
ρ ≤ 2LÂCδ

Â
Cδ

λρ
∥∥F (uk) − yδ

∥∥2
.

(2.13)

Finally, by inserting (2.13) and (2.12) into (2.11), we get∥∥uk+1 − u†∥∥2 −
∥∥uk − u†∥∥2 ≤ −2

(
Cτ − 2LÂCδ

Â
Cδ

λρ
) ∥∥F (uk) − yδ

∥∥2 (2.14)

which gives the assertion of the theorem thanks to (2.10). □

Remark 2.1 We note that (2.9a) is asymptotically always satisfied if the iteration is convergent and the
damping parameters (2.9) are chosen sufficiently small. Equation 2.10 requires that the operator F is not
too non-linear and that the iterates are close to the true solution.

To prove a convergence result for the iteratively regularized Landweber iteration (2.1), we first need to
show that there exists a finite stopping index k∗ for which the discrepancy principle (2.2) holds.

Corollary 2.4 Under the assumptions of Proposition 2.3, let k∗ be the first index such that the discrepancy
principle (2.2) is verified. Then

k∗(τδ)2 ≤
k∗−1∑
k=0

∥∥F (uk) − yδ
∥∥2 ≤ 1

2(Cτ − 2LÂCδ
Â

Cδ
λρ)

∥∥u0 − u†∥∥ . (2.15)

In particular, when δ = 0, we have
∞∑

k=0
∥F (uk) − y∥2

< ∞. (2.16)

Proof: We sum the inequality (2.14) from 0 to the step k∗ − 1, that is

k∗−1∑
k=0

[ ∥∥uk+1 − u†∥∥2 −
∥∥uk − u†∥∥2 ] ≤ −2(Cτ − 2LACδ

ACδ
λρ)

k∗−1∑
k=0

∥∥F (uk) − yδ
∥∥2

,

hence ∥∥u0 − u†∥∥2 −
∥∥uk∗ − u†∥∥2 ≥ 2(Cτ − 2LÂCδ

Â
Cδ

λρ)
k∗−1∑
k=0

∥∥F (uk) − yδ
∥∥2

. (2.17)

Using the fact that
∥∥u0 − u†

∥∥2 −
∥∥uk∗ − u†

∥∥2 ≤
∥∥u0 − u†

∥∥2 and the discrepancy principle (2.2), from
(2.17) it is straightforward to obtain (2.15). Moreover, when δ = 0, we can assume τ arbitrarily large such
that Cτ − 2LÂC0

Â
C0

λρ
τ→∞−→ 1 − ν − L2

F − 2LÂC0
Â

C0
λρ and k∗ → ∞. Therefore (2.15) reduces to

∞∑
k=0

∥F (uk) − y∥2 ≤ 1
2(1 − ν − L2

F − 2LÂC0
Â

C0
λρ)

∥∥u0 − u†∥∥ ,

which gives the assertion of the theorem. □

Next, before proving the convergence result in case of noisy data, we show that, when δ = 0, the residual
norm of the modified Landweber iteration (2.1) goes to zero as k tends to infinity. This means that if the
iterations converge, then the limit is a solution of (1.1).

Theorem 2.5 Let Assumption 2.1, (2.6) and (2.9b) hold, with δ = 0. Then the iteratively regularized
Landweber iteration (2.1), applied to the exact data y, converges to a solution u† of F (u) = y.
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Proof: Let us define
ek = uk − u†. (2.18)

Given j ≥ k, we choose an integer h such that k ≤ h ≤ j and

∥F (uh) − y∥ ≤ ∥F (ui) − y∥ , ∀ k ≤ i ≤ j. (2.19)

Then, we consider
∥ej − ek∥ ≤ ∥ej − ek∥ + ∥eh − ek∥ . (2.20)

We only analyse the first term in (2.20) since the other one can be treated in the same way. So, we have

∥ej − eh∥2 = ⟨ej − eh, ej − eh⟩ = 2⟨eh − ej , eh⟩ + ∥ej∥2 − ∥eh∥2
. (2.21)

We only need to study the first term in the right-hand side of the previous equality since ∥ej∥2 and
∥eh∥2 are monotonically decreasing to some ε ≥ 0, thanks to Proposition 2.3 (even in the case δ = 0),
hence ∥ej∥2 − ∥eh∥2 converges to 0 as k → ∞. We show that |⟨eh − ek, eh⟩| → 0 as k → +∞. Using the
definition of ej , eh, see (2.18), the iteration (2.1) and the fact that j ≥ h, we find

|⟨eh − ej , eh⟩| = |⟨uj − uh, eh⟩|

≤
∣∣∣〈 j−1∑

i=h

F ′(ui)∗(y − F (ui)) + λiÂ
′(ui)∗(y − Â(ui)), eh

〉∣∣∣
≤

j−1∑
i=h

∣∣∣〈y − F (ui), F ′(ui)(uh − u†)
〉∣∣∣+

j−1∑
i=h

λi

∣∣∣〈y − Â(ui), Â′(ui)(uh − u†)
〉∣∣∣

=: SF + SÂ

(2.22)

We study the two terms SF and SÂ separately.
Term SF : the analysis can be found, for example, in [9]. For the sake of completeness, here we summarize
the principal steps to obtain an estimate of SF . Adding and subtracting ui and y − F (ui) in SF , we find

SF ≤
j−1∑
i=h

[
∥y − F (ui)∥

(∥∥y − F (ui) − F ′(ui)(u† − ui)
∥∥+ ∥y − F (uh)∥ + ∥F (ui) − F (uh) − F ′(ui)(ui − uh)∥

)]
,

hence, applying the tangential cone condition (2.3)

SF ≤ 2ν

j−1∑
i=h

∥y − F (ui)∥2 + (1 + ν)
j−1∑
i=h

∥y − F (ui)∥ ∥y − F (uh)∥ .

From (2.19), we finally find

SF ≤ (1 + 3ν)
j−1∑
i=h

∥y − F (ui)∥2
. (2.23)

Term SA: Utilizing the hypotheses (2.6) and (2.9b), with δ = 0, we have

SÂ ≤
j−1∑
i=h

λi

∣∣∣〈y − Â(ui), Â′(ui)(uh − u†)
〉∣∣∣ ≤

j−1∑
i=h

λi

∥∥∥y − Â(ui)
∥∥∥∥∥∥Â′(ui)(uh − u†)

∥∥∥
≤ LÂC0

Â
ρ

j−1∑
i=h

λi ≤ LÂC0
Â

C0
λ ρ

j−1∑
i=h

∥F (ui) − y∥2

(2.24)

Inequalities (2.24) and (2.23), inserted in Equation (2.22), give

|⟨eh − ej , eh⟩| ≤ (1 + 3ν + LÂC0
Â

C0
λ ρ)

j−1∑
i=h

∥y − F (ui)∥2
. (2.25)

Reasoning in the same way for |⟨eh − ek, eh⟩| we find

|⟨eh − ek, eh⟩| ≤ (1 + 3ν + LÂC0
Â

C0
λ ρ)

h−1∑
i=k

∥y − F (ui)∥2
. (2.26)

From these estimates, it follows that both |⟨eh − ej , eh⟩| and |⟨eh − ek, eh⟩| go to zero as k → ∞ thanks
to (2.16). Therefore, from (2.21) and (2.20), we find that {ek} is a Cauchy sequence. Then, from (2.18),
we derive that {uk} is a Cauchy sequence as well hence the assertion of the theorem follows. □
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In the case of noisy data, we cannot expect that the iteratively regularized Landweber iteration converges,
since yδ might not belong to the range of the operator F . In fact, we can only obtain a stable approximation
of a solution of F (u) = y provided the discrepancy principle (2.2) is employed, i.e, the iteration is stopped
after a finite number of steps. Here, assuming that the discrepancy principle (2.2) holds, we prove a
stability result for the iteratively regularized Landweber iteration in the case of noisy data.

Theorem 2.6 Under Assumption 2.1, (2.8) and (2.9), let k∗ = k∗(δ, yδ) be chosen such that (2.2) holds.
Moreover, we assume that for each fixed iteration k, λδ

k → λk, as δ → 0. Then, the data driven iteratively
regularized Landweber iteration (2.1) converges to a solution of F (u) = y, as δ → 0.

Proof: We recall that u† represents the limit of the iteration (2.1) when δ = 0, i.e, the case with data y.
Let {δn} be a sequence such that {δn} → 0 as n → ∞ and denote with yn := yδn the sequence of the
perturbed data. Let kn = k∗(δn, yn) be the stopping index for which the discrepancy principle (2.2) holds,
i.e. ∥∥∥F (uδn

kn
) − yn

∥∥∥ ≤ τδn. (2.27)

We now distinguish two cases as n → ∞:

(i) kn → k, k ∈ R+;

(ii) kn → +∞.

Case (i): to avoid technicalities, we can assume that kn = k, for all n ∈ N. Therefore, from (2.27) we get∥∥∥F (uδn

k ) − yn

∥∥∥ ≤ τδn.

From the continuity hypotheses on F , F ′ and Â, Â′ and recalling (2.9b), we find that

uδn

k → uk, F (uδn

k ) → F (uk) = y, Â(uδn

k ) → Â(uk), λδn

k → 0, as n → ∞.

This means that the k−th iterate of (2.1) is a solution of F (u) = y and thus the iteration terminates with
u† = uk.
Case (ii): We choose k sufficiently large such that kn > k and by Proposition 2.3 we have∥∥∥uδn

kn
− u†

∥∥∥ ≤
∥∥∥uδn

k − u†
∥∥∥ ≤

∥∥∥uδn

k − uk

∥∥∥+
∥∥uk − u†∥∥ (2.28)

Given ϵ > 0, from Theorem 2.5 there exists k̄ = k̄(ϵ) such that∥∥uk − u†∥∥ < ϵ/2, ∀ k > k̄. (2.29)

Moreover, for k fixed, there exists n̄ = n̄(ϵ, k) such that for all n > n̄∥∥∥uδn

k − uk

∥∥∥ < ϵ/2, ∀ n > n̄. (2.30)

In fact, writing explicitly the difference uδn

k − uk, we get

uδn

k − uk = uδn

k−1 − uk−1 − F ′(uδn

k−1)∗(F (uδn

k−1) − yn) + F ′(uk−1)∗(F (uk−1) − y)

− λδn

k−1Â′(uδn

k−1)∗(Â(uδn

k−1) − yn) + λk−1Â′(uk−1)∗(Â(uk−1) − y).

The estimate (2.30) follows using again the continuity property of F and Â, and also the hypothesis that
λδn

k−1 → λk−1, for every fixed iteration. Therefore, by (2.30) and (2.29) in (2.28), we find
∥∥∥uδn

kn
− u†

∥∥∥ < ϵ

for n > n̄, which means that uδn

kn
→ u† as n → ∞. □
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3. Numerical Experiments

In this section we present some numerical examples related to the iteration (2.1) both for linear operator
equations and nonlinear ones. We first consider the linear case for which the operator is the Radon
transform. Then, we present some results for the Schlieren model which we take as the prototype for
nonlinear operators.
In the following numerical examples, we always consider noise in the data hence we do not need distinguish
anymore between λk and λδ

k. For this reason, in order to simplify the notation, from this point on we
merely use the notation λk instead of λδ

k.
All the numerical results in the following sections are based on the assumption that the damping term in
(2.1) is a bounded linear map Ã : X → Y , hence the iterates become

uk+1 := uk − F ′(uk)∗(F (uk) − yδ
)

− λkÃ∗(Ãuk − yδ
)
, k ∈ N. (3.1)

To build the operator Ã : X → Y , we assume to have some a-priori information about (1.1) in the form of
a finite set of expert data that is

(u(i), y(i)) ∈ X × Y, for i = 1, · · · , n, (3.2)

where n > 0, and we define, for T̃ ∈ B(X, Y ), the functional

l(T̃ ) = 1
2

n∑
i=1

∥∥∥T̃ u(i) − y(i)
∥∥∥2

Y
. (3.3)

The bounded operator Ã is defined as the operator which minimizes the functional (3.3), i.e.,

l(Ã) = min
T̃ ∈B(X,Y )

l(T̃ ) = min
T̃ ∈B(X,Y )

[
1
2

n∑
i=1

∥∥∥T̃ u(i) − y(i)
∥∥∥2

Y

]
. (3.4)

Let H ∈ B(X, Y ) and t ∈ J where J ⊂ R is an interval containing the origin. Then

l(T̃ + tH) − l(T̃ )
t

= 1
2

1
t

{
n∑

i=1

[〈
(T̃ + tH)u(i) − y(i), (T̃ + tH)u(i) − y(i)

〉
−
〈

T̃ u(i) − y(i), T̃ u(i) − y(i)
〉]}

=
n∑

i=1

[〈
T̃ u(i) − y(i), Hu(i)

〉
+ t

2

〈
Hu(i), Hu(i)

〉]
.

Therefore, as t → 0, for each H ∈ B(X, Y ) and every (u(i), y(i)) ∈ X × Y , for i = 1, · · · , n, the operator
Ã is defined as the operator which satisfies the condition

n∑
i=1

〈
Ãu(i) − y(i), Hu(i)

〉
= 0, ∀H ∈ B(X, Y )

which implies that
n∑

i=1
Ãu(i) =

n∑
i=1

y(i). (3.5)

Now, denoting by {ek(x)}k∈N and {ēj(y)}j∈N complete orthonormal families of X and Y , respectively, we
have

u(i) =
∑
k∈N

⟨u(i), ek⟩ek =
∑
k∈N

u
(i)
k ek, ∀i = 1, · · · , n,

y(i) =
∑
j∈N

⟨y(i), ēj⟩ēj =
∑
j∈N

y
(i)
j ēj , ∀i = 1, · · · , n,

(3.6)

and we recall that each bounded operator between Hilbert spaces has a matrix representation given by

Ãek =
∑
j∈N

ãjkēj , where ãjk = ⟨Ãek, ēj⟩, (3.7)

see for example [10]. In this way, from (3.6) and (3.7), we find

Ãu(i) =
∑
k∈N

u
(i)
k Ãek =

∑
k,j∈N

ãjku
(i)
k ēj , ∀ i = 1, · · · , n.
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Therefore, Equation 3.5 can be rewritten as
n∑

i=1

∑
k,j∈N

ãjku
(i)
k ēj =

n∑
i=1

∑
j∈N

y
(i)
j ēj

that is, for each j ∈ N and i = 1, · · · , n, we have∑
k∈N

ãjku
(i)
k = y

(i)
j .

In the sequel we approximate the matrix ãjk, with a matrix A ∈ RM×N , that is we take a finite number
of elements of the orthonormal families of the Hilbert spaces X and Y . To be more precise, we employ
{ek}, for k = 1, · · · N , and {ēj}, for j = 1, · · · M .
Construction of A. Following considerations above, we consider

(u(i), y(i)) ∈ RN × RM , for i = 1, · · · , n, (3.8)

where n > 0. With this choice, the matrix A ∈ RM×N is defined as the linear map such that

AU = Y, (3.9)

where U ∈ RN×n and Y ∈ RM×n are the matrices which contain columnwise the data u(i) and y(i),
respectively, for i = 1, · · · , n. The matrix A can be obtained by utilizing a Singular Value Decomposition
(SVD) on U , hence

A = Y U†. (3.10)

Remark 3.1 One of the main issue of this approach is the computational burden in building the matrix
A that is the amount of the storage needed for the data. In fact the dimensions M and N of the matrix A
could be very large even for small scale inverse problems.

The following numerical experiments have been accomplished using Matlab and some of its functions.

3.1. Linear Operator - Radon Transform. In this section, we present and discuss some numerical
experiments assuming that the operator F in (1.1) is the Radon transform, i.e., we consider the operator
equation

Ru = y. (3.11)
We refer, for instance, the reader to [12, 14] for the definition and properties of the Radon transform.
In the sequel, we implement the Data-Driven Iteratively Regularized Landweber Iteration (DDIRLI) (3.1),
adapted to Equation (3.11), i.e

uk+1 := uk − ωRR∗(Ruk − yδ
)

− λδ
kÃ∗(Ãuk − yδ

)
, k ∈ N, (3.12)

where R∗ is the backprojection operator and ωR is a positive constant such that
∥∥R∗(Ruk − yδ)

∥∥ ≤ 1.
The operator Ã can be realized by a matrix A which is generated following the approach discussed at the
beginning of Section 3. For this purpose, we use the following set of training data and parameters:

(a) 180 different equally distributed angles θ within the interval [0, π); specifically, we consider the set
Θ =

{
0, π

180 , π
90 , · · · , 179π

180

}
;

(b) A sample of 50 grayscale images of handwritten digits, from MNIST database, and their related
sinograms, which are obtained using the 180 directions of (a).

Matrices U and Y in (3.9) are built utilizing data (u(i), y(i)), where u(i) and y(i) are, respectively, the
images and their related sinograms described in (b). The number of training pairs utilized for the creation
of A will be specified in each numerical test.
In the implementation, for the set of parameters we make these choices:

(i) We choose
ωR = 10−2 and λk = 7.7 × 10−5 ∥∥Ruk − yδ

∥∥2
2 , (3.13)

where ∥·∥2 is the spectral norm. The value of λk is inferred by conditions (2.9).
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(ii) As stopping rule we use the discrepancy principle (2.2), where the choice of τ will be specified for
each test (see tables below), or a maximum number of 100 iterates;

(iii) The synthetic data yδ are generated by adding a gaussian distributed noise with zero mean and
variance σ2, specified at each test, to the matrix of the exact data y;

(iv) The initial guess u0 is always set to be u0 = 0.

Results of (3.12) are compared with the outcomes of the Landweber iteration, that is

uk+1 := uk − ωRR∗(Ruk − yδ
)
, k ∈ N, (3.14)

and of the Iteratively Regularized Landweber Iteration (IRLI) given by

uk+1 := uk − ωRR∗(Ruk − yδ
)

− βk(uk − u(0)), k ∈ N, (3.15)

where, according to the parameters rules in [9, Section 3.2], we choose βk = ( 1
4 )k+1, for k ∈ N, and we

use as u(0) a noise version of the image to be reconstructed, see Figure 1. Finally, the numerical results
provided by these iterative algorithms are compared with those of the Filtered Back-Projection (FBP)
algorithm, which performs the inverse Radon transform. For this last case, we run the Matlab function
“iradon” making the choice of the Ram-Lak filter.

Figure 1. Choices of u(0) in (3.15): image on the left is used in Test 1 and Test 3a. Image
in the center is used in Test 2a/2b and Test 3b. Image on the right is used in Test 4.

We used the training and validation sets of the MNIST dataset of handwritten digits, see [13]. We
essentially consider four different numerical experiments: In Test 1 we reconstruct an image which has
been utilized to create the matrix A, i.e, it is contained in the training set of MNIST. In Test 2a/2b,
using the same matrix A of test 1, we reconstruct a digit in the validation test of MNIST. In Test 3a and
Test 3b, we reconstruct the same images of Test 1 and Test 2, respectively, but using only partial data,
i.e., we consider a cropped noisy version of the sinogram of the true image. We stress that the true image
of Test 3b has not been utilized to create the matrix A. Finally, in Test 4, we reconstruct the Shepp
Logan phantom in order to test our method on an image which is completely different from the ones in
the training and validation sets.
The choices and values of the main parameters, which are utilized for the generation of the data and to
run the schemes (3.12), (3.14) and (3.15), are contained in the tables below, i.e., Tables 1, 2, 3, 4, 5 and
6: In the left part of each table, we specify the choice of the variance in the gaussian noise, the value of
δ and τ . In the right part we state some of the results of the numerical test, i.e., the total number of
iterates before one of the two stopping criteria in (ii) has been accomplished, the computational time and,
finally, the relative error ∥utrue − urec∥2 / ∥utrue∥2, where utrue is the image to be reconstructed while urec
is the reconstructed image. We stress that the execution time of DDIRLI is the result of the construction
of the matrix A and the iterates of (3.12).
Test 1. (Figure 2). Target: reconstruct one of the image from the training set which has been used to
create the matrix A. See Figure 2 for the “True Image”. The initial datum yδ is given by the sinogram
of the true image y, adding a gaussian distributed noise of zero mean ad variance σ2 = 0.5. In the
discrepancy principle (2.2) we choose τ = 1.1. See Table 1. We observe, from Figure 2 and Figure 3, how
the presence of A (and the fact that the information of the "True Image" are included in A) “helps” the
iterates (3.12) in recognizing the true image, as expected. Indeed, despite the presence of a strong noise,
DDIRLI provides better results compared to those of the Landweber iteration (3.14) and IRLI (3.15),
with a smaller number of iterates. Note that the initial guess u(0) in IRLI, see (3.15), is the “True Image”
corrupted with a gaussian noise of variance 0.05 only.
Test 2a/2b. (Figures 4 and 6). Target: reconstruct one of the image from the validation set, not utilized
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to create A. We reconstruct a digit from the validation set of MNIST. The difference between the two
tests, see Figures 4 and 6, is the number of the samples from training data used to create the matrix A. In
fact, we used in Test 2a only 50 images while in Test 2b 150 images. From these numerical examples, we
clearly observe an improvement of the results of DDIRLI when we increase the number of images utilized
to create the matrix A. In fact, Test 2b shows very good results, comparable with those of the Landweber
scheme and IRLI.

Test 3a/3b (Figures 8 and 10). Target: reconstruct images from the training or the validation set using
partial data. We consider the case of partial noisy measurements which corresponds to taking a cut version
of the sinogram yδ with a gaussian distributed noise of zero mean and variance σ = 0.03. The cropped
sinogram is obtained mantaining information only in some directions and setting to zero all the rest. See
Figure 8 and Figure 10.
In Test 3a, we reconstruct an image belonging to the training set and which has been utilized to create
the matrix A. On the contrary, in Test 3b, we reconstruct an image from the validation set and therefore
was not utilized to generate the matrix A. The outcomes of our method are promising in both the cases.

Test 4 (Figure 12 and 13). Target: reconstruct Shepp Logan phantom, i.e., an image which is completely
different from the elements contained in training data which are used to create the matrix A.
To use the MNIST training set to create A, the Shepp Logan image has been down-sampled to 28 × 28.
In numerical simulation, we observe that, in order to get a good reconstruction of the true image and
comparable with the numerical results of the other methods, we use 600 images from the training set.
We stress that Figures 3 C), 5 C), 7 C), 9 C) and 11 C) show the ratios between the residuals of the
data driven model,

∥∥Auk − yδ
∥∥, and the model driven approach,

∥∥Ruk − yδ
∥∥. A value greater than 1 of

the ratio implies that the data driven approach has a significant influence on the iteration process. In
fact, since the initial guess is u0 = 0, from plots C), we observe how our scheme, in the first steps, is
giving more weight to the information contained in A to reconstruct the object. Figures 3 D), 5 D), 7 D),
9 D) and 11 D) enlight how fast the product ∥Ruk − yδ∥2 ∥Auk − yδ∥2 is going to zero. In fact, since
λk = 7.7 × 10−5∥Ruk − yδ∥2

2, we have that

∥Ruk − yδ∥2

λk∥Auk − yδ∥2
= 1

7.7 × 10−5∥Ruk − yδ∥2 ∥Auk − yδ∥2
.

Finally, we stress that plots A), B) and D) in Figures 3, 5, 7, 9, 11 are all in logarithmic scale.
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Table 1. Test 1. Left part: Parameters used in the test. Right part: some of the results of
the test.

Method σ2-noise δ τ Iterations Comp. Time (s) ∥utrue−urec∥2
∥utrue∥2

DDIRLI 25 1,0732974 0,107250035
IRLI 0.5 13,36110296 1.1 58 1,3639758 0,114869088
LANDWEBER 73 1,734035 0,12467763
FBP / / / 0,0546157 0,124274036

Figure 2. Test 1. Reconstruction of an image from the training set which has been used to
create A in (3.10). a) Image to be reconstructed; b) Sinogram y of the true image; c) Plot of
the gaussian noise, i.e., yδ − y; d)-g) Reconstructions by the different methods. DDIRLI gives
a very good reconstruction, with more details compared to IRLI, Landweber and FBP.
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Figure 3. Test 1. A) Residual in logarithmic scale at each step implementing (3.12), (3.14)
and (3.15); B) plot of log(λk); C) plot of the ratio

∥∥Ruk − yδ
∥∥

2
/
∥∥Auk − yδ

∥∥
2
; D) plot in

logarithmic scale of the ratio
∥∥Ruk − yδ

∥∥
2

/(λk

∥∥Auk − yδ
∥∥

2
).
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Table 2. Test 2a. Left part: Parameters used in the test. Right part: some of the results of
the test.

Method σ2-noise δ τ Iterations Comp. Time (s) ∥utrue−urec∥2
∥utrue∥2

DDIRLI 39 1,474326 0,203051179
IRLI 0.5 13,41600448 1.1 52 1,2946457 0,139542084
LANDWEBER 67 1,743846 0,14349784
FBP / / / 0,0273525 0,138023154

Figure 4. Test 2a. Reconstruction of an image from the validation set not used to create
A in (3.10). Only a sample of 50 images from the training set has been used to build A. a)
Image to be reconstructed; b) Sinogram (y) of the true image; c) Plot of the gaussian noise,
i.e., yδ − y; d)-g) Reconstructions by the different methods. IRLI, Landweber and FBP give
better results than the DDIRLI method. We stress that the discrepancy principle for DDIRLI
is satisfied after only 39 iterations.
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Figure 5. Test 2a. A) Residual in logarithmic scale at each step implementing (3.12), (3.14)
and (3.15); B) plot of log(λk); C) plot of the ratio

∥∥Ruk − yδ
∥∥

2
/
∥∥Auk − yδ

∥∥
2
; D) plot in

logarithmic scale of the ratio
∥∥Ruk − yδ

∥∥
2

/(λk

∥∥Auk − yδ
∥∥

2
).
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Table 3. Test 2b. Left part: Parameters used in the test. Right part: some of the results of
the test.

Method σ2-noise δ τ Iterations Comp. Time (s) ∥utrue−urec∥2
∥utrue∥2

DDIRLI 24 1,0422007 0,161019463
IRLI 0.5 13,71978428 1.1 53 1,3471281 0,135825795
LANDWEBER 66 1,5579816 0,142645348
FBP / / / 0,0419196 0,135176876

Figure 6. Test 2b. Reconstruction of an image from the validation set not used to create
A in (3.10). Only a sample of 150 images from the training set has been used to build A.
a) Image to be reconstructed; b) Sinogram (y) of the true image; c) Plot of the gaussian
noise, i.e., yδ − y; d)-g) Reconstructions by the different methods. Reconstructions are all
comparable. We stress that the discrepancy principle for DDIRLI is satisfied after only 24
iterations.
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Figure 7. Test 2b. A) Residual in logarithmic scale at each step implementing (3.12), (3.14)
and (3.15); B) plot of log(λk); C) plot of the ratio

∥∥Ruk − yδ
∥∥

2
/
∥∥Auk − yδ

∥∥
2
; D) plot in

logarithmic scale of the ratio
∥∥Ruk − yδ

∥∥
2

/(λk

∥∥Auk − yδ
∥∥

2
).
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Table 4. Test 3a. Left part: Parameters used in the test. Right part: some of the results of
the test.

Method σ2-noise δ τ Iterations Comp. Time (s) ∥utrue−urec∥2
∥utrue∥2

DDIRLI 28 1,0690521 0,259157333
IRLI 0.03 2,863089254 5 56 1,1251772 0,236613193
LANDWEBER 90 1,8927882 0,312031414
FBP / / / 0,024378 0,475620179

Figure 8. Test 3a. Reconstruction of an image from the training set, which has been used to
create A, from partial data. a) Image to be reconstructed; b) Plot of the cropped sinogram of
the true image, i.e., y; c) Plot of the gaussian noise, i.e., yδ − y; d)-g) Reconstructions by the
different methods. DDIRLI and IRLI provide better reconstructions than Landweber and
FBP.
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Figure 9. Test 3a. A) Residual in logarithmic scale at each step implementing (3.12), (3.14)
and (3.15); B) plot of log(λk); C) plot of the ratio

∥∥Ruk − yδ
∥∥

2
/
∥∥Auk − yδ

∥∥
2
; D) plot in

logarithmic scale of the ratio
∥∥Ruk − yδ

∥∥
2

/(λk

∥∥Auk − yδ
∥∥

2
).
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Table 5. Test 3b. Left part: Parameters used in the test. Right part: some of the results of
the test.

Method σ2-noise δ τ Iterations Comp. Time (s) ∥utrue−urec∥2
∥utrue∥2

DDIRLI 29 1,1999311 0,270013425
IRLI 0.03 2,760643462 5 55 1,1808313 0,240562351
LANDWEBER 80 1,654519 0,289219401
FBP / / / 0,0210105 0,427565297

Figure 10. Test 3b. Reconstruction of an image from the validation set not used to create A
in (3.10), from partial data. We used the same 150 images of Test 2b to create A. a) Image
to be reconstructed; b) Plot of the cropped sinogram of the true image, i.e., y; c) Plot of the
gaussian noise, i.e., yδ − y; d)-g) Reconstructions by the different methods.
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Figure 11. Test 3b. A) Residual in logarithmic scale at each step implementing (3.12), (3.14)
and (3.15); B) plot of log(λk); C) plot of the ratio

∥∥Ruk − yδ
∥∥

2
/
∥∥Auk − yδ

∥∥
2
; D) plot in

logarithmic scale of the ratio
∥∥Ruk − yδ

∥∥
2

/(λk

∥∥Auk − yδ
∥∥

2
).
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Table 6. Test 4. Left part: Parameters used in the test. Right part: some of the results of
the test.

Method σ2-noise δ τ Iterations Comp. Time (s) ∥utrue−urec∥2
∥utrue∥2

DDIRLI 26 1,4472282 0,399702146
IRLI 0.5 13,56737965 1.1 34 0,6318276 0,323027126
LANDWEBER 56 1,0820124 0,410787776
FBP / / / 0,0206258 0,382431698

Figure 12. Test 4. Reconstruction of the Shepp Logan phantom. An amount of 600 images
from the training set have been used to create A. a) Image to be reconstructed; b) Plot of the
cropped sinogram of the true image, i.e., y; c) Plot of the gaussian noise, i.e., yδ − y; d)-g)
Reconstructions by the different methods.
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Figure 13. Test 4. A) Residual in logarithmic scale at each step implementing (3.12), (3.14)
and (3.15); B) plot of log(λk); C) plot of the ratio

∥∥Ruk − yδ
∥∥

2
/
∥∥Auk − yδ

∥∥
2
; D) plot in

logarithmic scale of the ratio
∥∥Ruk − yδ

∥∥
2

/(λk

∥∥Auk − yδ
∥∥

2
).
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3.2. Nonlinear Operator - Schlieren Model. We briefly recall the mathematical model behind the
Schlieren tomography, which we take as prototype of a nonlinear problem. For the physical model, i.e.,
the Schlieren optical system and details on data acquisition see, e.g., [5, 11, 16].
Let ηi ∈ S1, for i = 0, · · · , l − 1 be a set of recording directions, that is

ηi = η(θi) = (cos θi, sin θi),

where θi ∈ [0, π), for i = 0, · · · , l − 1, is the angle. Taking B1(0) ⊂ R2, we define the Schlieren operator in
the direction of ηi as the square of the Radon transform, i.e.,

Fi(u) := R2
i (u), i = 0, · · · , l − 1,

where Ri is the Radon transform along the direction ηi. Physically speaking, the function u denotes a
pressure. To reconstruct u, we need to solve the system of equations

F (u) := (F0(u), · · · , Fl−1(u)) = yδ := (yδ
0, · · · , yδ

l−1). (3.16)

It was shown in [8] that each operator Fi, for i = 0, · · · , l − 1 is continuous and Fréchet differentiable from
H1

0 (B1(0)) to L2([−1, 1]) and

F ′
i (u)h = 2Ri(u)Ri(h), ∀h ∈ H1

0 (B1(0)).

The adjoint of F ′
i (u) is given by

F ′
i (u)∗ : L2([−1, 1]) → H1

0 (B1(0))
g → f(g)

with f(g) the solution to
(I − ∆)f(g) = 2R∗

i (Ri(u)g), (3.17)

where I is the identity operator, ∆ is the Laplace operator on H1
0 (B1(0)) and R∗

i denotes the adjoint of
Ri as operator from L2(B1(0)) to L2([−1, 1]), i.e,

R∗
i : L2([−1, 1]) → L2([B1(0)])

w(x) → w(⟨ηi, x⟩).

We stress that all the numerical simulations of this section are performed without the smoothing operator
(I − ∆), contained in (3.17), since both the iteratively regularized Landweber schemes and the Landweber
iteration are regularizing.
Therefore, the data driven iteratively regularized Landweber iteration (DDIRLI) for the Schlieren operator
is given by

uk+1 := uk − α

l−1∑
i=0

[
R∗

i

(
Ri(uk)(R2

i (uk) − yδ
i

)
)
]

− λkÃ∗(Ãuk − yδ
)
, k ∈ N, (3.18)

where α is a relaxation parameter such that the norm of the operator is less or equal to 1. Now, we can
create the matrix A for the Equation (3.16) using the procedure described in Section 3, see equation (3.9).
For this purpose, we use the following set of data and parameters:

(a) 180 different equally distributed angles θ within the interval [0, π); specifically, we consider the set
Θ =

{
0, π

180 , π
90 , · · · , 179π

180

}
;

(b) 10 input images of dimensions 110 × 110 of synthetic pressure functions u(j), j = 1, · · · , 10, and the
related output data. See Figure 14 for the dataset used in numerical Test 1S, 2aS and 2bS. See Figure
15 for the dataset used in numerical Test 3S. Note that the difference between the two datasets is
only on the values of the pressure in some pictures.

We create the matrix U and Y , as defined in (3.9), utilizing the data in (b).
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Again, we compare results of (3.18) with the Landweber scheme, i.e.,

uk+1 := uk − α

l−1∑
i=0

[
R∗

i

(
Ri(uk)(R2

i (uk) − yδ
i

)
)
]

, k ∈ N (3.19)

and with the iteratively regularized Landweber iteration (IRLI)

uk+1 := uk − α

l−1∑
i=0

[
R∗

i

(
Ri(uk)(R2

i (uk) − yδ
i

)
)
]

− βk(uk − u(0)), k ∈ N, (3.20)

where, according to the parameters rules in [9, Section 3.2], we choose βk =
( 1

4
)k+1. Here, we specify the

hypotheses and the set of parameters which are employed in our numerical experiments for the schemes
(3.18), (3.19) and (3.20):

(i) We choose α = 10−8 and λk = 10−7
∥∥F (uk) − yδ

∥∥2
∞;

(ii) As stopping rule we utilize the discrepancy principle (2.2), where the choice of τ will be specified for
each test (see tables below), or a maximum number of 400 iterates;

(iii) Each vector yδ
i , for i = 0, · · · , 179, of synthetic data is generated by adding a gaussian distributed

noise with zero mean and variance σ2, equal to 100 or 10, to each vector yi, , for i = 0, · · · , 179,
which represents the exact data;

(iv) we define δS := max
(∥∥yδ

i − yi

∥∥
2

)
, for i = 0, · · · , 179;

(v) The initial guess is the constant function u0 = 0.01;

We consider three different numerical experiments: in Test 1S we reconstruct an image which has been
utilized to create the matrix A. In Test 2aS/2bS we propose the reconstruction of an image containing
three regions with negative values. In details, in Test 2aS we show the reconstruction adding noise in the
data. In Test 2bS we consider the case of partial noisy data. In Test 3S, we consider the case where the
pressure to be reconstructed is positive in some regions and negative in others.
We stress that the Schlieren imaging has an inherent nonuniqueness issue, since the sign of the true
solution is undetermined. This will be clear in the numerical outcomes of the Landweber iteration.
As in the previous section, for each test we provide a table containing, on the left the values of the main
parameters utilized in the generation of the data and, on the right some results such as the numeber of
iterations, the computational time and finally the relative error. See Tables 7, 8, 9 and 10.

Test 1S. (Figure 16). Target: reconstruct one of the image which has been utilized to create the
matrix A. See Figure 16 for the “True Image”. All the synthetic data yδ

i , for i = 0, · · · , 179, are obtained
by the real data yi, for i = 0, · · · , 179, adding a gaussian distributed noise of zero mean and variance
σ2 = 100. The noise in the synthetic data is shown in Figure 16 b) in aggregate form. For the discrepancy
principle (2.2) we choose τ = 2. See Table 7. We observe, from Figure 16 and Figure 17, how the presence
of A (and the fact that the information of the "true image" are included in A) “helps” the iterates (3.18)
in a better reconstruction of the value of the pressure than the Landweber iterates (3.19). However,
in Figure 16 c) we can observe some evident artifacts which come from the other a-priori information
contained in A.
Test 2aS/2bS. (Figures 18 and 20). Target: reconstruct one of the image which has been utilized to
create the matrix A, with regions with only negative values. See Figure 18 for the “True Image”. All
the synthetic data yδ

i , for i = 0, · · · , 179, are obtained by the real data yi, for i = 0, · · · , 179, adding a
gaussian distributed noise of zero mean and variance σ2 = 100 in Test 2aS, and σ2 = 10 in Test 2bS. The
noise in the synthetic data for the two tests is shown in Figure 18 b) and Figure 20 in aggregate form.
For the discrepancy principle (2.2) we choose τ = 3 in Test 2aS and τ = 6 in Test 2bS. See Table 8 and
Table 9. Again, in Test 2aS we notice how the presence of A “helps” the iterates (3.18) to get a better
reconstruction of all the negative values of the pressure than the Landweber iterates (3.19), see Figure 18
and Figure 19. However, we also observe some evident artifacts which come from of the other a-priori
in A. In Test 2bS, we consider the case of limited data, which corresponds in choosing the data only of
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some directions in Θ (see (a) for its definition) and set to zero the values of the other vectors related to
the angles not chosen, see Figure 6 b) for the directions of the available data. Comparing the results of
the two schemes, (3.18) and (3.19), we can observe a good reconstruction for the iteratively regularized
Landweber iteration.
Test 3S. (Figure 22). Target: reconstruct one of the image which has been used to create the matrix A,
with regions with positive or negative values. See Figure 22 for the true image. All the synthetic data yδ

i ,
for i = 0, · · · , 179, are obtained by the real data yi, for i = 0, · · · , 179, adding a gaussian distributed noise
of zero mean ad variance σ2 = 100. For the discrepancy principle (2.2) we choose τ = 3. See Table 10.
We stress that Figures 17 c), 19 c), 21 c), 23 c) show the ratios between the residuals of the data driven
model and the model driven approach. A value greater than 1 of the ratio implies that the data driven
approach has a significant influence on the iteration process.
As in the previous section, Figures 17 C), 19 C), 21 C) and 23 C) show the ratios between the residuals of
the data driven model,

∥∥Auk − yδ
∥∥, and the model driven approach,

∥∥F (uk) − yδ
∥∥. A value greater than

1 of the ratio implies that the data driven approach has a significant influence on the iteration process.
Figures 17 D), 19 D), 21 D) and 23 D) enlight how fast the product ∥Ruk − yδ∥2 ∥Auk − yδ∥2 is going to
zero.

Figure 14. Dataset utilized to create the matrix A in Tests 1S, 2aS and 2bS.
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Figure 15. Dataset utilized to create the matrix A in the following Test 3S.
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Table 7. Test 1S. Left part: Parameters used in the test. Right part: some of the results of
the test.

Method σ2-noise δ τ Iterations Comp. Time (s) ∥utrue−urec∥2
∥utrue∥2

DDIRLI 73 34,9193152 0,224935913
IRLI 100 141,519952 2 128 7,5506274 0,233332376
LANDWEBER 190 11,3537075 0,247679701

Figure 16. Test 1S. Reconstruction of an image which has been used to build the matrix A,
only with a region with a positive value. a) Image to be reconstructed; b) Plot of the noise
added in the synthetic data, which are aggregated in a matrix form; c)-e) Reconstructions by
the different methods.
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Figure 17. Test 1S. A) Residual at each step of schemes (3.18), (3.19) and (3.20); B) values of
λk in (3.18) scheme at each iteration; C) ratio of the residuals

∥∥F (uk) − yδ
∥∥

∞
/
∥∥Auk − yδ

∥∥
∞

at each iteration; D) plot of the ratio
∥∥F (uk) − yδ

∥∥
∞

/(λk

∥∥Auk − yδ
∥∥

∞
).
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Table 8. Test 2aS. Left part: Parameters used in the test. Right part: some of the results of
the test.

Method σ2-noise δ τ Iterations Comp. Time (s) ∥utrue−urec∥2
∥utrue∥2

DDIRLI 42 20,0855993 0,18951741
IRLI 100 144,6648313 3 66 4,3175441 0,30307348
LANDWEBER 156 9,0376626 1,802786044

Figure 18. Test 2aS. Reconstruction of an image which has been used to build the matrix A,
only with regions with negative values. a) Image to be reconstructed; b) Plot of the noise
added in the synthetic data, which are aggregated in a matrix form; c)-e) Reconstructions by
the different methods.
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Figure 19. Test 2aS. A) Residual at each step of schemes (3.18), (3.19) and (3.20); B) values of
λk in (3.18) scheme at each iteration; C) ratio of the residuals

∥∥F (uk) − yδ
∥∥

∞
/
∥∥Auk − yδ

∥∥
∞

at each iteration; D) plot of the ratio
∥∥F (uk) − yδ

∥∥
∞

/(λk

∥∥Auk − yδ
∥∥

∞
).



32 Aspri et al.

Table 9. Test 2bS. Left part: Parameters used in the test. Right part: some of the results of
the test.

Method σ2-noise δ τ Iterations Comp. Time (s) ∥utrue−urec∥2
∥utrue∥2

DDIRLI 84 37,8148317 0,144113319
IRLI 10 44,46384766 6 399 24,3457831 0,262173351
LANDWEBER 399 24,076839 1,77556498

Figure 20. Test 2bS. Reconstruction of an image which has been used to build the matrix A,
from partial data and only with regions with negative values. a) Image to be reconstructed;
b) Plot of the noise added in the synthetic data, which are aggregated in a matrix form; c)-e)
Reconstructions by the different methods.
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Figure 21. Test 2bS. A) Residual at each step of schemes (3.18), (3.19) and (3.20); B) values of
λk in (3.18) scheme at each iteration; C) ratio of the residuals

∥∥F (uk) − yδ
∥∥

∞
/
∥∥Auk − yδ

∥∥
∞

at each iteration; D) plot of the ratio
∥∥F (uk) − yδ

∥∥
∞

/(λk

∥∥Auk − yδ
∥∥

∞
).
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Table 10. Test 3S. Left part: Parameters used in the test. Right part: some of the results of
the test.

Method σ2-noise δ τ Iterations Comp. Time (s) ∥utrue−urec∥2
∥utrue∥2

DDIRLI 213 94,3754666 0,254685973
IRLI 100 145,8908582 3 83 4,7161903 0,475122924
LANDWEBER 151 8,5576423 1,372143804

Figure 22. Test 3S. Reconstruction of an image which has been used to build the matrix A,
with regions with positive and negative values. a) Image to be reconstructed; b) Plot of the
noise added in the synthetic data, which are aggregated in a matrix form; c)-e) Reconstructions
by the different methods.



A data-driven iteratively regularized Landweber iteration 35

Figure 23. Test 3S. A) Residual at each step of schemes (3.18), (3.19) and (3.20); B) values of
λk in (3.18) scheme at each iteration; C) ratio of the residuals

∥∥F (uk) − yδ
∥∥

∞
/
∥∥Auk − yδ

∥∥
∞

at each iteration; D) plot of the ratio
∥∥F (uk) − yδ

∥∥
∞

/(λk

∥∥Auk − yδ
∥∥

∞
).

4. Conclusion

In this paper we introduced a new variant of the iteratively regularized Landweber iteration, where
additional regularization is enforced from training data. The data driven regularization term is determined
by finding a linear system from the input-output relation of some training data.
This strategy is uneconomical in terms of the amount of usable training data, stability and matrix storage
capacity, and this asks for more advanced methods of learning (see for example [1, 7]) instead of a linear
black-box strategy. For some literature on deep learning in inverse problems, see for example [1, 2, 4, 6]
and references therein. We believe that the issue, of the use of a large amount of storage capacity for the
creation of the matrix A, could be overcome by using other methods of numerical linear algebra which are
equally valid and precise compared to the singular value decomposition. We leave this issue for future



36 Aspri et al.

works. Looking closer to our proposed algorithm it averages data driven regularization and physical model
terms in such a way that in the beginning of the iteration the data driven term is dominant, while during
the iteration the physical model takes over the leading role. By this sense we make sure that for data with
little noise we are always close to the physical solution. Our numerical experiments show that the iteration
always reconstructs an image where the residuum is close to the measured data. Moreover, if the desired
solution is well approximated by the training data, the reconstruction with the proposed algorithm always
works better than the standard Landweber iteration and the iteratively regularized Landweber iteration.
This, in particular, applies to severely ill–posed problems of limited angle tomography. A significant
challenge are nonlinear inverse problems, such as the problem of Schlieren tomography. The inherent
non-uniqueness of the solution of the Schlieren problem gives more emphasis on selecting the right a–priori
choice, which our flexible regularization term can handle more efficiently than existing theory. In the
nonlinear case, one can observe various artifacts in the reconstructions due to the linearity of A, which are
some of the images contained in A. Therefore, the use of a nonlinear operator A should be investigated.
We leave this issue for future works.
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