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Abstract. In this paper, we derive new asymptotic expansions for the solutions of higher order elliptic equa-
tions in the presence of small inclusions. As a byproduct, we derive a topological derivative based
algorithm for the reconstruction of piecewise smooth functions. This algorithm can be used for edge
detection in imaging, topological optimization, and inverse problems, such as quantitative photoa-
coustic tomography, for which we demonstrate the effectiveness of our asymptotic expansion method
numerically.
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1. Introduction. In this paper, we propose a new algorithm based on topological deriva-
tives (see, for example, [4, 5, 29, 41, 42] for a review on topological optimization) which allows
for detection of discontinuities of a given function f and of its derivatives. The basic idea
is that f can be viewed as a piecewise smooth function, and edges in f and its derivatives
can be modeled accurately by a set of singularities along small line segments. More precisely,
given a noisy image f, in order to find a smoothed version u of f, we consider the following
functional for a fixed order m € N,

1
(1.1) J(u;v) == /(u — ) dx+ a/ v |V™ul? dr,
2 Ja 2 Ja
where v € L®(f2), v > 0, and Q is a Lipschitz domain in R? where f is defined. The case

m = 1 has already been studied in [13]. The first term in (1.1) measures the fidelity to the
given image f, while the second one is a regularization term which accounts for the presence
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of discontinuities. The minimizer u € HJ*(2) of (1.1), where H}*(12) is the classical Sobolev
space of traces of derivatives which are zero on 92 up to m — 1, is also a weak solution of

(1.2) {“ +a (=1)™(V)" (V™) = f inQ,

m—1
u:%:---:%: on 0f),

where (V-)™ is the divergence operator applied m times, n is the outward normal vector on

. . . . [ —1
09, 8% is the normal derivative, and, recursively, 2% = -2 (gnlff

St = 3n )forl=2,...,m—1. In order
to detect discontinuities in f and its derivatives, we study the variation of the minimizer of
the functional with respect to small variations of v. We denote by v. and u. the perturbation
of v and u, respectively. Obviously, u. satisfies the same equation in (1.2), substituting v with
v.. With small variations, we mean that v, differs from v by a constant times a characteristic
function of small support—in our case a thin neighborhood of a line segment. Specifically,
denoting with Q.(y,7) the thin strip centered at y and along the direction 7, and with x a

real number such that 0 < x < %, we have that

/{'_L meﬁ&(y77)7
(ve —v)(z) = :

0 otherwise.
This procedure introduces discontinuities in derivatives of order m of the minimizer along line
segments, and an accurate asymptotic analysis of the minimizer with respect to v. allows us
to compare the perturbed functional, [J(us;v:), with the unperturbed one, J(u;v), and to
derive a rigorous formula of the topological derivative of the functional. Precisely, we prove
that

j(us; Us) = j(u, U) + 2530‘(5 - 1)Mvmu(y) : vmu(y) + 0(53)a

where M is a tensor of order 2m, which contains geometrical information on the direction of
the line segment along which the discontinuity occurs.

The idea of “drilling small holes” in the domain for edge detection, when m = 1, has been
introduced in [32] and has been successfully implemented in [23], where also a conceptual
connection to Mumford-Shah minimization and the Ambrosio-Tortorelli relaxation [3] has
been highlighted. Later, these results have been extended to the case where the edge set is
covered with thin stripes rather than with balls in [13]. Therefore, the main novelty in this
paper is to use higher order derivative discontinuities of the minimizer v to more accurately
recover image discontinuities. In order to get these results we need to overcome several
significant difficulties, by combining known methods and recent results on higher order elliptic
equations with discontinuous coefficients (see [10]) and tensors (see [19]), and generalizing some
of them, in a novel way.

In the first part of our paper we derive an asymptotic expansion for the perturbed func-
tional u — J (-, v:) due to the presence of a small measurable set via compensated compact-
ness, following the ideas of [17] and [18] where an asymptotic expansion of perturbations of
solutions to the conductivity equation has been derived. Here, however, the minimizer of the
functional is the solution to a partial differential equation of order 2m, where m > 1, with
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discontinuous leading coefficients, for which the theoretical basis is much less advanced (see
[10]). Also, to the best of our knowledge, asymptotic expansions of solutions of higher order
elliptic equations have been derived only in the case of diametrically small domains [6], while
the analysis in the case of arbitrary measurable small domains, and in the form of thin strips
like the ones considered here, is new, not at all straightforward, and interesting on its own.
In particular, we obtain a full characterization of the Polya—Szego polarization tensor in the
case of thin strips, generalizing the results obtained in [12, 11] and in [15] for the conductivity
equation and the linearized system of elasticity.

As explained in [29], topological gradient methods have been successfully applied to dif-
ferent areas of applications, such as topology optimization problems, image processing, and
image reconstructions to name a few.

In the second part of the paper, we use the above results in an application to quantitative
photoacoustic tomography (qPAT) (see [14]). This is an imaging technique that excites a spec-
imen by electromagnetic waves and records the resulting ultrasound; see [43] for an extensive
treatment of the experimental issues, and see [27, 28] for an extensive mathematical analysis.
Since the electromagnetic pulses used in photoacoustic tomography are very short, the com-
plete energy is deposited almost instantaneously compared to the travel times of the induced
acoustic waves, and therefore the pressure wave p can be assumed to have been generated by
an nitial pressure H(x); that is, it satisfies the wave equation

Oup(z,t) — Ap(x,t) =0,
atp(xﬂ 0) =0,
p(z,0) = H(z),

and p|aq, where M denotes a measurement surface, can be obtained from ultrasound mea-
surements.

By solving an inverse problem for the wave equation (see, e.g., [28] for a review on math-
ematical and numerical techniques), these ultrasound measurements can be used to estimate
the initial pressure H(x). Since

(1.3) H(z) = T(2)€(z) = T(z)u(z)ulz),

in the particular case where I' is constant, H(z) and the absorbed energy £(x) are propor-
tional, which is in turn proportional to the product of optical absorption coefficient p(x)
and the fluence u(x) (the time-integrated laser power received at x). Therefore, the initial
pressure visualizes contrast in pu. The coefficient I'(x) is called the Grineisen coefficient (or
photoacoustic efficiency since it describes the efficiency of conversion from absorbed energy to
acoustic signal) [21, 20, 44].

Quantitative photoacoustic tomography (qPAT) consists in determining spatially hetero-
geneous Griineisen, absorption, and diffusion coefficients, I'; 4, and D, from photoacoustic
measurements of the absorbed energy H = I'pu, where u satisfies

~V - (DVu) + pu =0 in Q C R?,

1.4
(1.4) u = g on 0f).
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Here ¢ is a given function which describes the illumination pattern.

Many facets of qPAT have been considered in the literature; an incomplete list is [2, 9, 20,
21, 24, 25, 31, 36, 38, 45, 46]. In general the problem of estimating I', p, and D is ill-posed
since it admits an infinite number of solution pairs (see [8, 9]).

Here, we consider piecewise constant material parameters p and D and a known constant
I as in [33, 14]. Opposed to the general setting, if © and D are piecewise constant functions,
then they can be uniquely determined from knowledge of the absorbed energy £ if, in addition,
the values of the two parameters at the boundary are known [33]. Moreover, it is a useful fact
that the union of the jumps of  and D are contained in the set of discontinuities of derivatives
up to the 2nd order of the qPAT measurement absorbed energy £, which then takes the role
of the data function f in (1.1).

In order to recover its discontinuities and consequently the discontinuities of p and D, we
use the topological derivative approach described in the first part. This allows us to detect
discontinuities of £ more accurately than in [14], where a variational method based on an
Ambrosio—Tortorelli relaxation of a Mumford—Shah-like functional has been considered. In
fact, the numerical algorithm that we present here is sufficiently robust to identify both p and
D even in the presence of noise in the data f; see section 6 for more details and comparisons.

The outline of the paper is as follows: In section 2 we introduce the basic notation and
state the general assumptions used throughout the paper. In section 3, we study the properties
of the minimizers of the functional (1.1) and of its perturbed version. This is, in fact, the first
step in order to introduce, in section 4, the tensor of order 2m which is the basic analytical tool
needed to characterize the topological gradient (see section 5) and to describe the variations
of the minimizers of the functionals (1.1). Finally, we complement this analytical theory with
numerical examples. In fact, section 6 is devoted to the presentation of generalized versions
of the numerical algorithms described in [13], which are applied to qPAT.

2. Notation and main assumptions. In this section we recall the notation regarding
tensors and functional spaces and the main assumptions used throughout this paper.

Notation 2.1. We first recall that a tensor of order m can also be represented as hyperma-
trices by choosing a basis, i.e., A;;,.. 4., where i, = 1,...,d and d is the dimension of vector
space; see, for example, [19]. In what follows d = 2.

Tensors and hypermatrices.

e Latin capital letters, e.g., A, E, V, indicate tensors of order m. The blackboard bold
letters, e.g., M, represent tensors of order 2m.

e Given a vector of components (i1,...,%y), with m > 2, we use the symbol 7 :=
(i1,...,4m,) in order to shorten the notation of indices for tensors. For instance, we
will often write A; instead of A;, ;...

o Let A, B € R**2X%2 be two tensors of order m; then A- B = szzl a;;b;5 denotes
the usual scalar product, i.e.,

2
A-B= E Qi oy 1 e Ot i 1 e -

i=(i1,envim)
)

=1
j:(j17"'7jm =1
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e Let A, B € R?*?%"X2 he two tensors of order m; then M;; = A® B = [aibj] is a
tensor of order 2m.

1
o Let A € R2*2X"X2 be a tensor of order m; then |A| := (22 1 ag) * denotes

=(i1,0yim)=
the Frobenius norm of A.
Function spaces.
e H/(Q) denotes the Sobolev space, where all derivatives up to order j € IN are square
integrable (see, for instance, [1]).

; —HI(Q
o HI(Q) = C(Q) ) s the subspace of functions which satisfy the homogeneous
boundary condition. See again [1].
e V™ u represents the tensor of the derivatives of order m of the function wu, i.e.,

O"Mu
81‘1'1 ce 8$im ’

Vmu = (vmu)il,...,im

where i, = 1,2 for k=1,...,m.
e (V) is the divergence operator.
o Let A:Q — R?*2X*2 he a tensor of order m; then we define

2
((V.)A)il,...,im,:l = Z 61'1mA'LlZm'

im=1

m

e We define the divergence operator, (V)" A, applied m times inductively, i.e., (V)™ =
(V-)((V71) A).
e The polyharmonic operator is defined inductively by A™u = A(A™1u), with m > 2.
e Denoting with n the outward normal vector on 02 and with % the normal derivative,
the symbol is defined recursively by g%ﬁ = %(g:,;ﬁ‘).
e ¢ and f will denote bounded functions such that ( € LP(Q) := {( € L>®(Q) : ¢ >
Oa.e. in Q} and f € L>°().
Parameters.
e « > 0 is fixed during the whole paper and has the role of a regularization parameter.

IMu
nm

Let us now state the main assumptions.

Assumption 2.2 (Domains).

1. © denotes an open, connected, and bounded subset of R? with Lipschitz boundary
9.

2. B,(y) denotes a two-dimensional ball of radius p and center y € R?.

K denotes a closed subset of 2 with positive 2D-Hausdorff measure.

4. 69 > 0, and Ly C Q\K is an open domain with smooth boundary satisfying

w

(2.1) diSt(Zo,aQ U K) > 6p > 0.
5. 0<e<1,y€ Lgand 7 € S are fixed, such that

(2.2) Qe(y,7) = {z € R? : dist(z, S (y, 7)) < %},
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&

(L]

Y. (y,7) Qe(y, T\ (y. 7

[

(L]
il

Figure 1. Ly does not touch 9Q and K and can contain the stripe Qc(y, 7). The scaling of the thin stripe:
Q€(y7 T) = QE (y7 T) u QE (ya T)\Qs (y7 T)'
with
(2.3) Ye(y, 1) ::{x€R2:a::y+pT, —e<p<e},

contained in Lg. In particular, Q.(y,7) does not contain K. Moreover, we denote by
Q. the rectangular box around ¥.(y,7) and the two caps by Q.\Q. (see Figure 1).
Since 0 < € < 1, y € Ly, and 7 € S' are fixed throughout the paper, we omit the
dependencies of ¥ (y,7) and Q(y,7) on y and 7.

6. n. and n denote the outward normal vectors to 02, and 912, respectively.

Remark 2.3. We use the terminology of morphological image analysis (see, for instance,
[40]). Let B C R? be a structuring element and A C R? an arbitrary set; then the dilation of
A with respect to the structuring element B is defined as follows:

AeB:={r+y:x € Aandye€ B}.
In particular

Ye(y,7) = {y} © Xc(0,7) and Qc(y,7) = Xe(y, 7) © B,(0).

Assumption 2.4 (Functions). Let 0 < k < . We define the following functions:
1.

(2.4) v = kXK + IX0\K-

2. For given (y,7) such that Q.(y,7) C Ly we define v, : 2 — R by

(2.5)

() k, € KUQ(y,7),
ve(x) =
‘ 1 otherwise.
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Therefore, we have

ﬁ_la xeﬁ&(y77—)7

0 otherwise.

(2.6) (v — v)() = {

Remark 2.5. We note that

(2.7) Q.| = (4 + me) = O(®), | =met = 0.

= 4e® = O(¢?), and ‘QE\Q;

We finally stress that throughout this paper C' denotes a generic constant, which can
depend on k,dg,y, T, K, Q, Ly, «, and f but does not necessarily need to depend on all of
them. That is,

(2.8) C = C(r,Q, K, 0o, Lo, || fll o< () » @) > 0.

3. Asymptotic analysis. Let ¢ € L3°(2), f € L*>®(2), a > 0, and m > 2 be fixed. In this
section we are analyzing the following functional defined on Hy*(€2):

(3.1) T () = ;/Q(uf)Q dm+Z/QC]Vmu\2 da.

In the following we characterize the minimizer of J(+; ) as the solution of a 2m-order partial
differential equation.

Lemma 3.1. Let v be defined as in (2.4); then there exists a unique minimum v € HJ*(2)
of J(u;v), and u is also a weak solution of

(3.2)

u+a (=1)™(V )" (V™) = f  in Q,
u:g—g:-~-:g:,iqf:0 on 0N.

In addition, let v. be defined as in (2.5); then there exists a unique minimum u. € HJ*(Q) of
J (ug; ve), and ug is also a weak solution of

(3.3)

{u,E +a (-1)™(V)™(vV"u) = f  in

0 gm=1
U =G == G0 = on 0N.

Moreover, the following energy estimate holds:

max { [ull o [ty | < C 1 Floe ey

See Appendix A for the proof of this lemma.
We define the function w. := u. — u. As a consequence of Theorem 3.1, we have the
following lemma.

Lemma 3.2. From (2.6), (3.2), and (3.3), function w. € H{* () is the weak solution to

m—1
wszaggf:...:aanm_uif:o OTLOQ,

(3.4) {ws +a (=1)™(V)™ (VM) = a (=1)™(V)™((1 = k)xa.V™ue) in Q,
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and

we + a (=1)™(V)™(0:V"w:) = a (=1)™(V)™((1 — k)xa.V™u)  in Q,
(35) ow 6m71w

We = 8n5:---: 8nm_1s:O OnﬁQ

Proof. The proof follows by subtracting (3.2) from (3.3) and then by adding and sub-
stracting vV™u,. and v.V™u properly. In fact, it is straightforward to find that the weak
formulations of the two problems (3.4) and (3.5), are, for all ¢ € Hj*(Q),

(3.6) /nggo dr + a/ﬂvvmwe V" dr =a(l — m)/ V"u; - V" dx

and E

(3.7) /Qwego dxr + a/QvEVme V" dr =a(l — fﬁ)/ﬂ V" - V™ dx,
respectively. E [ |

3.1. Asymptotics of w.. We need the following estimates for u, which is a consequence
of the local regularity results for polyharmonic equations which can be found in [22].

Lemma 3.3. Let u be the solution of (3.2). Then u € H*™(Lo) and there exists a constant
C such that

(3.8) V™ ul| oo (o) < ClIf Il oo () -
Proof. Since v =1 in Ly, the equation in (3.2) is equal to
u+a(—A)"u=f in Lo;

hence, by interior regularity results for polyharmonic operators with smooth coefficients (see,

for instance, [22, Thm. 2.20]), it follows that u € H*™(Lg) and

[l grzm gy < CUfllpooy + 1wl gm@)) < C Il e (q) -
Then, by using Sobolev’s embedding theorem, [1, Thm. 6.2], we find that

H*™(Lo) C C™(Lg),  with v € (0,1);
hence
IV ul| oo (o) < Cllullg2m(zg) < C [l oo () - u

In the following lemma we get some asymptotic behavior on the function we.

Lemma 3.4. Let p,q € R be such that ]% + % =1, with q € (1,2) and p € (2,40), and

Mg,k = %(% — %) fork=1,...,m —1, where 0y, 4% > 0 for every k =1,...,m — 1. Then
there exists some positive constant C independent of € such that we satisfies
1 1
(3.9) [well grm )y < C 9|2 and wel grm-r(qy < C Q|2 Tk
for every k=1,...,m.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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Proof. From (3.7), using the test function ¢ = w, (which is an element of Hg"(€2) according
to Theorem 3.1), we obtain

/ w2 dr + a/ ve [V w, |* dz = a(l — k) V™ - V", dx.
Q Q Qe

Application of the Cauchy—Schwarz inequality and the use of (3.8), (2.5), and the fact that
. CC Ly (see Figure 1) then give

V0 By < (1 K,)/Q V- V0. da < (1— k) yyvmuyLw(QE)/ﬂ V.| da

1

Thus, there exists a positive constant C such that

1
VT wel| 2 () < C' 82|

and thus the first estimate in (3.9) follows by means of the Poincaré inequality; see Theo-
rem A.l.

To prove the second inequality in (3.9), we consider an auxiliary function W. which
satisfies

(3.10) {W€+O‘ (=D)™(V)" (VW) = w.  in 9,

J— T —1717
A A A on 99,

for which the weak solution is given by

/W€g0+a/vaW€-Vmg0:/wscp
Q Q Q

for all o € HJ(Q). Inserting ¢ = w, into the last equation and ¢ = W_ into (3.6) and then
subtracting the resulting equations, we find

/ w? dr = a(l — /@)/ V", - V"W, dx.

Q e

To estimate the left-hand side of the previous equation, we apply the Holder inequality on the
term on the right-hand side. With this aim, we first observe that W, is more regular in {2,
because it is the solution of a polyharmonic operator with constant coefficients. We carefully
explain this fact later, in (3.15). By hypothesis, we choose p and ¢ such that

1 1
(3.11) pe€(2,+), g€ (1,2), and PR
hence

(3.12) el Zage) < a(t = m) IV uel| Loy V" Wel oo

< a(1 =) (IV"™ el agey + 19"l o)) 197 s -
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Now, we estimate the terms on the right-hand side of (3.12).
Estimate of HVmuHLq(QE). We apply Theorem 3.3; in fact since Q. CC Lo (cf. Figure 1)
it follows that there exists some constant C' such that

(3.13)
1
||Vmu||%q(gs) < ||Vmu||qoo(L0) (/Q da:) < C19Q|, that is, IV ull o,y < C Q]9

Estimate of ||V™we[1q(q.). Using again Holder’s inequality with r = % € (1,2) and
5= Z%q it follows that

o L
||Vmwa||LtI(Q / V™ we|? de < </ |vme’2 dl") Q| = ||Vmw€||qL2(Qs)|Qa|1 %,
Qe Qe

which then together with the first, already proven, inequality in (3.9) gives

Q=

1_1
(3.14) V™ we|| oo,y S IV well 20y Q)72 < O8]

Estimate of HV’"WE HLP(Qg). As Q. CC Lpand v = 1in Lg, for the estimate of this term we
can apply the local regularity results for polyharmonic equations with constant coefficients;
see [22]. Indeed, since W, is the weak solution of (3.10) and w. € L2(Q), we have that
W. € H*"(Lg); hence

HWEHH2m(LU) <C Hwe||L2(Q)
Finally, applying the Sobolev embedding theorem (see [1, 22]), we find that
(3.15) IV Wel| ooy < IWellwmn(roy < ClIWellgzmr) < Cllwell2q)

Therefore, inserting (3.13), (3.14), and (3.15) into (3.12), we get that there exists a positive
constant C' such that

(3.16) lwell3a(o < €196 el 2
which finally implies that

1
(3.17) [wel 2y < C Q] .

So far we have found the estimate of w. in H™(Q) and L?(Q2). Finally, the assertion of the
theorem, i.e., the second inequality of (3.9), follows by the application of classical interpolation
inequalities in Sobolev spaces (see [30]), with the results (3.17) and the first inequality in (3.9).

Indeed, for every k =1,...,m — 1, we have that
1—E L3 (L-1)
[well gm—k < Cllwe |l gy llwell 72 gy < C182% el k=1 m -,
which gives, together with (3.17), the assertion of the theorem. [ ]
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Remark 3.5. For q and m fixed, it is straightforward to observe that the following relations
between 7, ¢ 1 hold: 11 < NMmg2 < < Nmgm—1-

We define some auxiliary functions.

Definition 3.6. In what follows we use the following notation: © = (i1,i2,...,im), where
k=12 fork=1,...,m and x; = x;, ...x;,,. We denote the polynomial of degree m and in
the variables x1 and xo2 by

1 1
— X, oy, = —x; for x €.
m!

™ m!

(3.18) yiim(g) =

To shorten the notation we define V* := Virim,
These functions satisfy

(3.19) (V)™(V™VH) =0 in Q.

Moreover, we denote by V2 the solution of

(V)™ (V™VE)) =0 in Q,
(3.20) Vi=yi on 99,
BaV;i - aalﬁa e a(;:l:nlyfi = 8;23? on 041,
where
620 CRS g

Consistently we denote
(3.22) Y =1in Q.

In the following, we provide estimates for the functions V; and V*.

Lemma 3.7. Under the assumptions of Lemma 3.4, there exists some constant C indepen-
dent of € such that

(3.23) ’ V; —yt Vc} e <C |Q€|%+nm,q,k
Hmfk(Q)

< C|QE|% and ‘

H™(9Q)

foranyk=1,...,m.
The proof is similar to the proof of Theorem 3.4.

Lemma 3.8. Let 1)y 41 be defined as in Lemma 3.4. Then, for all test functions ¢ € Ci"(Lo)
the following identity holds:

(3.24)

/ (V"ue - V"V da — / (VPVE - V™u)g da| = O(|%| o),

£ €
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Proof. We first observe that 7. = v. in Ly. We use the weak formulations (3.6) and (3.7)
of w,, where we choose ¢ = V*¢ and ¢ = V¢, respectively, i.e.,

(3.25) / w V¢ dx + a/ oV w, -V (Vi) dr = a(l — k) [ V™u. - V™(V') dz,
Q Q Qe

and

(3.26) / w Vi dx + a/ vV, - V(VE¢) dx = a1 — k) V™ - V™(Vig) d.
Q Q Qe

Then, subtracting (3.25) from (3.26), and since ¢ has compact support in L, we find

/ we(VE— V) dr + a/ V", - V' (VEp)do — o | V™w, - V™(VE) da
Lo Lo Lo

=a(l - n)/ [vmu V(VEG) — V™M, - V™(VE) | da.

In the last expression we specify the terms containing the derivative of maximum order of all
the functions, i.e.,

(3.27)
we(VE— V) pdr + a/ vV, - V""Vipdr + a/ vV, - V"oV dx
Lo Lo Lo
. m—l . .
—a | VTw. -V"™"V'dx + a/ eV, - Z ymoion (V"V; ®@Vo+V"'p® VV;) dx
Lo Lo n=1
. mil . .
—a [ VM VPOVide—a [ VTw.- |3 vl (vnvz Vo + V' ® vvz) dz
Lo Lo n=1

:0‘(1—“){/ Vmu-VmV;’éder/ Vmu-vmcbvgidx—/ Vs - Vi da
€ Qe

€

m—1
— / V™ - VGV d + / V- |3yt (vnvj RV + V' vv;’) da
Qe Qe n=1
m—1 ) )
— [ VTu- > v (V”V’ ©Ve+V'® VV’) d:c}.
Lo n=1

We next use the weak formulation of the equations satisfied by V¢ and V2 (see (3.19) and
(3.20)) in Lg. The idea is to find an expression of the terms in w, with the maximum order of
derivation, which are in the left-hand side of the previous formula, in terms of the derivatives
of lower order with respect to w.. Specifically, for all test functions we¢, we have

/ 0 VVE - V™ (we¢)dr =0,  and / V"V V™ (we) dx = 0;
LO LO
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hence, specifying the terms V™ (w.¢), we get for the first equation

(3.28)
UEVmV? -V"™w.pdr = / UEVmV; V" ow, dz
LO LO
) m—1
— / v V"V Z VI (V. @ Vo + V' ® V)| de
Lo n=1
and, analogously for the second equation,
/ VIV V" g de = — / VVE -V w, d
L() LO
(329) m—1
- / VTV VT (Vi @ Vé + V6 @ V) | da
Lo n=1

We use (3.28) and (3.29) in (3.27). Then, in the resulting equation, we add and subtract V* in

each term containing V (but not in the terms already containing the difference V* — V* and
not in the first integral in the left-hand side of the equality (3.27)). After some calculations
and simplifications, we find

a(l — n)/Q (V™u - VW2 — V™, - V™V dx
- / we(VE = Vi)gda
Lo

) a{ | v Ve = [ 09 TV =V do
Lo

Lo
) ] m—1
+ / v VTVE=VH VT (Vi @ Vo + V6 @ V) | da
Lo n=1
mil . . . .
- / vV we - | YV (v"(v;: —VH@Ve+ V' V(VE - V’)) dx
Lo n=1

+(k—1)

m—1
/ vy (Z VL (Vi @ Vé 4+ Vi @ Vw€)> da

n=1

+ / VTV V™ dw, dx] }

—a(l - /@){ V™ - V"p(VE— V) da
Qs

+/ vV - dm}.
Qe

Getting the assertion of the theorem, i.e., the estimate of the integral on the left-hand side

m—1
SV (V- V) @ Ve + Vi@ V(VE - V)
n=1
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of the previous equality, in terms of [ |'T"ma1  is a lengthy task. It is based on the appli-
cation, on the terms in the right-hand side, of the Cauchy—Schwarz inequality, the fact that
V'@l poo(ry) < C foralln: 0 <n<m—1and |v:] <1in Ly, and the estimates (3.9) and
(3.23). We do not give the calculations in detail here; we only note that all these integrals
can be estimated in terms of the product \Qgﬁ and \Qg\%+"m’q’1. [ ]

Remark 3.9. The identity (3.24) holds also with u. replaced by V* and u replaced by V?,
respectively, since in Lg the pairs satisfy the same equations.

Remark 3.10. From Theorem 3.4 it follows that
3 3
(3.30) ||w5HHm(Q) = 0O(e2) and ||w5||Hm7k(Q) = (’)(85+3”qu”°) Vk=1,...,m— 1.

Moreover, from (3.23), it follows that
(3.31)

4. Definition and properties of the 2m-order tensor. We start this section with the
definition of the tensor M. We note that the family of functions (|Q—1E|XQE)E>0 is uniformly

= O(e2t¥mmak)  Wk=1,... m—1.

Hm—k(Q)

= O(e’f%) and ‘

H™(Q)

bounded in L'(Q). Hence, by the Riesz representation theorem, we have that the family of
measures

1
4.1 dpe == — d
( ) /"[’8 ’QE‘XQE €z

is bounded in C°(Q2)*, and hence by the Banach—Alaoglu theorem (see, for instance, [39]),
possibly up to the extraction of a subsequence, we have that

1
(4.2) dpe = mXQE dx —* du  for e — 0,
€

where —* denotes the weak*-convergence of C°(2)*, that is,

1 ~ ~ ~ _
/xgg¢d$—>/¢du fore -0, forall ¢ e C°Q).
a || 0

It is also immediate to see that, due to the form of )., the measure p is concentrated at the

point y, i.e., p = d,. Analogously, using the energy estimates (3.23), it follows that the family

of functions (‘Q—H%XQE)DO is uniformly bounded in L'(Q), and therefore the family
15 1 m

of measures

dy. =
e T Oy, - Oy,

xq. dz

converges, possibly up to subsequences, to a Borel measure

- 1 8mVEZ
|QE| 8{[:]'1 e al‘jm

(43) dl/s XQ. dx —* Mil...imjl...jméy for e — O,
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which is equivalent to saying that

1 8mvgz
|Q€| Q ale T 8xjm

(4.4) X6 dx = M, i, g d(y)  for all ¢ € CO(Q).

To shorten the notation we define M;; := M, ..., ;. -j,, -
Before putting together the results in Theorem 3.8 and (4.4), we observe a local regularity
result on u. and V.

Remark 4.1. We note that the function u. is C™ () since it satisfies, in the open set
., a nonhomogeneous polyharmonic equation with a forcing term in L (by assumption).
Indeed, this result follows from local regularity theorems (see [22]), for which u. € H?>™(€.),
and consequently from the application of the embeddings theorems.

This result also holds for Vs" since these functions satisfy a homogeneous polyharmonic
equation.

From this regularity result, it follows that both V"u. and V’”Vg are symmetric tensors
in Q..

Therefore, from the symmetries of V™u. in €2, for all ¢ € C"*(Ly), by Theorem 3.8 and
using (4.4) (where we choose ¢ = V™u¢), we also have that

1 .
/ mXQEVmUE . Vszqb dx
(45) e

1 0™ ug
= M m f '
/ﬂ 0 X% G o, ¢ W MVTuly)ely) for e =0

im

Remark 4.2. We notice that (m—lg'XQE V™. -V™V*).~0 is uniformly bounded in L'(2) due
to (3.18) and the use of energy estimates (3.9) after summing and subtracting v in V™u..

Therefore, this sequence converges in the weak™ topology of C(£2), up to a subsequence, to a
Borel measure, i.e.,

1

(4.6) ToN

|XQSVmu€ VW dr —* dyg.

Defining a bounded domain L1, with smooth boundary, such that Q. C L1 C Lg, and exploit-
ing (4.6) and (4.5), we deduce that

(4.7) /Q bdpi = MV™u(y)é(y) Vo € C™ (L),

and by the density of C"™(L;) in C°(L;), we have that

ou

dpti = M.,
12 J1 jm@l‘jl“'ax]’m

5.

Let us now state some key properties of the tensor M.
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Proposition 4.3. We denote with o(t) any permutation of the indices i1, ..., iy,. The 2m-
order tensor M has the full symmetries, i.e.,
(4.8) Mij = Mg(s); = Mg

g) = M.

Proof. The first equality in (4.8) follows immediately from the fact that V¢ = V() which
implies V* = 140 (from the uniqueness result for (3.20)). The second identity follows from
the regularity results for V* (see Remark 4.1), which implies that we can interchange the order
of differentiation in (4.4).

The identity M;; = Mj; follows by substituting v and w. with V73 and ng , respectively,

in Theorem 3.8 (see Remark 3.9) and using the symmetry of the tensor V™V (see Remark
4.1). In fact,

1
€2

(4.9)

/ VWE NI dr =
0. Q2

1 . .
9OV da 00 )
€ Qe

for all test-functions ¢ € Ci*(Ly).
Therefore, using (4.3) and Remark 4.1, we get for the left-hand side

_ vagz V"""V dr = € da — Mi' .
€| Ja. ¢ Q| Ja, Ozj, - .amjm¢ i?(y)

On the other hand, the first term in the right-hand side of (4.9) gives

1 3ngj
|QE| Q. 8%‘2'1 e 6iL'im

(4.10) VTV VTV dr = ¢ dx — Mj;0(y);

9] Jo.

that is the assertion. [ |

By the symmetry properties of Ml we can consider, without loss of generality, the space of
symmetric tensor of order m, i.e.,

S™(R?) := {A such that A; = Aa(i)}.

Therefore, we have that M : S™(R?) — S™(R?). For a review of some results on symmet-
ric tensors of generic order, their properties, their decomposition, and their relations with
hypermatrices, see [19], [26], and references therein.

We introduce some auxiliary functions which are needed to get some bounds on the tensor
of order 2m.

Definition 4.4. Given E € S™(R?), we define the auwialiary functions

2 2
(4.11) V= Z E;V? and V.= Z E;V2.

=(i1, ,yim)=1 i=(%1, ,im)=1
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From (3.19) and (3.20), we find that by construction V and V are solutions of

(V)™(™V) =0 n O,
2 .
(4.12) V= ; E;V on 99,
2 ; m—1 m—1 2 .
%% = % <Z E'LV'L> 9ty %nm—‘{ = 8(27,7”_1 (Z EZVZ> on 89
i=1 i=1
and
(V)™ (7 V"Ve) =0 in 0,
(4.13) Vo=V on 09,
86‘:15 = (g%a sy %”Z;l—‘ie = %:;1_‘{ on 89,
respectively.

Remark 4.5. We observe that from the definition of V* (see (3.18)) it follows that
2

(4.14) V'V =Y EV'VI=E.
=1
In fact, from (3.18), since x;, = x1 or x;, = xo for [ =1,...,m, we have that
Tiy iy - iy, = 2,

where h is the number of x;, for [ = 1,...,m equal to z1. In this way, we immediately get
that
(4.15) OVE 10w my e m,) 1 OM@p el [ i b=k,

dxj, -+ 0xj, m! Oxj - 0xj, m! 9xmk ok 0 if h+k.

Then, since for hypothesis Fj,;,...i,, is a symmetric tensor, it follows that the number of tensors
E; =FE in the sum of (4.14), which have m — k components equal to 1 and k

1o o (i1-im)>
components equal to 2 is given by (7). This consideration and (4.15) give the identity in
(4.14).

Definition 4.6. Given V and V; as in (4.11), we define

W.:=V. - V.

By means of the difference of (4.12) and (4.13), and then adding and subtracting
(V)™(y.V™V), according to (2.5), we find that W, satisfies

(V')m(%vmwe) = (V)m((l - H)Xstmv) in €,

(4.16) W.=0 on 092,
6{;/56:,,,:%: on 0N).

Using these auxiliary functions, in the following we determine some sharp bounds on M.
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Proposition 4.7. The 2m-order tensor M is positive definite and satisfies
1
|E <ME-E < =|E|* forall E € S™(R?).
K

Proof. The starting point to prove this proposition is the definition of the tensor M;; (see
(4.4)), which we specialize for the case where the test function ¢ € C™(€2). This choice of
regularity will be clear in the second part of the proof, where it is needed in order to get

uniform estimates. By (4.4), we have that

(417)  Mio(y) = lim

d for all ¢ € C™(QY).
U 1] o, 9y, om0 foralloe (€)

Applying this identity with the test function E;E;¢, with ¢ € C™(€), it follows from (4.17)
that

(4.18)
ME-Ed(y) = S EiMy; E;o(y) = {lim E; I 5 N da:}.
ij—1 B igo1 o0 Q] Jo. Oy - Oz,
Using (4.14) in (4.18), we can rewrite Ej,...;, = axa#, that is, it follows that
J1 Im
2 .
1 omVve omv
ME - E¢(y) = lim — i £ ¢ dx
(4 19) e—0 |QE| Q. g1 al'jl s afbjm 8ij e al'jm

1 m m .1 mys|2
=l o | VW VIVt lim o |9V e,

where in the right-hand side of the second equality we have added and subtracted V* in the
term containing V* and then we have used (4.11), i.e., the fact that Y 5_, E;W? = W.. Now,
we derive an expansion for the first limit in the right-hand side of the second equality of (4.19);
i.e., to be more precise, we prove that

1
(4.20) / VW VIV gdn = —— / Ve VWP dar + O[] ),
- Q

€

With this aim, we use the weak formulation of the problem (4.16); i.e., for all ¢ € H*(Q)

(4.21) / V"W, - V"pdr = (1 — k) / vV - V"pdz.
Q

£

In this last equation, we choose ¢ = W.¢, where ¢ € C™(§); hence

/ V"W, - N (W.p)dx = (1 — R) / V"V V(W) da.
Q

€
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Specifying the term of higher order derivative with respect to W, we get

/ V"W, - V™" W_.¢ dx + / V"W, - VoW, dx
0 0

+ / r}/gvmW{.: °
Q

m—1
DV (VM. @ Ve + V' ® VWE)] du

n=1

- (1—@{/ vmv.vmwg¢dx+/ VYV - VW, da

[

Therefore, we can rewrite the previous equality as
(4.22)

(1—;<;)/ va-vmW5¢d$—/’Yg|vmW€|2¢dx
Qe Q

m—1
Y VIV, @ Ve + Vo ® VWE)] dm}.

n=1

m—1
S VT (VMW @ Ve + Ve ® VL)

= / veVTW, - VoW, dx + / V"W, - dx
Q Q n=1
m—1
(1 /@){ / VY| 3D VI (VWL @ Ve + Ve © VL) | da
€ n=1

+ VmVquSWEd:L‘} =L+ 1+ I3+ I4.
Qe

As was already done in the proof of Lemma 3.8, we can estimate 1eanch integ%ral, in the right-
hand side of the previous formula, in terms of the product of |Q.|2 and |Q.|21"me! by using

the Cauchy—Schwarz inequality, the fact that ¢ € C™ (), and the estimates in Lemma 3.7.
Estimate of I.

(423)  |I] < max |V [V Wel| 2 [|Wel 120y < CI9:]2 Q|7 Mmat = || +ma,
Q

Estimate of Io. We note that in the sum only the derivatives of order equal to or less than
m — 1 appear. Therefore,

(4.24)
m—1
L] < e > IV Well 2@ IV" Well 2@y < CIWell om0y [Wellm1() = ClQ|HHmat,
n=1

Estimate of Is. In the sum only the derivatives of order equal or less than m — 1 appear;
hence

m—1
1 1
(4.25) 1| SCIV™V] Y V' Well 20| Q|7 < C Q|2 [[Well gm-1(,) < ClQe]MFmat,

n=1
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Estimate of 1.

1
(4.26) |5 < [V7V] max V7] [Wellz2q.) |92]2 < O [HFrmar,
Inserting (4.23), (4.24), (4.25), and (4.26) into (4.22), we get (4.20), i.e

1

/ VW - V"V de = -— / Vel VWP d + O(| Q| Fmat),

B —KrJa

We are now in position to prove the two estimates in the statement of the proposition.
Inequality ME - E > |E|2. Using (4.20) in (4.19), we find

1 1
SME - E = = lim o [ 29" Pods
1 —Ke=0 |Q€| Q
(4.27) 1
i mys|2 Q|1 t0m.a1y |
#lima | [ [9mVPods + ogo )
In this last equation, we choose nonnegative test functions ¢ € C™(9Q), ie., ¢ > 0, and
recalling that 7. > 0 and 1 — k > 0 (see Assumptions 2.4 and (3.21)), we get

SME-E > lim o | [ 19V 4 O(0u )
s

By (4.14), we find

1
ME - E > |E]? i
é(y) > | |HO o

/ ¢ dz + lim O(|Q. "1 = |E2¢(y),
QE e—0
from which it follows that

ME - E > |E*.

Inequality ME - E < %\E\z Taking (4.20) and assuming again that ¢ > 0, we find
(4.28)

/%yvmwy ¢dr = VOVTW, - V™V /¢ dx + O(|Q | Fmat)

1 1
m 2 2 (1 — K’)2 mys|2 g 14+1m,q,1
kIV"W|*¢ dx Y IV™"V|*pdx ) + O(|Q%] )
Qe Qe

1 1 1
<5 [ Mo+ 50— w0 [ ZFTVEG+ O ),
€ QE

IN

2

where in the first inequality we have applied the Cauchy—Schwarz inequality and in the second
one the Young inequality. Then, since all the terms in the first integral on the right-hand side
of the last inequality are positive, and 7. > x in Q (see (3.21)), we find that

1 1 1
3 [ EWPedn =5 [ WP ds < 5 [ VWG da
B Qe Q
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hence, using this estimate in (4.28), and then summing up the resulting terms appropriately,
we get

1
/%IV’”WEI%de (1—m)2/ V"V o da + O(|Qc[ ).
Q

£

Inserting this inequality into (4.27), we get

¢y ME - E < hm \Q | / —|V™V|? ¢dx+hm

e—0

002 [/ VTV da + O(1Qc| e

where, using again (4.14), it follows that

P(yME - E < — !E!2

'm,q,1 _1 2
g |, 6ot T Ot = BP0,

which implies that

1
ME - E < —|E|2. |
K

Spectral decomposition of M. In the following we derive the spectral decomposition of the
tensor M. To simplify the notation, we assume without loss of generality that Q. := Q.(0, e;),
where e; = (1,0) and e2 = (0,1). The more general setting can be always obtained by rotation
of Q. From [19] we know that the dimension of the space of symmetric tensors of order m is
equal to dim(S™(R?)) = m + 1. In the following, we denote with o, any permutation of the
elements of e;, ® - -- ®e;,,, where i, = 1,2 for k =1, ..., m with the clause that the resulting
permuted object is not repeated if it coincides with one of the already existing outcome. We
define with E", for h = 1,...,m + 1, the orthonormal canonical basis of S™(R?), i.e

El=e® - ®e,
N——
m—elements
1
Ehziz 1 Qe Qe Qe for h:2,...,m,
(")
h—1) 97 (m—h+1)—elements (h—1)—elements
E"l =@ - ®es.
———

m—elements

Remark 4.8. By the definition of the permutation o, that we are adopting, it is straight-
forward to observe that each E®, for h = 1,...,m+1, is the sum of only (th) tensors of order
m which have m — h + 1 elements equal to e; and h — 1 elements equal to es. For this reason,
the quantity 1/ (hTI) is only a normalization coefficient; i.e., it is such that |E"|? = 1 for
h=2,...,m

In order to derive the desired spectral value properties of M, we use regularity properties of

solutions of higher order equations with discontinuous coefficients recently derived by Barton
n [10].
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Spectral values along E", h = 1,...,m. We will start by showing that the quadratic
form associated to M, i.e., ME - E, attains the value 1 along E = E" for h=1,...,m

Proposition 4.9. Under the notational simplification that Q. = Qc(0,e1), for all h =
1,...,m, it holds that

ME" . EF = 1.

Proof. The proof of this proposition is essentially based on the use of (4.19), where we
choose ¢ =1, i.e.,

1
(4.29) ME - E = |E|2+hm’Q’ V"W, - E dx,
Qe

where we used the fact that V"V = E see (4.14). Next, we use the equation satisfied by W,
(see (4.16)) and the regularity estimates proved in [10] to get an estimate of the integral term
in the previous formula, when we choose E = E" for h=1,...,m.

We first note that W, € HJ(Q2) and in (4.16) the source term ((1 — k)xn.V™V) € L*(Q).
Then, for all p’ € (2,3) and p € (2,2) such that ]l) + 1% =1, by Theorem 24 in [10], it follows
that there exists C, independent of € and F, such that

(4.30) Sup [V MWl < CIV ™ We 1o + 11 = K)xe. Bl v o

In addition, since p € (%, 2), we also have that
V™ Wel o) < CIVT T Wellp2i) < ClIWellgm-1(9) < ClIWellgm(a)

The last inequality and (4.30) imply that

(4.31) sup|Vm W] < CIWell ey + C'[E]7 < C10."2E5) < clag|v.

Spectral value along E'. Choosing E = E' in (4.29), we get

1 oW,
1.l
(4.32) ME" - E —1+;1_I)r(1) ] Jo, oap x,
and moreover
8Vn[f€d :/ 8Wd+ avn[fdmzzflwfg.
o, O] a.\o. Oz q. Oz
We estimate I and I3:
8mW oW, it
= | ] < | NORYE
(4.33) Q.\q. 07T L(Q:\0L)

/L 1
< IV Well 29\ [2 = O(1Q:[5),
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where in the last equality we have used the results in (2.7). For the integral I} we have

oW, e oML
121 = m€ dr = / / dxr1 dxo
q. Oz 2 ) . Oz

MW (e, 20)  OMTIW(—¢, 20)
= m—1 - m—1 d‘T2
_e2 Ox’ Ox’|

Then, using the result in (4.31), we get that

/82 <8m_1We(57$2) _ am_IWE(_€7x2)> dza
—g2

m—1 m—1
Ox] Ox]

2

m—lW
<C sup ? £

m—1 €
xo€[—e2,e2] 8I1
< CIV™ ' We| e €
L+2
= O(|2%[*" "3),

13| =

(4.34)

where, since for hypothesis p’ € (2,3), we have that }% +§ =144, 6 > 0. Therefore, inserting
the results in (4.33) and (4.34) into (4.32), we finally find the equation
ME!- E' = 1.
Spectral value along E™ for h = 2,...,m. Choosing E = E" for h = 2,...,m in (4.29),

we get

1
(4.35) ME" . Ef =1+ lim — [ V™W. - E"dz,
e—0 |Q | Q.

where, using the symmetries of V"W, (which come from the regularity property of the poly-
harmonic function Wy in §2.; see (4.16) and Remark 4.1) and Remark 4.8, we get

m h
/ V"W, Ed:c—” ho1 / 8xm hHahldxlda;g,
and moreover

"W, 0" W oW,
0. 0z ggh1 dzy dvs :/QE\Q D i dry d$2+/ DR T dx1 dxo

= _[1 + IQ .
As already done for the terms I{ and I}, we find that

oW, m /1 1
(4.36) |I{l| = ’/ @ 6xm_h+1<;xh_1 dx; dx2‘ <[V Ws||L2(QE\Q/E)|Q€\Qe|2 = O(|Q%|"5),
5 & 1 2

where in the last equality we have used the results in (2.7). For the integral Ig we get

/ "W,
Q. Oz ght

|1 < — = day

—hg o h—1 —hgh—
2 Oz "0xy Oz " "0y

< CHVm_lWEHLOO(Qg) e? = (’)(|QE|1+5)’

/52 O IWe(e, xg) O™ W (—¢, x2)

(4.37)
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where § > 0. Inserting (4.36) and (4.37) into (4.35), we get the assertion. [ ]

Spectral values along E™T!. We will now show that the quadratic form associated to
M, ME - E, attains value % along E = E™*!. To prove this proposition we will need to show
two preliminary lemmas. The first one is an adaptation of [18, Lemma 3].
2)

Lemma 4.10. For all E € S™(R?) we have
Proof. Since 7. = k in . (see (2.5)), it follows by just squaring the quadratic term that

e
Q

—1)2
- (HK)IEF dot [ 4o [VWL dot 20— 1) [ VPWEda,
. Q Q.

1 -1
(4.38) (k—1)ME- E—i\E\ +11m ( min /’y8 v 4+ 2 xo. F

Q| Wenp @)

2

-1
dzx

V"W, +

xo.

(4.39)

Then, using the weak formulation (4.21) of W, in which we choose ¢ = W as a test function,
we can rewrite the second integral in the right-hand side of the previous formula in the
following way:

(4.40) / Y|V We|? do = (1 — /ﬁ?)/ V"W, -V"Vdzx = (1 - KJ)/ V"W, - E dx,
Q e

€

where in the last equality we have used (4.14). Inserting (4.40) into (4.39), we find

2

—1 — 1)
/'y€ V"W, 4= xa.E dx:\QE\(Kﬁ)]E\Q—i—(n—l)/ V"W, - E dx;
Qe
hence
m ("Q — 1)2 2 m ?
(k—1) \Y WE-Ed:c:f|QE]T|E] + %V W+ xo. B
Then, inserting this expression into (4.29), we get
2 (K ) m 2
(k—1)ME-E=(rk—1)|E| —T|E| +ho|Q] Ve |V W+ = xo. E| dz.
Finally, noting that W; is the minimizer of the functional
N -1 2
W e H"(Q) — / e |V 4+ & xa.E|
the assertion follows. |

Next, we have the following lemma.
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Lemma 4.11. There ezists a function w. € HJ* () such that

/ V™0, — xo. V™23 |? da = o(|]) for e = 0.
Q

To prove this lemma, we first need to introduce some parameters and three functions,
defined on the real axis, which are involved in the definition of the function w.:
1. Let

(4.41) c(m= 1 4m -3
: a
2m —1'2(2m—1) )’
and let . € C°(R) (see [34]) be the function which satisfies for some constant C; > 0

(a) te(z2) =1 Vi € [—e%,€7;
(b) supp(¢:) C (— e2 _ g2 c? + g29);

(c) 0 <, S 1;
(d) die O1 d21/15 g d"™ e Ci
dx2 — 62a7 dm% — gdasr dxgﬂ — g2ma -

2. Moreover, let

(4.42) Be (; 2(211)4-@),

and let . € C§°(R) (see [34]) be the function which satisfies for some constant Cy > 0
(a) pe(z1) =1 Vay € [—¢,¢];
(b) supp(pe) C (—e — 28 e +29);
(c) 0<p: <1,
)

dpe _02
(d dxy

— 5257

Co
v ERRRE

Co
—= EQmB .

d™ e
dx i

d’ e
dz%

Remark 4.12. Parameters a and 8 vary in the triangular orange region in Figure 3.

3. Finally, let 7 : R — R be defined as follows:

m m!(—l)h_1€2hmm_h . 9
h=1 A=)l iy > €7,
(4.43) Ue(w2) 1= < 2l ifrg € [—€2,€%,
m!(—1)2}”*182%@7”7}L . 2
he1 AIC=nim ifzy < —€.

Remark 4.13. Function v, is an element of H™ on every compact interval of R. To show

that, it is sufficient to prove that . and its derivatives ‘fl”f ,forl=1,...,m—1, are continuous
polynomial functions across zo = €2 and xp = —e2. With this aim, we first notice that in
{1’2 > 62}

h12hmh

m ' m
(4.44) Ue Z mi (m =)l Z ( )5”%5” h for xo > &2,

h=1
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and, analogously, the derivatives of T, in {zy > €2} satisfy

d'v, (@) = m—I m!(_l)h—l(m —h)Y(m—h—1)---(m—h—1+ 1)52hm72n—h—l
dih Rl — )]
m—l - m—h—1
( 1)h 162h$2 )
pu— ! f .
mh:1 h!(m—h—l)' or ro > €

Multiplying and dividing for (m —[)! in the last expression, we get

(4.45)
d'v. - m —1)! h—1
(x2) = —52h:c§”
dab, - l (m—1)! hZ:l [ —h)!
m—l
=m(m—1)--- —l+lz h’l( l>52hx’2nhl for1<li<m-—-1.

h=1

From (4.44) and (4.45) it is straightforward to check that both 7. and its derivatives $% are
continuous functions across z» = 2. In fact,

il
(4.46) u.(e?) = —ezmhil(—l)h (?) =" -1+ hio(—l)h@)] =&,

where in the last equality we used the well-known fact that Y 3" (- l)h(?) = 0. Analogously,
forall 1 <1 <m —1, we have

) m—l1 B
d'v, () =m(m—1)---(m—1+1)e 2(m—1) (—1)h1 m —
da}, h

>

=-m(m-—1)- - 1)"
(4.47) =—mm =1 (m =4 de

ws&
>—‘~
N/—\
3
=
\;

= —m(m—1)---(m—1+1)2mD

=m(m—1)---(m—1+1)e2m,

where in the last equality we used again the property ZZL_OZ (—1)" (m}; l) = 0. Values in (4.46)
d‘rl,forl—l m—1,

across T2 = 2. The same argument can be applied for v (z2) in {z2 < —€2}.

and (4.47) coincide with those assumed by x5* and its derivatives

Proof of Lemma 4.11. In the following we denote by
(4.48) R. = {(:cl,:cQ) e <o <e4eP <y <4 52‘1}

with @ and (3 chosen as in (4.41) and (4.42), respectively. Note that for e sufficiently small
R. C Q.
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We define a test-function w, : R? — R as follows:

(4.49) We (21, T2) = Ve (22)Ye (v2) 0 (21).

Function w,. satisfies the following properties:
1. w. € H*(),

x5 in Q,
oo (z1)  in Q\QL.
We can now prove the assertion of the lemma. From the definition of W, and property 2, it
follows that
(4.50)
/ V™0, — xo. V™| da :/ V™5, — Va2 dm+/ V™0, * da

Q

€ €

2. @6(1'1, 1'2) =

= / V"W, — VP do + / V7w * de =: Jy + Jo.
Q:\QL Q

€

Now we estimate J; and Js.
Estimate of Ji. For the integral J; we first use the property 2 of w,.; hence we find

(4.51) / VT — Ve ? de :/ V@ (e — 1)) da.
Q\Q. Q:\QL

By properties (2a)—(2d) of ¢, and the fact that 3| < €2, we observe that

2
m dn m
m(,m 2 n Pe 4n—4ng,
V7 a5 (e~ 1) §0<n§_oj|x2| e ) <oy e

hence, using this last inequality in (4.51) and the fact that |Q. \ Q.| < Ce*, we get

/ o [T e~ P de SO0 0Y] S £ €3t < o),
€ € n=0 n=0

where the last equality derives from the fact that, for the range of a chosen, we have that
$ < 1 and hence 4 + 4n — 4nB > 4. Then it is sufficient to recall that €3 = O(|.]); see (2.7).

Estimate of Jo. Taking into account the definitions of Q. and €. (see Figure 1), it follows
from the properties of W, and the definition of R, (see (4.48)) that

/ V"0, |* da g/ V™w, [* dx—/ V"W, |* da.
Q\Qe Q\Q, R\Q.

We divide R, into eight parts, consisting of
Rl = {(z1,22): —e <21 <e,e? <o <2+ ™} CO\Q,,
R? = {(331,362) ce<m <e+4eP ?<py<E? +€2a} C O\,
R3

£

= {(xl,xg) <z <e+4eP << 52} C Q\Q;,
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28 28

1 2 92
Rl R 2e

~2a

Figure 2. R, is divided into 9 parts. The central object is Q;

and its symmetric counterparts (see Figure 2).

Then we estimate the integrals over these subdomains separately; however, because of
symmetry of w, it suffices to only estimate the integrals over R., i = 1,2, 3.

1. Estimate of fR; |V™w,|? dx. Using the fact that ¢, = 1 in R} C Q\Q. and the
h

. _ . I(—1)h—Lg2hgm—h
definition of v, when 2y > €%, ie., V. = > 1, mi( h)!(m_sh)!x? , it follows that every

term in V™w, containing at least one derivative with respect to x is zero. Therefore,
the only nonzero term is given by

m—1

(4.52) o"we _ 3 (d Ve &7 ¢5> 1 e
n=1

m n m—n m
Oxy dxy  dxf dz?

where we have used the fact that ‘g? e = 0, since the polynomial v. has degree
m — 1. Then, from (4.52), we get

-1
"™ we — A" | |d" Y d™y,
4.53 <C — |+ |7 .
( ) ‘ Oxy* | — nz:l dry | | dzd™" [oe] dxb
We first observe that, for n =0,...,m — 1, we get
AT m—n
(4.54) d;jf <Y &2 |gymhn
2 h=1
In addition, from the fact that €2 < xo < €2 + £2@,
m—h—n
’x2|mfhfn < (82 +€2a)mfhfn _ Z €2q€2a(mfhfnfq).
q=0

In the last sum, since a < 1 for hypothesis (see (4.41)), we take the power with
minimum exponent which corresponds to the term with ¢ = 0, i.e., e28(m=h=n) for
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n=20,....m—1and h = 1,...,m — n, since all the other terms contain, at least,
powers of €2; hence

(4.55) 2o < (2  g20)m—hon < Ola(m—h-n),
Therefore, inserting (4.55) into (4.54), we find

d"v,
n
dz?

m—n
<C Z €2h€2a(m—h—n)’
h=1

where, again, the maximum term corresponds to that one with minimum exponent,
i.e., the index h = 1; hence

d"v,

T < CeQH(m*l*")“, where 0 <n <m — 1.
)

(4.56)

Using this last estimate, (4.56), in (4.53) together with (1d), we find that

d"v,
n
dxs

dmfnws
day ™"

d™ e
dxy’

< CEQ_Qa,

(4.57)
S 062—2(1 .

e

Therefore, from (4.57) and (4.53), we get

(4.58) /R VM dr < CIRY e = o,

€

where we have used the fact that |R!| = 2¢12%. Observe that, since a < 1 for
hypothesis, we have that 5 — 2a > 3; hence (4.58) gives

(4.59) / V| d = o(|)).
Rl

€

2. Estimate of [p, V™, |? dx. In this case We(x1,x2) = V() e (x2)pe(21), where T,

. . . . _ 1(—1 h—1_2h,,m—h
is the polynomial of degree m — 1 in x9 > €2, i.e., T, = by mi( h)!(mfh)!% . Then

i dn(ﬁewe) d™ ", '

4.60 Mwe| < C

( ) | €| — — dxg dx'in—’n

In the previous inequality, recalling that ‘g;g: = 0, we split the term related to the
d™ (TVe1)e)

maximum order of derivative, i.e., , from the terms with derivative of lower

m
dzy
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orders; hence we have that

f: d" (@ews) d™ "o,

n m—n
dx? dzy

-1 m d'l",UE dm T‘¢E 1 n n dnfrwe dmfn(pe
Pe + d = =
Ty

m—r n—r m—n
r) dry dxi r dz, dxy

V"o, | < C

n= :
m—1 n

dr@ dmf’f‘ d'f’* dnfr dmfn
<C |90€| Z d : mjés d njp'r6 m_f;":
=0 | @2 | | dxy 0o | dry | | day dxy
m—1 _ —r m—1 n r— dm—n
<o\ | |G|t S a | | |
= dxy | | dzf == dxy | | dxi dz
=: 51+ 53
Using (1d) and (4.56), we find that
Sy < Ce*2,

Analogously, by means of (1d), (2d), and (4.56), we get that

m—1
Sy < C Z 82+2a(m71)72an725(m7n)'
n=0

Then, using the fact that |R2| = 29128 we find

m—1
’Vmwsp de < C<€472a+2ﬁ + Z E4+4a(m71)f4an746(mfn)+2a+2,8>
R2 —
(4.61) n0
_ C<€472a+25 4 Z €4+2(a—/3)(2m—2n—1)>.
n=0

Therefore, from the hypothesis made for a and 8 (see (4.41) and (4.42)), we find that
all the exponents in the previous formula are greater than 3, i.e., 4 — 2a + 25 > 3 and
44 2(a—B)(2m —2n — 1) > 3. Indeed, 4 — 2a + 23 > 3 is equivalent to 5 > —% + a;
hence we immediately observe that, in Figure 3, the orange region, where a and [
vary, satisfies 8 > —% + a. On the other hand, condition 4+ 2(a—3)(2m—2n—1) > 3
is equivalent to 8 < 7o) 4+ a for all n = 0,...,m — 1. We observe that the

function h(n) := m + a is an increasing function with respect to n and hence

the minimum value is h(0) = 4m 5 1 a; see the red line in Figure 3, which corresponds
to the upper bound for 3 in (4 42). Even in this case, the orange region satisfies the
required condition 8 < S@m=2n=T) +a for all n =0,. — 1.

Therefore, for the choices of and B in (4.41) and (4. 42) we have that

1
2(2m—2

/RQ V™. > dz = o(|]).
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’ o il g — 4m=3 a
/ @ = am—1 2(2m—1)

Figure 3. Parameters a and B (see (4.41) and (4.42)) vary in the orange region. Lines

show that, in

(4.61), 4 — 2a — 28 > 3 (related to the purple line) and 4+ 2(a — B)(2m —2n — 1) > 3 (related to the blue line)

forn=20,...,m—1. The green line is the case n = m — 1, and the red line is the case n = 0.

3. Estimate of ng |V™@,|* dz. In the set R3, function 9. (z2) = 1 and 7.
hence W, = x§'p.(x1), which implies that

mg | < O = n dn(ﬁ& <C < 2n—2np
Ve < O3 e D] < 03 e,
n=0 1 n=0

We notice that, since for hypothesis 8 < 1, 2n(1 — ) > 0 for all n = 0,
hence, using the fact that |R3| = 2¢272% we get

/ VLR de < ORI S -8 < 028,
e

n=0

— m
= z4', and

...,m, and

where in the last inequality we have used the fact that 4n(1 — 8) + 2+ 28 > 2 4+ 23
for all n =0,...,m. For the choice made for 3, i.e., 5 > %, we have that 2 + 23 > 3,

which means that

/RS V™. > dz = o(|Q]).

In the following we show that the maximal eigenvalue of M (as defined in (4.3)) is L.

Proposition 4.14. Under the notational simplification that Q. = Q.(0,e1) it follows that

1
(4.62) ME™ . gt = —
K
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Proof. We first observe that from the fact W € Hi'(Q) it follows that W= —"‘T_IW €
H{"(9Q). Therefore, from (4.38) it follows that
. moy k=1 2 . -k, 11—k 2
__min Ve |[VTW 4 xo.F| dr= __min Ye V"W — xo. | dz
WeH () JQ K WeH(Q) JQ K K

1— 2
Q

—~ 2
. VW = xa.B| da.
K WeHM(Q)

Now, in the previous equation, we choose E = m!E™*! and hence
(4.63)

— k-1 2 1—k)?
__min / Ve |IVTW + " XQEm!Em+1 dx < (25)/ Ye \V’”ws — XQEm!Em+1‘2 dx
WeH () JQ K K Q
1— 2
= (H;)/Q'yg V™0, — xo. V™2 da.
Applying Theorem 4.11, we get
~ k-1 2
(4.64) __min / Ve VMW + xa.m E™ dx = o(|Q.])
WeHm(Q) Jo

as € — 0. Finally, substituting (4.64) into (4.38), where we choose E = m!E™*! we get

2
) dzx,

which gives the assertion. |

(m!)Q(R . 1)MEm+1 . Em+1

4.65 -1 1
(4.65) = (m!)QH + lim ( min /’ye
Q

N VW +
£ =0\ Q] Wenp o)

k—1
XQSm!Eerl
K

Main result on spectral decomposition of M. From the results of the previous section,
we are now ready to prove the following spectral decomposition.

Theorem 4.15. Under the geometrical simplification that Q. = Q.(0,e1), the tensor M has
the following spectral decomposition:

m
1
4.66 M:§ E"® E"+ —E"tl g gt
(4.66) ® +/€ ®

n=1

Proof. By Propositions 4.3 and 4.7, the tensor M is symmetric and positive definite.
Hence, its eigenvalues are positive and real, and by (4.7) they lie between 1 and % Further-
more, by Proposition 4.9, 1 is an eigenvalue with multiplicity m and corresponding eigenvectors
E',...,E™. By Proposition 4.14, % is an eigenvalue with corresponding eigenvector E™*1.
Hence, for all E € S™(R?) which, using the basis, we can represent as

m+1
E=) (E-E"E"
n=1
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we find, by applying the tensor M, that

m+1 m
1
ME =) (E-E")ME" = Z E-E"E" + —(E - E™thHEm+!

1 KR
(4.67) "
1
En ® En E (Em—i-l ® Em+1) E,

HMSI

which implies (4.66). [ |
Remark 4.16. In the general setting of Q.(y,7), (4.66) reads as follows:

m
4.68 M=M(r)=) E"®@E"+ 1 gma @ EmHL
(
K

where

E1:T®---®T,

m—elements

1
h — Lo...ort _
(4.69) BN = — Z TR QT QT ®--QT for h=2,...,m,
(h_l) 9m (m—h+1)—elements  (h—1)—elements
Em+1 :TL®"'®TL,
af_/

m—elements

where 71 is the unit normal vector to the line segment o (y, 7).

Remark 4.17. Note that the proof to derive the spectral decomposition of the tensor of
order 2m is more involved than the one in [18] since we have to deal with higher order
differential equations with discontinuous coefficients.

Remark 4.18. We want to emphasize that our asymptotic analysis can be generalized in
a straightforward way to the case of measurable set ). which tends to zero when ¢ — 0. In
this case,

/ ! Ous 4 4 %/Mvm édji e 0
Q. x U as ,
Q |Qe|X Oy -+ - 0wy, Q :

where dji is a Borel measure supported in Q. In particular, if Q. is a neighborhood of a
segment o of fixed length, then g = §,, and the decomposition of the polarization tensor
(4.66) still holds.

5. Topological gradient. We are now ready to derive the topological gradient of the
functional J(-;-) as defined in (3.1).

Theorem 5.1. Let u,u. be the solutions of (3.2) and (3.3), respectively; then, for e — 0,
we have

(5.1) T (ug;v.) = T(u;v) 4+ 2e83a(k — DMV u(y) - V™u(y) + o(e3).
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Proof. Recalling the definition of the functional J(-;-) (see (3.1)), we first prove that

a(k—1)

(5.2) T (ue;ve) — T (usv) = 9 0

V"u. - V™ dx.

It follows from the first order optimality condition of 7 (+; -) with respect to the first component,
for fixed ¢ and v, that

(5.3) /(u€ — ) dx + a/ veVu. - V"o der =0 for all ¢ € H'(Q)
Q Q
and
(5.4) /(u — o de + a/ vV - V"o dx =0 for all p € H'(Q).
Q Q

=

Choosing ¢ = u in (5.3) and ¢ = u, in (5.4) and then subtracting (5.4) from (5.3), we get

(5.5) / (ue —u)f de = a(l — k) / V™u. - V™ da.
Q Qe

On the other hand, inserting ¢ = u. into (5.3) and ¢ = w into (5.4), we obtain, respectively,
(5.6) /(uE — flue dz + a/ Ve |[V™ue|? do =0

Q Q
and
(5.7) /(uf)u dx+a/ v |V™ul* dz =0,

Q Q

Now, from (3.1), we find

j(ug;ve)—j(u;v):1/9(u6—f)2 dx+a/ﬂvglvmu5]2 d:c—lfg(u—f)2dx

2 2
- a/ v |V ul? da;
2 Ja

hence, by (5.6) and (5.7) we have that

1

J(ug;ve) — T (uyv) = _2/9(% —u)f dx,

and using (5.5), we get (5.2). Now, we estimate the right-hand side of (5.2), first observing
that

(5.8) / V™ - V" dx = / V™ue - V™ dx + / V™ - V™ dz.
. Q Q:\Q.
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In the second integral in the right-hand side of the previous formula, we first add and subtract
V"™ and then we apply the Schwarz inequality, the regularity estimates (3.8), and the energy
estimates (3.9); that is,

A*wvwfVWMxgmmmw%—wmmﬁwwﬁm

! 1/2 !
< e = ull gy |2\ + [0\

= o(e%).

Therefore, inserting (5.9) into (5.8) and then the resulting equation into (5.2), it follows that
a(k —1) m m 3
j(us;ve)_j(UQ'U):T VM. -V udx—i—o(z-: )
4

Next, choosing a bounded set L such that Q. C L1 C Lo, we use the result in Remark 4.2;
hence

1
— / V™u - V™ dz — MV u(y) - V"u(y) as € — 0.
’Qa’ Q'E

Recalling that |QL| = 4¢3 (see (2.7)), we finally derive
T (us; ve) = T (u;v) = 2e%a(k — MV u(y) - V™u(y) + o(e?),

which concludes the proof. |

6. Numerical simulations. We consider the problem of quantitative photoacoustic tomog-
raphy(qPAT) with piecewise constant parameters p and D (absorption and diffusion coeffi-
cients, respectively), and a constant Griineisen parameter I' (see (1.3) and (1.4)), as outlined
in the introduction. Parameters u and D can be detected from the set of discontinuities of
derivatives up to the 2-order of the qPAT measurement data H, which is proportional to &
under the assumption that I' is constant (see (1.3)). Figure 4 shows a typical example of
qPAT data derived from piecewise constant material parameters.

In this section, we extend the topological based algorithms for edge detection in image
data (see [13, Algorithms 1 and 2]) by using elliptic differential equations of order 2m (see
(3.3)), with f = &, and the topological gradient provided in (5.1). Note that in [13, Algorithms
1 and 2] the discontinuities of f have been detected by using the discontinuity of the gradient
of the solution of a second order elliptic equation along line segments. We emphasize that
according to [33] if the diffusion coefficient D is jumping across an interface but the absorption
1 is constant, one observes a jump in the derivative of the gradient of &£.

The goal of this section is to show that using the topological gradient derived in (5.1),
we are able to detect both the absorption and diffusion coefficients better than in the results
obtained in [13] and the results obtained in [14], where a variational method based on an
Ambrosio—Tortorelli approximation of a Mumford—Shah-like functional is used. Toward this
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Figure 4. From the left: The piecewise constant absorption coefficient u, the piecewise constant diffusion
coefficient D, and the simulated ¢qPAT data f = E. The parameters are from (1.4). The test data is analogous
to that in [14].

aim, we use the asymptotic expansion provided in the previous section, specialized only to
the case m = 2,3, comparing the results with the case m = 1, which was studied in [13], and
with the numerical outcomes of [33].

Using the topological asymptotic expansion (5.1) with v = kxx+1xo\k, Ve = KX kU (yr) T
X\ (kU (y,7)) (S€e (2.4)), where the according set K is as introduced in Assumption 2.2, we
get

T(ueive) — T (s ) ~ 25%a(k — DMV ™uly) - V"™u(y).

To develop a stable algorithm, we follow the approach proposed in [13] for the case m = 1.
We recall here the main idea: For every v € L?(12), we define

me(v) := inf{]S! :SCR?*x S, v=vg with K = U Qe(y,f)},
(y,7)ES

where vk is the value of v in K, and we set m.(v) := 400 if v # vi for every finite subset
S c R?xS! with K = U,res ©(y, 7). The idea behind the algorithm is to introduce a slight
modification of the functional J defined in (3.1) in order to take into account a constraint on
the perimeter of K, i.e.,

Te(u,v) := %/Q(u—f)Qda:+%/Qvlvmu\de—FQﬂema(v),

where (3 is a positive parameter, for all v € HJ*(Q?) and v € L>°(Q). It is shown in [13] that
for general Q.(y,7) N K =0, it yields

Te(u,ve) — T (t,0) = T (u,v:) — T (G, v) + 20,

where J is exactly the functional defined in (3.1) for all u,u € Hg*(€2). Therefore, by (5.1),
we have

(6.1) Te(te,ve) = Te(u,v) = T (ue; v2) — T (w;0) +28e ~ 2e3a(k—1)MV™u(y)-V™u(y)+ 2.
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We observe that, from Proposition 4.7, we have that

< V™ uly)

(62) M)V uly) - Vuly) < B

Therefore, substituting M(7)V™u(y) - V™u(y) ~ M into (6.1), which implies that the
direction of the line segment has to be chosen parallel to the eigenvector associated to the
eigenvalue of V™u(y) with maximum absolute value, we find
1—-k
Felue, 1) = Tef,) ~ 2% T ) 1 g

hence we expect a decrease of the functional J. in case

Bk
6.3 v 2> "
(63) V)P > s
In the particular case m = 2, we can be more precise, finding the maximum value of

M(7)V™u(y) - V™u(y) and the direction of 7 where it occurs. In fact, we are able to provide
the explicit expression of the tensor M, which is optimal with respect to V2u(y), i.e., which
maximizes the form MV2u(y) - VZu(y).

Lemma 6.1 (m =2). Let A1 := M\ (y) and s := Aa(y) denote the eigenvalues of VZu(y),
and the according eigenvectors are denoted by 7 := 7(y) and #+ := #1(y), respectively. More-
over, we assume that |[\1| < |\2|. Then, for M as defined in (4.68), with m = 2, we have

2
M(7)V2u(y) - V2uly) = A\ + X = max M(7)V2u(y) - VZu(y).

K TeSt

Proof. First, we note that, due to the symmetry of V2u(y), we can consider an orthogonal
decomposition of the matrix VZu(y), i.e.,

(6.4) V2u(y) = UAUT,

where U is an orthogonal matrix, and the matrices are given by

a0 TR LR
(6.5) A_[O AQ], U=|[# T]_[%z %1]'

Then, from (4.68) (cf. (4.67)), (6.4), and (6.5), we get
(6.6)
M(7)V2u(y) - Vu(y) = [(U A UT) - (r& )]
+% [(U AUTY- (T®TL+TL®T)}2+% {(U AUT)- (TJ‘®TJ‘)}2
= [("0) A GO+ [T 0) A ()]
2

£5 [0 A T+ (1) A )]
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Now, we denote x = 77U and v = (7)TU, and then we have v = x* because U is orthogonal;
in fact,

x-v=vix=UrtTu =o0.
Because [|v|| = ||x|| = 1, it follows from (6.6) and the explicit expression of A (see (6.5)) that

2
2

1
= (Mxf +Aox3)? + E(MX% +22x3) 4 202 — M)*xExs

2 1 2 1
M(m)V3ul(y) - Viu(y) = [x A XT]" + = [x AT +xt A XT} +— [Xl A (XL)T}
(6.7)
= APxT 4+ A3x3 + 2A e

1
+ —(AIxz + AT+ 20exixE) + 2002 — )i = T

Defining p := A7 + 23 and p := A3 + 1A2, we see that the last term on the right-hand side of
(6.7) equals

_ 1
T = (p(x1 + 22X + X2) — 2Xix3P — X2p) + X2P + 2XTx3M A2 <1 + H) +2(X2 — A)xAXG.
Now, we take into account that y is a vector of norm 1, and thus
X1+ 2xG +xz = 1,
_ 1
oep =080 (1-1).
)\1)\2 1—}-; —1—()\2—)\1) —p:()\l)\g—)\Q) E_l s
and thus

1 1
T =p+x203 = A9) (1 - H) — 2XIX3 (A — A3) (1 - H) :

By the assumptions on the eigenvalues, i.e., [Aa| > |A1], the sum of the last two terms is always
negative; hence the maximum value of T is given by p. Then, we note that this maximum
occurs when xo = 0; that is, in terms of 7 this means that

0=x2=(r"U)s = —11%2 + 1o,
which, equivalently, means that 717+, or in other words 7 = +7. |

Remark 6.2. Since k — 1 < 0, as a consequence of Lemma 6.1, we get that

2 o2 A\ o2 o2 )2 M 1
M(7)VZuly) - VZuly) < M(7)V7uly) - VZu(y) = Ai(y) + == Vres.
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Therefore, by considering the approximation

2
M) Vu(y) - Vuly) ~ i) + 2,

(6.1) becomes

AQ
(6.8) T (e, v2) — Te(u,0) ~ —283a(1 — #) <A§(y) n 25”) + 28
Therefore, we expect a decrease of the functional 7 if
A3 (y) B
2 2
. > .
(6.9) (B + 20 > T

Remark 6.3. Getting a similar result of Lemma 6.1 for the case m > 3 is more involved,
due to the fact that a decomposition of Vu(y) in terms of its eigenvalues is not known a
priori; see [19, section 8.2]. In fact, in the real field, the number of eigenvalues of an m-order
tensor could be different from the dimensional space (in our case 2).

Using the above facts, we implement, in the cases m = 2 and m = 3, a two-step algorithm
for detecting line segments; this algorithm first detects the edge position and second determines
its direction according to the following rules:

1. We detect only significant edges by selecting the point y € L satisfying the stabilizing
criterion (6.3).
2. At this point, we create a line segment in the same direction of the eigenvector asso-
ciated to the eigenvalue of V™ u(y) of maximum absolute value.
Before presenting the numerical results, we make some other remarks on this algorithm.

Remark 6.4. In the case m = 3, to identify the eigenvalue of greatest absolute value of
V3u(y) and, in particular, its corresponding eigenvector, we utilize the results in [37, Theorem
7.3] regarding the L-eigenvectors of a third order tensor. We recall here the main step: given
V3u(y) we define the kernel tensor U;; = E;h:l(V3u(y))ikh(v3u(y))khj. Then, the eigen-
vector associated to the greatest eigenvalue of V3u(y) is equal to the eigenvector associated to
the greatest eigenvalue of maximum module of the kernel matrix U; see [37] for more details.

Remark 6.5. For the case m = 2, we will also show the results given by steps 1 and 2,
where we replace the stabilizing criterion with (6.9) and choose as the direction of the line
segment the one given in Lemma 6.1 (see Algorithm 6.2 below).

We are now in position to develop and show Algorithms, 6.1, 6.2, and 6.3, generalizing
those contained in [13]. These algorithms will be applied to the qPAT test data from [33],
represented in Figure 4. Since we need to numerically solve higher order elliptic equations
with finite element methods, the qPAT image is down-sampled to (130 x 130) in order to
save computational time. The numerical results can be applied to more general problems
which aim to detect discontinuities in an image f through the discontinuity of higher order
derivatives of a smoothed version of f.
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Algorithm 6.1. Our first algorithm computes a smoothed version of the input image f,
where the smoothed image is the solution of a 2m-order elliptic equations with v = 1; see
(3.2). By only using this regularization function, we identify a sequence of thin stripes K @),
where KU1 is formed by including with &) a thin stripe Qg(y(j), T(j)) in the position y/),
for which |V™u(y)|? is maximal, and along the direction ) until [V"u(y)* > —2%—. We

= ae?(1-k)
note that the direction 7) coincides with that of the eigenvector associated to the greatest
absolute eigenvalue, when m = 2 or m = 3, and is chosen orthogonal to the gradient when
m =1 (see [13] for this last case). See the scheme in Algorithm 6.1.

Algorithm 6.1 Implementation without updates of v.

Data: input data f (for instance, qPAT data £), m = 1 or m = 2 or m = 3, parameters
0<k<<l,a, 8>0,¢ 6 >0, 0 > 0;

Result: the set of line segments S and the set of thin stripes K;

Initialization: set S =0, K =0, and L = Q\ (0Q @ B;,(0))

compute the solution u of

{u +a(-1)™(V)™"(V™u)=f inQ,

m—1
u=%P = .. =0"1=0 on 9Q,
with a finite element method.

while max,cy, |Vmu(y)\2 = % do

find y € L such that |[V™u(y)[? is maximal;
compute the line segment ¥.(y,7) and the thin stripe Q. (y, 7);
set S+ SUX.(y,7) and K + K UQ.(y,7);
set L« L\ (Q:(y,7) ® By, (0));
end while

Remark 6.6. When m = 2, we use Hsieh-Clough-Tocher C! finite elements to solve the
fourth order differential equations. We call 7;LA the submesh of 7 where all the triangles are
split into three subtriangles at their barycenter; then

HCT, ={neCQ): YT €T~ n, € P*},

where P2 is the set of polynomials of R? of degree less than or equal to 3. The degrees of
freedom are the value and derivatives at vertices and the normal derivative at the middle edge
point of initial meshes; see [35, 16] and references therein.

In the case m = 3, we use a splitting method in order to solve the corresponding sixth
order equation with a finite element method [16]. In particular, we solve the system given
by v := Au and u — aA?v = f. From the viewpoint of the implementation, this means that
we need only to properly modify the code obtained for the fourth order equation. Certainly,
the numerical results for this case can be improved using more sophisticated methods which
are able to directly solve the sixth order equation with the proper boundary conditions. In
fact, in our implementation only two of the three prescribed boundary conditions are satisfied,
namely u = 0 and % =0.
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Algorithm 6.2. In this algorithm we focus our attention only on the case m = 2, following
the same ideas contained in Algorithm 6.1, but we use, as stopping criterion and as identifier
of the points where to insert a line segment, the relations in Remark 6.2. See Algorithm 6.2
for all the details.

Algorithm 6.2 Implementation without updates of v and using eigenvalues of the matrix of
second order derivatives.
Data: input data f (for instance, qPAT data &), parameters 0 < kK < 1, a, 8 > 0, ¢,
60 >0, 09 > 0;
Result: the set of line segments S and the set of thin stripes K;
Initialization: set S =0, K =0, and L = Q\ (0Q & B;,(0))
compute the solution u of

{u +a(V)2(V2u) = f in Q,

u:%:(} on 09,

with a finite element method.

. A3
while maxyer (A (y) + Qéy)) > %2(’61)_5) do

find y € L such that \2(y) + @ is maximal;
compute the line segment ¥.(y,7) and the thin stripe Q. (y, 7);
set S+ SUX.(y,7) and K <+~ K UQ.(y,7);
set L < L\ (Q:(y, ) @ By, (0));
end while

Algorithm 6.3. We combine updates of the piecewise constant v with updates of the
function u. We start with v = 1. After adding a fixed number s of thin stripes Q.(y, 7) to the
set K, using the same scheme as in Algorithm 6.1, we update the piecewise constant function
v by setting

v=kKxK + Ixo\k

and then we compute a corresponding function u, solution of

(6.10) {u+a(_1)m(v) (vV™u) = f inQ,

_ Ou _ om—ly
u=gr="- go=t = 0 on 0%,

where m = 1 or m = 2, with a finite element method, which is then used for computing
|V™u(y)|* and selecting the next at most s thin stripes Q.(y,7) for including in the set
K. The process of alternating between the addition of stripes and updates of the smoothed
function wu is repeated until no more admissible points y € L exist, i.e., when the inequality
V™ u(y)|? < (1 -y holds.

Due to the complexity in solving a sixth order equation with discontinuous coefficients,
we do not implement here Algorithm 6.3 when m = 3.

The reason behind the update of v lies in the fact that the asymptotic expansion derived
above becomes increasingly inaccurate as the number of the stripes becomes larger. This
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means that at some point one has to update v in order to get better reconstructions. The
main drawback of this method lies in the fact that we cannot update v at every step be-
cause this would involve solving an elliptic equation, which is a lengthy and costly procedure.
Thus we choose the number s sufficiently large in such a way that approximately less than 8
computations of the 2m-order elliptic equation are needed.

Algorithm 6.3 Implementation with updates of v.
Data: input data f, m =1 or m = 2, parameters 0 < x < 1, o, 8 > 0, €, dg > 0, g9 > 0,
s € IN;
Result: the set of line segments S and the set of thin stripes K;
Initialization: set S =0, K =0, and L = Q\ (0Q & Bs,(0));
compute the solution u of

_ Ou _ _omTly
u=gi=-=%5m-71 = 0 ond,

{ u+a(=1)"(V)"(V™u) = f inQ,

with a finite element method.
while max,cy, V™ u(y)|? > % do
set k= 1;
while k < s and |[V"™u(y)|? > —2%— do

= ae2(1—k)
find y € L such that |[V™u(y)|? is maximal;
compute the line segment Y. (y, 7) and the thin stripe Q.(y, 7);
set S+ SUX(y,7) and K < K UQ(y,7);
set L < L\ (Q(y,7) ® Byy(0)); set k + k + 1;
end while
set v = KxK + 1xo\K;
compute the solution u of

{ u+a(—=1)"™(V)"(wV™u) = f inQ,

u=gi=- =55 = 0 ondQ,

with a finite element method.
end while

All of the algorithms described above have been implemented in MATLAB.

Results of numerical experiments. To test the proposed algorithms we have performed
five experiments; see Tests 1, 2, 3, 4, and 5 below. In Tests 1, 2, and 3, the source term f is
given by the simulated qPAT data presented in Figure 4, down-sampled to an image of size
130 x 130 in order to save computational time. These tests are the results of the application
of Algorithms 6.1, 6.2, and 6.3, respectively.

Tests 4 and 5 are performed with the same qPAT data but corrupted by a small amount
of noise. Specifically, in Tests 4 and 5 we add to the image a Gaussian noise with standard
deviation of 0.1% and 2%, respectively, of the average signal of qPAT data. Test 4 serves for
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a direct comparison with the numerical outcomes in [14].

For all the experiments, the parameter ¢, corresponding to the length of a line segment
and the thickness of a stripe, is set to be € = h, where h is the pixel size. The size of the
stripe’s neighborhood, i.e., gy, is equal to g9 = h. Moreover, in all tests, we set §g = 12h; i.e.,
starting from an image of size 130 x 130, the restricted set L of 2, defined in Algorithms 6.1,
6.2, and 6.3, has dimensions 106 x 106, which is indeed the size of the images in Tests 1-5.

The parameters used in the five tests are summarized in Table 1.

Table 1
Parameters used in Tests 1, 2, 3, 4, and 5. In the first column, we show the number of the test. In the
second column, we indicate whether there is noise in the qPAT data, i.e., whether f is corrupted by Gaussian
noise. In the third and fourth columns, we specify the algorithm we implement and the order of the derivatives
we consider, respectively. The last three columns give the principal parameters which are used to implement the
various algorithms.

Test Noise Algorithm | m (order) a K Ié]
1 0.0072

1.1029- 10 *

6.4453- 10 °
10! | 1072 [ 9.5803 x 10~ °

0.0072
1.1029 - 10 *
9.288-10 °

—00ni |
1 0.0020
0.0015

Test 1 no 1

Test 2 no 2
Test 3 no 3

Test 4 | yes (0.1%)

Test 5 | yes (2%) 1

W N | N DN | DN W N

Test 1. We apply Algorithm 6.1. The numerical results are given in Figure 5. In the
first column we have |V™ul, where m = 1,2, 3, respectively. On the right column, we give the
line segments given by the application of Algorithm 6.1. Despite the coefficients v remaining
constant in all the iterations, the numerical outcomes of higher order elliptic equations (see
the cases m = 2 and m = 3) lead us to identify both the absorption (x) and the diffusion (D)
coefficients. This confirms analytical results in [33, 14] which state that the union of jumps
in coefficients p and D is contained in derivatives of f up to the second order.

Test 2. We apply Algorithm 6.2. The numerical results are given in Figure 6. We observe
that the numerical outcomes, by using the results in Remark 6.2, are perceptibly better than
the case with the stopping rule |[V™u(y)| < Ea(ﬁf_n).

Test 3. We apply Algorithm 6.3. The numerical results are given in Figure 7. In this
case, we set the parameter s to be s = 40 for m = 1 and s = 50 for m = 2. Comparing the
numerical outcomes of this test with those of Test 1, we can appreciate how the updates of
the coefficient v lead to better reconstructions.

Test 4. We apply Algorithm 6.1, with m = 2 to an image which is corrupted by a small
Gaussian noise with standard deviation of 0.1% of the average signal value of the image. The
numerical results are given in Figure 8. Due to the presence of noise, we use a greater value
of a with respect to the previous case, which is set to be a = 1. The numerical results are
more stable than those in [14, Figure 3]; in fact, we are able to detect all four circles in the
image.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 10/27/20 to 131.130.169.5. Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/page/terms

1824 A. ASPRI, E. BERETTA, O. SCHERZER, AND M. MUSZKIETA

Test 5. We apply Algorithm 6.1 to an image which is corrupted by a Gaussian noise
with standard deviation of 2% of the average signal value of the image. The numerical results
are given in Figure 9. Comparing our results with those in [14, Figure 3], we observe that
they are rather good. We emphasize that, for the case m = 3, we expect better results in the
case where more sophisticated finite element methods to find the solution of the sixth order
equation are applied. Certainly, the splitting method, used in this paper, introduces some
errors in the reconstructions because, numerically, only two of the three prescribed boundary
conditions are satisfied, namely u = 0 and g—z = 0.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 10/27/20 to 131.130.169.5. Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/page/terms

ASYMPTOTIC EXPANSIONS FOR ELLIPTIC EQUATIONS 1825

Figure 5. Test 1. Implementation of Algorithm 6.1. In the first column we represent |V™u|, where
m = 1,2,3. The second column gives the numerical outcomes of constructed line segments. The results are
related to m = 1 in the first row, m = 2 in the second row, and m = 3 in the third row. We emphasize that
with m = 1 the small circle at the left bottom part of the image is not identified. Instead, it appears in the
reconstruction with m = 2 and m = 3.
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Figure 6. Test 2. Implementation of Algorithm 6.2; i.e., we are using the criteria in Remark 6.2 to draw
the line segments.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 10/27/20 to 131.130.169.5. Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/page/terms

ASYMPTOTIC EXPANSIONS FOR ELLIPTIC EQUATIONS 1827

Figure 7. Test 3. Implementation of Algorithm 6.3. In the first row, we have the results given by the second
order elliptic equation; i.e., we choose m = 1 in the algorithm. In the second row, we provide the numerical
outcomes of the fourth order elliptic equation; i.e., we choose m = 2 in the algorithm. For m = 1, we set
s =40. For m = 2, we use s = 50.
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Figure 8. Test 4. Implementation of Algorithm 6.1 in the case where the ¢qPAT data are
Gaussian noise of 0.1%.
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Figure 9. Test 5. Implementation of Algorithm 6.1 in the case where the qPAT image is corrupted by a
Gaussian noise of 2%. We provide the results for m = 1 in the first row, for m = 2 in the second row, and,
finally, for m = 3 in the third row.
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Conclusion. In this paper we applied the method of asymptotic expansion of line segments
for detection of discontinuities in derivatives of some data f. Previously, asymptotic expan-
sions have been considered for detecting discontinuities in data (and not the derivatives). For
numerical tests, we considered quantitative photoacoustic tomography with piecewise constant
material parameters, which has also been considered before in [14]. In [14], the algorithm for
the detection on discontinuities is based on a differential Canny edge detector. This method
requires a presmoothing step, which is dependent on the order of discontinuity to be recov-
ered and is very sensitive to the presence of noise. Conceptually our new approach includes
filtering in the detection algorithms, delivers a tangential direction of the edge, and is more
stable with respect to the presence of noise.

Appendix A. Proof of Lemma 3.1. To prove the well-posedness of (3.2) and (3.3), we

need the following generalized version of the Poincaré-type inequality.

Lemma A.1 (m-order Poincaré inequality [1]). The two norms ||| ymqy and [[V™ [ 2.
are equivalent in HJ'(QY); i.e., there exists a positive constant C such that

(A1) IVl 20y < lull gy < C IV ull 2y Jor allu € Hy(Q).

Proof. We only concentrate on (3.2) because the argument of the proof is identical for
(3.3).

First, we find the weak formulation of (3.2), and we study its well-posedness by applying
the Lax—Milgram theorem. Second, we show that the weak formulation of (3.2) is in fact the
optimality condition satisfied by the minimum of the functional (3.1) (where { = v), and we
prove the equivalence between the minimum problem for the functional (3.1) and the weak
solution of (3.2).

Well-posedness of (3.2). Multiplying (3.2) by a test function ¢ € Hj*(2), then integrating
by parts m-times and using the boundary conditions (see (3.2)), we find the weak formulation
of the problem: Find u € H§*(€2) such that

(A.2) a/ vV - V" dx —|—/ up dr = / fodx for all ¢ € Hy'(2),
Q Q Q
which can be equivalently written in the form
alu, @) = Flp) for all € H'(Q),
where a and F' denote the bilinear form and the linear functional, respectively,
a(u, ) == a/ vV - V™ dx + / updr and F(p):= / fodx.
Q Q Q
In order to apply the Lax—Milgram theorem, we need prove continuity and coercivity of a and

continuity of F'. Continuity follows by the application of the Cauchy—Schwarz inequality; in
fact, for all ¢, ¢ € Hy*(Q2), we have

()] < Clullmiay ey 1) = | [ o do] < C iy llamy
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Coercivity of a on HJ"*(2) follows from the Poincaré inequality (A.1) and the definition of v
given in (2.5):

a(u,u) > C([V™ull 22y + lullF2i) = C llullim g -

Hence, by the Lax-Milgram lemma (see [7]) there exists a unique weak solution v € H{"(£2)
to

a(u,p) = F(p) for all ¢ € H'(Q)

and hence of (3.3). The energy estimate follows by means of the coercivity of a and the
continuity of F), i.e.,

ellulfmy < la(u,u)] = |F(u)] < O£l o gy lull gy -

Equivalence of the problems. Let us assume that v is the minimum of the functional
J(u;v). Then we choose £ € R, and for all h € HJ*(Q2) we define w := u + &h. Trivially it
holds that J(u;v) < J(w;v). Then, by simple calculations, we have that

T+ Ehv) — T (w;v)
e,

which gives, as & — 0, the weak formulation (A.2). On the contrary, assuming that u is the
solution to (A.2), then, taking ¢ = &h for all h € Hi*(Q) and £ € R, we find

(u—f)hdx—l—oz/ oV - V™hdx + O(),
Q

T (u+ Eh;v) = T (u;v) +% </Q§2h2 da:+a/ﬂ§2v\vmh\2da:>.

Now, noticing that [, E2h?dx + an£21)|th|2d:c > 0 for all h € H*(), a > 0, and
v € L(Q), we get
|
J(u+&h;v) — T (usv) > 0.
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