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Abstract In this work we consider the inverse elastic scattering problem by
an inclusion in two dimensions. The elastic inclusion is placed in an isotropic
homogeneous elastic medium. The inverse problem, using the third Betti’s
formula (direct method), is equivalent to a system of four integral equations
that are non linear with respect to the unknown boundary. Two equations are
on the boundary and two on the unit circle where the far-field patterns of the
scattered waves lie. We solve iteratively the system of integral equations by
linearising only the far-field equations. Numerical results are presented that
illustrate the feasibility of the proposed method.
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1 Introduction

The inverse scattering problem consists on finding the shape and the location
of an obstacle by measuring the scattered wave, close or far from the scatterer.
Depending on the kind of illumination (acoustic, electromagnetic or elastic)
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and the properties of the obstacle (soft, hard, penetrable or not) one faces
different kind of problems regarding the unique solvability of the problem and
the numerical scheme for approximating the solution.

In this work we place the obstacle in a two-dimensional homogeneous and
isotropic elastic medium and we assume that it is penetrable, a so-called in-
clusion, with different Lamé parameters from the exterior domain. This scat-
tering problem has been a subject of research for many years in different fields
of physics and engineering due its various applications. For example, in non-
destructive testing, geophysical exploration and fracture mechanics.

We consider as incident wave an elastic longitudinal or transversal wave
which after interacting with the boundary of the medium is split into an in-
terior (transmitted) wave propagating in the inclusion and a scattered wave
traveling in the exterior domain. The scattered wave is also decomposed into
a longitudinal and a transversal wave with different wavenumbers that behave
like spherical waves with different polarizations at infinity.

Before considering the inverse problem, we should have a good knowledge of
the direct problem, which is to find the scattered field and its far-field patterns
from the knowledge of the obstacle and the incident wave. The direct problem
is linear and well posed for smooth obstacles [27]. The inverse problem, we
consider here can be seen as a continuation of [9] where the inverse problem
was examined for a rigid scatterer and a cavity. The problem of detecting an
elastic inclusion has been also considered for given boundary measurements
[1,3], using the factorization method [8], the linear sampling method [29,31],
a gradient descent method [24,28] or the probing method [17].

Here, we solve this inverse problem by formulating an equivalent system
of non-linear integral equations which has to be solved with a regularization
iterative scheme due to its ill-posedness. To avoid an inverse crime we consider
the direct method (Betti’s formula) for the inverse problem and we keep the
indirect approach as proposed in [27] for the direct problem. This method
was introduced in [22] and then applied in many different problems, see for
instance [5,13,14,26,30] for some recent applications.

The boundary integral equation method is used for both theoretical inves-
tigation of uniqueness and stability and also for the numerical solution of many
scattering problems. This method is preferable to finite difference method or
finite element method because it reduces the dimensions of the problem and
results to simple numerical schemes with high convergence order. The only
drawback is that it results to dense matrices which in combination with the
vector nature of the problem could make the algorithm slower. To handle this
problem, we keep the number of terms in the approximating polynomial of
the radial function of the parametrized boundary low and we avoid the full
linearization of the system.

The final system consists of four equations, two on the unknown boundary
taking advantage of the boundary conditions and two on the unit circle assum-
ing that we know the far-field pattern of the scattered fields for one or more
incident waves. Even though the first two equations are well-posed, because of
the equivalence to the system of integral equations for the direct problem, the
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last two inherit the ill-posedness of the system due to the smoothness of the
far-field operators. Following [2,16] we apply a two-step method for approx-
imating the radial function. The problem we address here is more involved
compared to the electrostatic and acoustic cases thus we expect to get at best
similar reconstructions. However, the extra information (pair of far-fields in
elasticity) allows us to obtain comparable or even better results compared to
the simpler cases.

The two-step method reads as follows: First, we consider the well-posed
subsystem to obtain the corresponding densities and then we solve the lin-
earized (with respect to the boundary) ill-posed subsystem to update the ini-
tial approximation of the radial function. We consider Tikhonov regularization
and the normal equations are solved by the conjugate gradient method.

The paper is organized as follows: in Sect. 2 we formulate the problem in
two dimensions and in Sect. 3 we present the direct scattering problem, the
elastic potential and the equivalent system of integral equations. The inverse
problem is stated in Sect. 4 where we construct also the equivalent system of
integral equation using the direct method. In Sect. 5 the two-step method for
the parametrized form of the system and the necessary Fréchet derivatives of
the operators are presented. In the last section, the numerical examples give
satisfactory results and demonstrate the applicability of the proposed method.

2 Problem formulation

We consider the scattering of time-harmonic elastic waves by an isotropic and
homogeneous elastic inclusion Di ⊂ R2 with smooth boundary Γ described
by the Lamé parameters λi, µi and the constant density ρi. The exterior of Di

described by De = R2 \Di is filled with an isotropic and homogeneous elastic
medium with Lamé constants λe, µe and density ρe. Henceforth, j = i, e counts
for the interior Di and the exterior domain De, respectively. In addition, we
assume that λj + µj > 0, µj > 0 and ρj > 0.

By τ̂ we define the unit tangent vector to Γ and by n̂ = Q · τ̂ the unit
normal vector directed on De, where Q denotes the unitary matrix

Q =

(
0 1
−1 0

)
.

The incident field is either a longitudinal plane wave

uincp (x; d̂) = d̂ eikp,ed̂·x,

or a transversal plane wave

uincs (x; d̂) = −Q · d̂ eiks,ed̂·x,

where d̂ is the propagation vector and the wavenumbers are given by

k2p,j :=
ρjω

2

λj + 2µj
, k2s,j :=

ρjω
2

µj
,
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where ω > 0 is the circular frequency. In the following, α = p, s counts for the
longitudinal and the transversal waves, respectively.

The scattering of uinc by the inclusion generates the scattered field ue,x ∈
De and the transmitted field ui,x ∈ Di. Both of them satisfy the Navier
equation in their domains of definition

∆∗ju
j + ρjω

2uj = 0, in Dj , (1)

with the Lamé operator defined by ∆∗j := µj∆j + (λj + µj)∇∇ · . If uj

satisfies (1), due to the Helmholtz decomposition, it can be written as a sum
of a longitudinal and a transversal wave

uj = ujp + ujs,

which are defined by

ujp := − 1

k2p,j
∇∇ · uj , ujs := uj − ujp.

On the boundary we impose transmission conditions of the form

ui = ue + uinc, on Γ, (2a)

Tiui = Te(ue + uinc), on Γ, (2b)

where the boundary traction operator Tj is given by

Tjuj := λjn̂(∇ · uj) + 2µj (n̂ ·∇) uj + µj(Q · n̂)∇ ·
(
Q · uj

)
.

The field ue is required to satisfy also the Kupradze radiation condition

lim
r→∞

√
r

(
∂ueα
∂r
− ikα,eu

e
α

)
= 0, r = |x| , (3)

uniformly in all directions. Then, the direct elastic scattering problem reads:
Given Dj (geometry and elastic parameters) and the incident field uincα , solve
the boundary value problem (1) - (3) to obtain uj .

At this point we recall that any solution of (1) satisfying (3) has an asymp-
totic behaviour of the form

ueα =
eikα,er√

r

{
u∞α (x̂) +O

(
1

r

)}
, r →∞,

uniformly in all directions x̂ = x/r ∈ S, where S denotes the unit circle. The
pair (u∞p ,u

∞
s ) is called the far-field patterns of the scattered field ue.
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3 The direct elastic scattering problem

To represent the solution of the direct and the inverse problem as a combi-
nation of an elastic single- and a double-layer potential we first introduce the
fundamental solution of the Navier equation

Φj(x,y) =
i

4µj
H

(1)
0 (ks,j |x− y|)I

+
i

4ρjω2
∇∇>

[
H

(1)
0 (ks,j |x− y|)−H(1)

0 (kp,j |x− y|)
]

in terms of the the identity matrix I and the Hankel function H
(1)
0 of order

zero and of the first kind. The Green’s tensor can be transformed into

Φj(x,y) = Φ1,j(|x− y|)I + Φ2,j(|x− y|)J(x− y),

where the functions Φ1,j , Φ2,j : R→ C are given by [20]

Φ1,j(t) =
i

4µj
H

(1)
0 (ks,jt)−

i

4ρjω2t

[
ks,jH

(1)
1 (ks,jt)− kp,jH(1)

1 (kp,jt)
]
,

Φ2,j(t) =
i

4ρjω2

[
2ks,j
t

H
(1)
1 (ks,jt)− k2s,jH(1)

0 (ks,jt)−
2kp,j
t

H
(1)
1 (kp,jt)

+ k2p,jH
(1)
0 (kp,jt)

]

with H
(1)
1 = −H(1)′

0 and

J(x) =
xx>

|x|2 , x 6= 0

in terms of a dyadic product of x with its transpose x>. Then, for the vec-
tor density ϕ ∈ [C0,a(Γ )]2, 0 < a ≤ 1, we introduce the elastic single-layer
potential

(Sjϕ)(x) =

∫

Γ

Φj(x,y) ·ϕ(y)ds(y), x ∈ Dj\Γ, (4)

and the elastic double-layer potential

(Djϕ)(x) =

∫

Γ

[
Tj
yΦj(x,y)

]> ·ϕ(y)ds(y), x ∈ Dj\Γ. (5)

It is well known that Sj and Tj
xDj are continuous in R2 but both Dj and

Tj
xSj satisfy the following jump relations [23]

Djϕ =

(
±1

2
I + Kj

)
ϕ, on Γ, (6a)

Tj
xSjϕ =

(
∓1

2
I + Lj

)
ϕ, on Γ, (6b)

Tj
xDjϕ = Njϕ, on Γ, (6c)
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where the upper (lower) sign corresponds to the limit x → Γ from De (Di),
and the integral operators are defined by

(Kjϕ)(x) =

∫

Γ

[
Tj
yΦj(x,y)

]> ·ϕ(y)ds(y), x ∈ Γ, (7a)

(Ljϕ)(x) =

∫

Γ

Tj
xΦj(x,y) ·ϕ(y)ds(y), x ∈ Γ, (7b)

(Njϕ)(x) = Tj
x

∫

Γ

[
Tj
yΦj(x,y)

]> ·ϕ(y)ds(y), x ∈ Γ. (7c)

All the above integrals are well defined and in particular the operator Sj
for x ∈ Γ is weakly singular, the operators Kj , Lj are singular and Nj admits
a hypersingular kernel. From the asymptotic behaviour of the Hankel functions
we can compute also the far-field patterns of the single- (4) and double-layer
potential (5) [6,20]

(S∞α ϕ)(x̂) = βα

∫

Γ

Jα(x̂) ·ϕ(y) e−ikα,ex̂·yds(y), x̂ ∈ S, (8a)

(D∞α ϕ)(x̂) = γα

∫

Γ

Jα(x̂) · F(x̂,y) ·ϕ(y) e−ikα,ex̂·yds(y), x̂ ∈ S, (8b)

with the coefficients

βp =
eiπ/4

λe + 2µe

1√
8πkp,e

, βs =
eiπ/4

µe

1√
8πks,e

,

γp =
e−iπ/4

λe + 2µe

√
kp,e
8π

, γs =
e−iπ/4

µe

√
ks,e
8π

,

and the matrices Jp(x̂) = J(x̂), Js(x̂) = I− J(x̂) and

F(x̂,y) = λex̂ n̂(y)> + µen̂(y) x̂> + µe(n̂(y) · x̂)I.

Considering the indirect integral equation method, we search the solution
of the direct scattering problem in the form

uj(x) = (Djϕj)(x) + (Sjψj)(x), x ∈ Dj . (9)

To simplify the above representation, we set

ϕj(x) = τjϕ(x), ψj(x) = ψ(x), τj =
λj + 2µj
µj(λj + µj)

and the formula (9) is reduced to

uj(x) = τj(Djϕ)(x) + (Sjψ)(x), x ∈ Dj . (10)

Using this representation, applying the jump relations (6) we see that the
fields given by (9) satisfy the boundary conditions (2) provided the densities
ϕ, ψ satisfy the system of integral equations

(
I + Li − Le τiNi − τeNe

Si − Se − τi+τe2 I + τiKi − τeKe

)(
ψ
ϕ

)
=

(
Teuinc|Γ
uinc|Γ

)
. (11)

The following result regarding uniqueness and existence was proved in [27].
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Theorem 1 The system of integral equations (11) has precisely one solution
(ϕ,ψ), with ϕ ∈ [C1,a(Γ )]2 and ψ ∈ [C0,a(Γ )]2. Moreover, the corresponding
displacement fields (10) solve the direct scattering problem (1) - (3).

Then, the solution of the direct problem (10) provides us with the far-field
pattern (u∞p ,u

∞
s ) given by

u∞α (x̂) =

∫

Γ

Jα(x̂) · [τeγαF(x̂,y) ·ϕ(y) + βαψ(y)] e−ikα,ex̂·yds(y), x̂ ∈ S,
(12)

where we have used the asymptotic forms (8) and that ϕ, ψ are the solutions
of (11).

Remark 1 The choice of τj is not random since, as we are going to see later, the
combination τiNi− τeNe turns out to be a weakly singular operator, reducing
the hypersingularity of Nj .

For the numerical implementation, we present also different representations
of the solutions in order to distinguish from the formulas we will derive later
for the solution of the inverse problem, even though, we are going to consider
the direct method. We do not consider the solvability of the above systems.
Let the solution of the direct problem be given by

uj(x) = (Sjψj)(x), x ∈ Dj . (13)

Then, considering again the jump relations (6) we see that the fields given
now by (13) satisfy the boundary conditions (2) provided the densities ψi, ψe
satisfy the system of equations

(
Si −Se

1
2I + Li

1
2I− Le

)(
ψi
ψe

)
=

(
uinc|Γ

Teuinc|Γ

)
.

In this case, the far-field patterns are given by u∞α (x̂) = (S∞α ψe)(x̂). The
fields, considering double-layer representations of the form

uj(x) = (Djψj)(x), x ∈ Dj , (14)

and the jump relations, satisfy the boundary conditions, provided the densities
satisfy

(
− 1

2I + Ki − 1
2I−Ke

Ni −Ne

)(
ψi
ψe

)
=

(
uinc|Γ

Teuinc|Γ

)
.

Here, we obtain the far-field patterns u∞α (x̂) = (D∞α ψe)(x̂).
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4 The inverse elastic scattering problem

Now we can state the inverse problem, which reads: Find the shape and the
position of the inclusion Di (i.e. reconstruct the boundary) from the knowledge
of the far-field patterns (u∞p (x̂),u∞s (x̂)) for all x̂ ∈ S, for one incident plane

wave uincα with direction d̂ either longitudinal or transverse. In general, the
unique solvability of the inverse problem for one or even for a finite number of
incident waves is an open problem. Uniqueness for the transmission problem
exists only for infinitely many incident waves [11]. There exist also results
for a rigid scatterer, local uniqueness in R2 [9] and measuring only u∞s for a
transversal incident plane wave and simple geometries in R3 [12].

4.1 The integral equation method

To solve numerically this problem, we consider the non-linear integral equation
method, introduced in [22], but here we apply the direct method in contrast to
the forward problem. We recall for v,w ∈ [C2(Dj)]

2 the third Betti’s formula
∫

Dj

(v ·∆∗jw−w ·∆∗jv)dx =

∫

Γ

(v ·Tjw−w ·Tjv)ds(x).

Using the definitions (4) and (5), we consider the above formula once for
the field ue and the tensor Φe in De, and then for uinc, Φe in De to obtain

ue(x) = (Deu
e)(x)− (Se(T

eue))(x), x ∈ De, (15a)

0 = (Deu
inc)(x)− (Se(T

euinc))(x), x ∈ De. (15b)

We define ut := ue + uinc and by adding (15a) and (15b) we obtain

ue(x) = (Deu
t)(x)− (Se(T

eut))(x), x ∈ De. (16)

Similarly, for ui, Φi in Di, the third Betti’s formula results to

−ui(x) = (Diu
i)(x)− (Si(T

iui))(x)

= (Diu
t)(x)− (Si(T

eut))(x), x ∈ Di, (17)

where for the last equality we have used the transmission conditions (2). We
set κ = ut|Γ and µ = Teut|Γ and letting x→ Γ in the above representations,
taking the traction and considering the jump relations (6), we get

uj(x) = (1
2I±Kj)κ(x)∓ (Sjµ)(x), x ∈ Γ,

Tjuj(x) = ±(Njκ)(x) + ( 1
2I∓ Lj)µ(x), x ∈ Γ.

We consider (2) to obtain

( 1
2I−Ke)κ+ Seµ = uinc, on Γ, (19a)

( 1
2I + Ki)κ− Siµ = 0, on Γ, (19b)
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−Neκ+ ( 1
2I + Le)µ = Teuinc, on Γ, (19c)

Niκ+ ( 1
2I− Li)µ = 0, on Γ. (19d)

In addition, given the far-field operators (8) and the representation (16) of
the exterior field we observe that the unknown boundary Γ and the densities
satisfy the (far-field) equation

(
D∞p

D∞s

)
κ−

(
S∞p

S∞s

)
µ =

(
u∞p

u∞s

)
, on S,

or in compact form

D∞κ− S∞µ = U∞ (20)

where the right-hand side is the known far-field patterns from the direct prob-
lem.

Conversely, if Γ,κ and µ satisfy (19) and (20), then Γ solves the inverse
problem. The equation (19) guarantees the transmission conditions (2) on Γ
and the equation (20) ensures that the scattered field given by (16) has the
correct far-field patterns.

We observe that we have six equations (19) and (20) for the three unknowns
Γ,κ and µ. In order to take advantage of the well-posedness of the direct
problem, we consider the linear combinations (19a) + (19b) and τe·(19c) +
τi·(19d) for the equations on the boundary and we keep the overdetermined
far-field equation. Then, considering all the previous arguments, we state the
following theorem as a formal formulation of the inverse problem.

Theorem 2 Given an incident field uincα , α = p or s and the far-field patterns
U∞, for all x̂ ∈ S, if Γ and the vector densities κ,µ satisfy the system of
integral equations

(I + Ki −Ke)κ+ (Se − Si)µ = uinc|Γ , (21a)

(τiNi − τeNe)κ+ ( τi+τe2 I + τeLe − τiLi)µ = τeT
euinc|Γ , (21b)

D∞κ− S∞µ = U∞, (21c)

then, Γ solves the inverse problem.

The integral operators involved in (21) are linear with respect to the den-
sities but non-linear with respect to the boundary Γ. The subsystem (21a)
- (21b) is equivalent to (11), thus well-posed as already proved [27]. The ill-
posedness of the inverse problem is then due to the smooth kernels of the
far-field operators in (21c).

In general, there exist three different iterative methods for solving the
system (21) by linearization:

A. Given initial guesses for the boundary and the densities, we linearize all
three equations in order to update all the unknowns.
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B. Given initial guess for the boundary, we solve the subsystem (21a) - (21b)
to obtain the densities. Then, keeping the densities fixed we solve the lin-
earized equation (21c) to obtain the update for the boundary.

C. Given initial guesses for the densities, we solve the far-field equation (21c)
to obtain Γ and then we solve the linearized form of (21a) - (21b) to obtain
the densities.

The linearization, using Fréchet derivatives of the operators, and the reg-
ularization of the ill-posed equations are needed in all methods. However, the
iterative method A requires the calculation of the Fréchet derivatives of the
operators with respect to all unknowns and the selection of two regularization
parameters at every step. Thus, we prefer to use one of the so-called two-
step methods B or C. Between the two methods, it is obvious that the second
method is preferable since we solve first a well-posed linear system and then
we linearize only the far-field operators (operators with smooth and simple
kernels). From now on, we focus on Method B, a method introduced in [16]
and then applied in different problems, see for instance [2,25] for some recent
applications.

5 The two-step method

To analyse further the Method B, we consider the following parametrization
of the boundary

Γ = {z(t) = r(t)(cos t, sin t) : t ∈ [0, 2π]},

where z : R→ R2 is a C2-smooth, 2π-periodic parametrization. We assume in
addition that z is injective in [0, 2π), that is z′(t) 6= 0, for all t ∈ [0, 2π]. The
non-negative function r represents the radial distance of Γ from the origin.
Then, we define

ξ(t) = κ(z(t)), ζ(t) = µ(z(t)), t ∈ [0, 2π]

and the parametrized form of (21) is given by

A(r; ξ) +B(r; ζ) = C, (22)

where

A =



A1

A2

A3


 , B =



B1

B2

B3


 , C =



C1
C2
C3


 ,

with the parametrized operators

(A1(r; ξ))(t) = ξ(t) +

∫ 2π

0

[
Ti

z(τ)Φi(t, τ)−Te
z(τ)Φe(t, τ)

]>
· ξ(τ)|z′(τ)|dτ,

(A2(r; ξ))(t) =

∫ 2π

0

(
τiT

i
z(t)

[
Ti

z(τ)Φi(t, τ)
]>



The inverse scattering problem by an elastic inclusion 11

− τeTe
z(t)

[
Te

z(τ)Φe(t, τ)
]>)

· ξ(τ)|z′(τ)|dτ,

(A3(r; ξ))(t) = (D∞(r; ξ))(t),

(B1(r; ζ))(t) =

∫ 2π

0

[Φe(t, τ)−Φi(t, τ)] · ζ(τ)|z′(τ)|dτ,

(B2(r; ζ))(t) =
τi + τe

2
ζ(t)

+

∫ 2π

0

(
τeT

e
z(t)Φe(t, τ)− τiTi

z(t)Φi(t, τ)
)
· ζ(τ)|z′(τ)|dτ,

(B3(r; ζ))(t) = −(S∞(r; ζ))(t),

where Φj(t, τ) := Φj(z(t), z(τ)),

(D∞α (r; ξ))(t) = γα

∫ 2π

0

Jα(x̂(t)) · F(x̂(t), z(τ)) · ξ(τ) e−ikα,ex̂(t)·z(τ)|z′(τ)|dτ,

(S∞α (r; ζ))(t) = βα

∫ 2π

0

Jα(x̂(t)) · ζ(τ) e−ikα,ex̂(t)·z(τ)|z′(τ)|dτ

and the right-hand side

(C1(r))(t) = uinc(z(t)), (C2(r))(t) = τe(T
euinc)(z(t)), C3(t) = U∞(x̂(t)).

Remark 2 The operators Ak, Bk, k = 1, 2, 3 act on the densities and the
first variable r shows the dependence on the unknown parametrization of the
boundary. Only C3 is independent of the radial function.

The two-step method for the system (22) reads as follows:

Iterative Scheme 1 Initially, we give an approximation of the radial func-
tion r(0). Then, in the kth iteration step:

i. We assume that we know r(k−1) and we solve the subsystem

(
A1

A2

)
(r(k−1); ξ) +

(
B1

B2

)
(r(k−1); ζ) =

(
C1
C2

)
(r(k−1)), (23)

to obtain the densities ξ(k), ζ(k).
ii. Then, keeping the densities fixed, we linearize the third equation of (22),

namely

A3(r(k−1); ξ(k)) + (A′3(r(k−1); ξ(k)))(q) +B3(r(k−1); ζ(k))

+ (B′3(r(k−1); ζ(k))(q) = C3. (24)

We solve this equation for q and we update the radial function r(k) =
r(k−1) + q.

The iteration stops when a suitable stopping criterion is satisfied.
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The function q stands for the radial function of the perturbed boundary

Γq = {q(t) = q(t)(cos t, sin t) : t ∈ [0, 2π]},

and the Fréchet derivatives of the operators are calculated by formally differ-
entiating their kernels with respect to r [7]

(A′3(r; ξ))(q) =

(
(D∞p

′
(r; ξ))(q)

(D∞s
′
(r; ξ))(q)

)
, (B′3(r; ζ))(q) = −

(
(S∞p

′
(r; ζ))(q)

(S∞s
′
(r; ζ))(q)

)

with

((D∞α
′
(r; ξ))(q))(t) = γα

∫ 2π

0

Jα(x̂(t)) ·Gα(t, τ) · ξ(τ) e−ikα,ex̂(t)·z(τ)dτ,

( (S∞α
′
(r; ζ))(q))(t) = βα

∫ 2π

0

gα(t, τ)Jα(x̂(t)) · ζ(τ) e−ikα,ex̂(t)·z(τ)dτ,

where Gα(t, τ) := Gα(x̂(t), z(τ),q(τ)) with

Gα(x̂(t), z(τ),q(τ)) = λex̂(t)v(τ)> + µev(τ)x̂(t)> + µe(v(τ) · x̂(t))I

− ikα,e(x̂(t) · q(τ)) |z′(τ)|F(x̂(t), z(τ))

for v(τ) := Q · q′(τ) and gα(t, τ) := gα(x̂(t), z(τ),q(τ)) with

gα(x̂(t), z(τ),q(τ)) = −ikα,e(x̂(t) · q(τ)) |z′(τ)|+ z′(τ) · q′(τ)

|z′(τ)| .

To show injectivity of the integral operators involved in (24), we consider a
simplified linearization. Assuming that z′ is known, we linearize with respect
to z only, viewing z′ as independent of z, resulting to

((D∞α
′
(r; ξ))(q))(t) = −ikα,eγα

∫ 2π

0

(x̂(t) · q(τ))Jα(x̂(t)) · F(x̂(t), z(τ))

· ξ(τ)e−ikα,ex̂(t)·z(τ)dτ,

( (S∞α
′
(r; ζ))(q))(t) = −ikα,eβα

∫ 2π

0

(x̂(t) · q(τ))Jα(x̂(t))

· ζ(τ) e−ikα,ex̂(t)·z(τ)dτ,

where now ξ(τ) := ξ(τ) |z′(τ)| and ζ(τ) := ζ(τ) |z′(τ)| . In addition, we recall
that for sufficiently small q, the perturbed boundary Γq can be represented by
q(t) = q̃(t)Q · z′(t), t ∈ [0, 2π] [15]. Now we can state the following theorem
considering the above formulas for the Fréchet derivatives and as unknown the
function q̃.

Theorem 3 Let ξ, ζ solve (23) and let r be the radial function of the unper-
turbed boundary Γ . If q̃ ∈ C2[0, 2π] satisfies the homogeneous form of equation
(24), meaning

(A′3(r; ξ) +B′3(r; ζ))(q̃) = 0, (25)

then q̃ = 0.
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Proof We follow the ideas presented in [15] for the Laplace operator. Equation
(25) is equivalent to

(D∞α
′ (r; ξ)− S∞α

′ (r; ζ))(q̃) = 0, α = p, s. (26)

We introduce the function

V (x) =

∫ 2π

0

∂

∂n̂(z(τ))

[
Te

z(τ)Φe(x, z(τ))
]>
· ξ(τ)q̃(τ) |z′(τ)| dτ

−
∫ 2π

0

∂

∂n̂(z(τ))
Φe(x, z(τ)) · ζ(τ)q̃(τ) |z′(τ)| dτ, x ∈ De,

which is a radiating solution of (1) in De. The far-field patterns of V are given
by

V∞α (x̂) =

∫ 2π

0

∂

∂z(τ)
Ψ∞α (x̂, z(τ)) · ξ(τ)q̃(τ) |z′(τ)| dτ

−
∫ 2π

0

∂

∂z(τ)
Φ∞α (x̂, z(τ)) · ζ(τ)q̃(τ) |z′(τ)| dτ, x̂ ∈ S,

where Ψ∞α (x̂, z(τ)) = γαJα(x̂) · F(x̂, z(τ)) e−ikα,ex̂·z(τ) and Φ∞α (x̂, z(τ)) =
βαJα(x̂) e−ikα,ex̂·z(τ). We observe that V∞α coincide with the left hand-side
of (26) since also F is independent of z. Then, V∞α ≡ 0, and by Rellich’s
Lemma we get that V (x) = 0, x ∈ De. In this equation the first integral has a
hypersingular kernel and the second one a kernel with lower singularity. Since
the fundamental solution of the Navier equation has the same (logarithmic)
singularity as the fundamental solution of the Laplace equation, we can show
that ξ(t)q̃(t) = 0 for almost every t ∈ [0, 2π] [15]. An application of unique
continuation and the Holmgren theorem [18] results to q̃ = 0, since ξ cannot
be zero on Γ.

6 Numerical implementation

In this section we first justify numerically the convergence of the proposed
scheme using analytic solutions of the direct problem and then we investigate
the applicability of the Iterative Scheme 1 for solving the inverse problem. We
solve both integral equations systems using the Nyström method.

To handle the singularities of the kernels we consider the following represen-
tations. The kernel of the parametrized operator Sj admits the decomposition

Φj(t, τ) = Kj,1(t, τ) ln

(
4 sin2

(
t− τ

2

))
+ Kj,2(t, τ), (27)

for smooth kernels Kj,1,Kj,2, given for instance in [20]. To compute the kernels

Tj
vΦj(t, τ), for v = z(t), z(τ) we consider the differences Φj−Φ(0)

j , where Φ
(0)
j
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denotes the fundamental solution of the static (ω = 0) Navier equation [6].
Then, we obtain the forms

Tj
vΦj(t, τ) = Tj

v

(
Φj(t, τ)−Φ(0)

j (t, τ)
)

+ Tj
vΦ

(0)
j (t, τ). (28)

The first term on the right-hand side is weakly singular and can be written
in the form (27), while the second term due to its Cauchy type singularity is
decomposed as follows

Tj
vΦ

(0)
j (t, τ) = Lv

j,1(t, τ) ln

(
4 sin2

(
t− τ

2

))
+ Lv

j,2(t, τ)

−Q
µj

4π(λj + 2µj)
cot

(
τ − t

2

)

where Lv
j,1,L

v
j,2 are smooth kernels, for v = z(t), z(τ). The kernel of the

operator τiNi−τeNe appearing in (11) and inA2, consists of two hypersingular
terms but it turns out to be weakly singular, as discussed in Remark 1. As in
(28), we consider the following decomposition

Tj
z(t)

[
Tj

z(τ)Φj(t, τ)
]>

= Tj
z(t)

[
Tj

z(τ)

(
Φj(t, τ)−Φ(0)

j (t, τ)
)]>

+ Tj
z(t)

[
Tj

z(τ)Φ
(0)
j (t, τ)

]>
, (29)

The first term is weakly singular and the second one preserves the hypersingu-
larity. The advantage, of this decomposition, is that the second term coming
from the static case is easier to handle by a Maue-type expression [6], although
it is not needed here. The integral operator with kernel the second term can
be written as [4, Equation 2.6]

(N
(0)
j (r; ξ))(t) =

∫ 2π

0

Tj
z(t)

[
Tj

z(τ)Φ
(0)
j (t, τ)

]>
· ξ(τ)|z′(τ)|dτ

=
cj

2π |z′(t)|

∫ 2π

0

[
cot

τ − t
2
ξ′(τ) + K(t, τ) · ξ(τ)

]
dτ,

for a smooth kernel K independent of Dj and cj = µj(λj + µj)/(λj + 2µj).
Since cj = τ−1j , we see that

τi(N
(0)
i (r; ξ))(t)− τe(N(0)

e (r; ξ))(t) = 0.

Then, the combination τiNi − τeNe presents only weakly singularity due to
the first term in (29).

We consider 2n equidistant nodal points tj = jπ/n, j = 0, ..., 2n − 1 and
we use the trapezoidal rule to approximate the operators with smooth kernels

∫ 2π

0

ξ(τ)dτ ≈ π

n

2n−1∑

j=0

ξ(tj),
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and the following quadrature rules for the singular kernels [19,21]

∫ 2π

0

ln

(
4 sin2

(
t− τ

2

))
ξ(τ)dτ ≈

2n−1∑

j=0

R
(n)
j (t)ξ(tj),

1

4π

∫ 2π

0

cot

(
τ − t

2

)
ξ′(τ)dτ ≈

2n−1∑

j=0

T
(n)
j (t)ξ(tj),

∫ 2π

0

cot

(
τ − t

2

)
ξ(τ)dτ ≈

2n−1∑

j=0

S
(n)
j (t)ξ(tj),

with weights

R
(n)
j (t) = −2π

n

n−1∑

m=1

1

m
cos (m(t− tj))−

π

n2
cos(n(t− tj)),

T
(n)
j (t) = − 1

2n

n−1∑

m=1

m cos (m(t− tj))−
1

4
cos(n(t− tj)),

S
(n)
j (t) =

π

n

[
1− (−1)j cos(nt)

]
cot

(
tj − t

2

)
, t 6= tj .

The error and convergence analysis of the proposed numerical method can
be carried out based on the theory of operator approximations and on esti-
mates for trigonometrical interpolation in Sobolev spaces [21, Section 12.4].
This analysis shows that the applied method admits super-algebraic conver-
gence and in the case of analytical data it convergences exponentially.

In the following examples, we consider three different parametrizations of
the boundary curves.

A peanut-shaped boundary with radial function

r(t) = (0.5 cos2 t+ 0.15 sin2 t)1/2, t ∈ [0, 2π],

an apple-shaped boundary with radial function

r(t) =
0.45 + 0.3 cos t− 0.1 sin 2t

1 + 0.7 cos t
, t ∈ [0, 2π],

and a kite-shaped boundary with parametrization

z(t) = (cos t+ 0.7 cos 2t, 1.2 sin t), t ∈ [0, 2π].

6.1 Example with analytic solution

We consider two arbitrary points zi ∈ Di and ze ∈ De and we define the
vector-valued boundary functions

f = [Φi(x, ze)]1 − [Φe(x, zi)]1, on Γ,

g = [Ti
xΦi(x, ze)]1 − [Te

xΦe(x, zi)]1, on Γ,



16 Roman Chapko et al.

-1.5 -1 -0.5 0 0.5 1 1.5 2

-1.5

-1

-0.5

0

0.5

1

1.5

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

ze zi

ze

zi

ze

zi

Fig. 1 The source points considered for the different boundary curves.

where [·]1 denotes the first column of the tensor. Then, the fields

ui(x) = [Φi(x, ze)]1, x ∈ Di, ue(x) = [Φe(x, zi)]1, x ∈ De,

satisfy the Navier equations (1) and the transmission boundary conditions

ui = ue + f, on Γ,

Tiui = Teue + g, on Γ.

In addition, ue satisfies the Kupradze radiation condition (3). The exact values
of the far-field patterns of ue considering the asymptotic behaviour of the
Hankel function are given by

φ∞α (x̂, zi) = βα e
−ikα,ex̂·zi [Jα(x̂)]1, α = p, s.

To compute numerically the far-field patterns we consider the three dif-
ferent integral representations of the solution, meaning equations (11), (13)
and (14) in order to show the efficiency of the numerical scheme. Then, the
densities satisfy the corresponding systems of equations for f = uinc|Γ and
g = Teuinc|Γ .

n u∞
p,1(x̂(0)) u∞

p,1(x̂(π/4))

8 0.021470558670546 + i 0.022335063461969 0.015209469321064 + i 0.002605280958500

16 0.021873642791839 + i 0.021893613229408 0.015342524818313 + i 0.002060474589649

32 0.021876587646542 + i 0.021876540811223 0.015334092161171 + i 0.002039057704230

64 0.021876565329344 + i 0.021876565329354 0.015334087405495 + i 0.002039073011261

φ∞
p,1(x̂(0)) φ∞

p,1(x̂(π/4))

0.021876565329347 + i 0.021876565329347 0.015334087405495 + i 0.002039073011258

Table 1 The computed and the exact longitudinal far-field for the peanut-shaped boundary
considering the representation (10).
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n u∞
s,2(x̂(0)) u∞

s,2(x̂(π/4))

8 −0.000799863220578− i 0.002335597090466 −0.031580574133787 + i 0.015384692677552

16 −0.000014894279556− i 0.000022763052245 −0.033171141088210 + i 0.011955071914825

32 −0.000000000009438− i 0.000000000006972 −0.033172445082299 + i 0.011957712237710

64 −0.000000000000002− i 0.000000000000008 −0.033172445069954 + i 0.011957712196999

φ∞
s,2(x̂(0)) φ∞

s,2(x̂(π/4))

0.000000000000000 + i 0.000000000000000 −0.033172445069954 + i 0.011957712197001

Table 2 The computed and the exact transversal far-field for the apple-shaped boundary
considering the representation (14).

n u∞
p,1(x̂(π/4)) u∞

s,1(x̂(π/4))

16 −0.010422864908398− i 0.010511643137096 0.006390366624901 + i 0.055889882020365

32 −0.012209281542488− i 0.009493771192078 0.005583999436220 + i 0.034801431044799

64 −0.012210910150120− i 0.009496616688802 0.005585376568695 + i 0.034816685008179

128 −0.012210910180807− i 0.009496616653359 0.005585376688542 + i 0.034816685082766

φ∞
p,1(x̂(π/4)) φ∞

s,1(x̂(π/4))

−0.012210910180807− i 0.009496616653360 0.005585376688542 + i 0.034816685082766

Table 3 The computed and the exact far-fields for the kite-shaped boundary considering
the representation (13).

In all examples we choose the Lamé constants to be λe = 1, µe = 1 and
ρe = 1 in De and λi = 2, µi = 2 and ρi = 1 in Di and ω = 8 circular frequency.
We consider the source points zi = (0, 0.2) and ze = (0.4, 0.6) for the peanut-
shaped and the apple-shaped boundary and the points zi = (0.5, 0.5) and
ze = (−1, 0.5) for the kite-shaped boundary, see Fig. 1.

In Tables 1, 2 and 3 we present the numerical values of the components of
the far-fields patterns at given directions. We obtain the correct values related
to the point source located in Di, combining different representations of the
solutions with the boundary parametrizations. This shows that our approach
is applicable in all cases. The exponential convergence is clearly exhibited, as
we can see also in Fig. 2.

All algorithms were implemented in Matlab 2016b using an Intel Core i7-
4820K at 3.70GHz workstation equipped with 64 GB RAM. Even though we
deal with dense matrices of size 8n × 8n, the computations are considerably
fast because of the exponential convergence. The values for n = 64 in Tables 1
and 2 were obtained in less than 2.5 and 2 seconds, respectively. The algorithm
produces the computed far-fields of Table 3, for n = 128 in less than 3 seconds.
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Fig. 2 The L2 norm (in logarithmic scale) of the difference between the computed and the
exact longitudinal (top row) and transversal (bottom row) far-fields. The parameters are
the same as in Table 1 (left column) and Table 3 (right column).

6.2 The inverse problem

To avoid an inverse crime in the following examples, the simulated far-field
data were obtained by solving numerically the direct problem, replacing (10)
by (13) and considering double amount of collocation points.

We approximate the radial function q by a trigonometric polynomial of the
form

q(t) ≈
m∑

k=0

ak cos kt+

m∑

k=1

bk sin kt, t ∈ [0, 2π].

The subsystem (23) is well-posed and no special treatment is required.
We solve the ill-posed linearized equation (24) by minimizing the Tikhonov
functional of the corresponding discretized equation

‖ATx− b‖22 + λ‖x‖pp, λ > 0.
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Fig. 3 Reconstruction of a peanut-shaped boundary for exact (left) and noisy (right) data.

where x ∈ R(2m+1)×1 is the vector with the unknowns coefficients a0, ..., am,
b1, ..., bm of the radial function, and A ∈ C8n×8n, b ∈ C8n×1 are given by

Akj = MA′
3
(tk, tj) + MB′

3
(tk, tj),

bk = C3(tk)− (MA3
· ξ)(tk)− (MB3

· ζ)(tk),

for k, j = 0, ..., 2n−1, where MK denotes the matrix related to the discretized
kernel of the operator K. The multiplication matrix T ∈ R(8n)×(2m+1) stands
for the trigonometric functions of the approximated radial function. Here p ≥ 0
defines the corresponding Sobolev norm. Since q has to be real valued we
actually solve the following regularized equation

(
T>

(
<(A)><(A) + =(A)>=(A)

)
T + λkIp

)
x

= T>
(
<(A)><(b) + =(A)>=(b)

)
, (30)

on the kth step, where the matrix Ip ∈ R(2m+1)×(2m+1) corresponds to the
Sobolev Hp penalty term. We solve (30) using the conjugate gradient method.

We update the regularization parameter in each iteration step k by

λk = λ0

(
2

3

)k−1
, k = 1, 2, ...

for some given initial parameter λ0 > 0. To test the stability of the iterative
method against noisy data, we add also noise to the far-field patterns with
respect to the L2 norm

U∞δ = U∞ + δ
‖U∞‖2
‖V‖2

V ,
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Fig. 4 Reconstruction of a peanut-shaped boundary for initial guess r0 = 0.5 (left) and
r0 = 1 (right) and exact data.

for a given noise level δ, where V = V1 + iV2, for V1,V2 ∈ R8n×1 with
components normally distributed random variables.

Already in the acoustic regime [2], one incident wave does not provide
satisfactory results, thus we have to generalize the Iterative Scheme 1 also for
multiple illuminations uincl , l = 1, ..., L.

Iterative Scheme 2 (Multiple illuminations) Initially, we give an app-
roximation of the radial function r(0). Then, in the kth iteration step:

i. We assume that we know r(k−1) and we solve the L subsystems
(
A1

A2

)
(r(k−1); ξl) +

(
B1

B2

)
(r(k−1); ζl) =

(
C1,l
C2,l

)
(r(k−1)), l = 1, ..., L

(31)

to obtain the densities ξ
(k)
l , ζ

(k)
l .

ii. Then, keeping the densities fixed, we solve the overdetermined version of
the linearized third equation of (22)




A′3(r(k−1); ξ
(k)
1 ) +B′3(r(k−1); ζ

(k)
1 )

A′3(r(k−1); ξ
(k)
2 ) +B′3(r(k−1); ζ

(k)
2 )

...

A′3(r(k−1); ξ
(k)
L ) +B′3(r(k−1); ζ

(k)
L )



q =




C3,1 −A3(r(k−1); ξ
(k)
1 )−B3(r(k−1); ζ

(k)
1 )

C3,2 −A3(r(k−1); ξ
(k)
2 )−B3(r(k−1); ζ

(k)
2 )

...

C3,L −A3(r(k−1); ξ
(k)
L )−B3(r(k−1); ζ

(k)
L )
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Fig. 5 Reconstruction of a apple-shaped boundary for one (left) and three (right) incident
fields.

-1 -0.5 0 0.5

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

-1 -0.5 0 0.5

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Fig. 6 Reconstruction of a apple-shaped boundary for initial guess r0 = 0.5 (left) and
r0 = 0.2 (right) and noisy data.

for q and we update the radial function r(k) = r(k−1) + q.

The iteration stops when a suitable stopping criterion is satisfied.

6.3 Numerical results

In the following examples we choose the incident field to be a longitudinal
plane wave with different incident directions given by

d̂l = (cos 2πl
L , sin 2πl

L ), l = 1, ..., L.
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Fig. 7 Reconstruction of a kite-shaped boundary for three (left) and four (right) incident
fields.

We choose the Lamé constants to be λe = 1, µe = 1 and ρe = 1 in De

and λi = 2, µi = 3 and ρi = 1 in Di and ω = 8 circular frequency. We set
n = 64 collocation points for the direct problem and n = 32 for the inverse.
The regularized equation (30) is solved for p = 1, meaning H1 penalty term
and for initial regularization parameter λ0 = 0.8.

We present reconstructions for different boundary curves, different number
of incident directions and initial guesses for exact and perturbed far-field data.
When, we refer to noisy data, we have considered δ = 5%. In all figures the
initial guess is a circle with radius r0, a green solid line, the exact curve is
represented by a dashed red line and the reconstructed by a solid blue line.
The arrows denote the directions of the incoming incident fields.

In the first example we consider the peanut-shaped boundary. The recon-
structions for m = 3 coefficients, two incident fields and r0 = 0.5 initial radius
are presented in Fig. 3 after 40 iterations for the exact data and 25 itera-
tions for the noisy. In Fig. 4, we see that the reconstructions are not highly
dependent on the initial guess.

In the second example, the boundary to be reconstructed is the apple-
shaped. Here, we set m = 4, and r0 = 0.5. The reconstructions for exact data
and different number of incident fields are presented in Fig. 5 for 18 iterations
(one incident direction) and 40 iterations (three incident directions). Fig. 6
shows the effect of the initial guess for noisy data and 40 iterations.

In the last example, we choose the kite-shaped boundary. We consider
m = 7 coefficients and r0 = 1.5. In Fig. 7 we see the improvement with
respect to the number of incident fields for exact data, 10 iterations for three
illuminations and 40 iterations for four illuminations. The dependence on the
initial guess is shown in Fig. 8, for r0 = 1 we needed 40 iterations and 25 for
r0 = 1.5, in doth cases we considered noisy data.
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Fig. 8 Reconstruction of a kite-shaped boundary for initial guess r0 = 1 (left) and r0 = 1.5
(right) and noisy data.

The exponential convergence of our numerical method and the relatively
small matrix size (2m+1)× (2m+1) result to fast reconstructions. In the first
two examples, the time of an iteration step is less than a second, and approx.
a second in the last example (l = 4 and m = 7).

All examples show the feasibility of the proposed method that is also rea-
sonably stable against noise. The results are considerably improved if we con-
sider more that one incident wave. One could also considered more sophis-
ticated regularization techniques and methods to compute the regularization
parameter that could improve the reconstructions but are out of the scope of
this paper.

7 Conclusions

This paper addressed the problem of recovering the position of an elastic inclu-
sion placed in a homogeneous two-dimensional elastic medium. We considered
the method of boundary integral equations to transform the inverse problem
to a system of integral equations. The system is non-linear with respect to
the unknown boundary curve and ill-posed because of the compactness of the
operator in the far-field equation. We applied an iterative scheme to solve the
system of equations by linearizing only the far-field equation using the Fréchet
derivatives of the far-field operators. The reconstructions were accurate for
few incident waves and reasonably fast and stable.
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