
Generalized Bregman Distances and Convergence

Rates for Non-convex Regularization Methods

Markus Grasmair

Computational Science Center

University of Vienna

Nordbergstr. 15

A–1090 Vienna, Austria

E-mail: Markus.Grasmair@univie.ac.at

Abstract. We generalize the notion of Bregman distance using concepts from

abstract convexity in order to derive convergence rates for Tikhonov regularization with

non-convex regularization terms. In particular, we study the non-convex regularization

of linear operator equations on Hilbert spaces, showing that the conditions required

for the application of the convergence rates results are strongly related to the standard

range conditions from the convex case. Moreover, we consider the setting of sparse

regularization, where we show that a rate of order δ
1/p holds, if the regularization

term has a slightly faster growth at zero than |t|p.

AMS classification scheme numbers: 65J20; 47A52, 52A01

Keywords : Tikhonov regularization, non-convex regularization, sparsity, convergence

rates, Bregman distance, abstract convexity.

Submitted to: Inverse Problems



Convergence Rates for Non-convex Regularization 2

1. Introduction

Convergence rates in regularization theory provide quantitative, asymptotic estimates

about the quality of the approximative solution of an ill-posed operator equation as the

noise level decreases to zero. In the case of classical, quadratic Tikhonov regularization

for the solution of a linear equation Fx = y, F : X → Y being some bounded,

linear operator between the Hilbert spaces X and Y , which can be formulated as the

minimization of the Tikhonov functional

T (x, y) := ‖Fx − y‖2 + α‖x‖2 ,

a classical result reads as follows (see, for instance, [9]): Let x† be the norm minimizing

solution of the equation Fx = y†. If yδ are noisy data satisfying ‖y† − yδ‖ ≤ δ for some

δ > 0 and xδ
α := arg min

x
T (x, yδ) is the regularized solution of the equation Fx = yδ,

then we obtain, with a parameter choice α ∼ δ, a convergence rate

‖xδ
α − x†‖ = O(

√
δ) as δ → 0 ,

provided the solution x† satisfies the range condition x† ∈ Ran F ∗. More generally, it is

possible to derive similar convergence rates of power type, if the solution x† satisfies a

range condition of the form x† ∈ Ran(F ∗F )λ/2 for some 0 < λ ≤ 2. For instance, the

condition x† ∈ Ran(F ∗F ) implies the convergence rate ‖xδ
α − x†‖ = O(δ2/3) for a choice

of the regularization parameter α ∼ δ2/3.

In the case of regularization on Banach spaces, but also for non-quadratic

regularization on Hilbert spaces with general convex regularization functionals, the

situation is more complex. The first problem is, how to formulate range conditions

in the case of Banach spaces, where the adjoint of F is an operator mapping into the

dual of X, which, in general, is not isomorphic to X. The second problem is that it is

not obvious why convergence rates in the norm should hold at all. Indeed, many of the

results to be derived arrive at rates only in considerably weaker distance measures.

In [4], it has been argued that the Bregman distance is the correct measure

for determining the quality of the approximate solution xδ
α in the case of convex

regularization on Banach spaces. This distance is defined as the difference between

the (convex) regularization functional and its linear approximation around x†. More

precisely, if R is a convex and differentiable functional on a Banach space X and x†,

x ∈ X, then the Bregman distance between x† and x is defined as

D(x†; x) := R(x) −R(x†) −R′(x†)(x − x†) .

Then, if the true solution x† satisfies the range condition R′(x†) ∈ Ran F ∗, one obtains

the convergence rate

D(x†; xδ
α) = O(δ) as δ → 0 .

In addition, it has been shown in [17] that the improved rate D(x†; xδ
α) = O(δ4/3)

holds for a parameter choice α ∼ δ2/3, if the target space Y is a Hilbert space and

the range condition R′(x†) ∈ Ran(F ∗F ) is satisfied. In the particular case of quadratic
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regularization on Hilbert spaces, these results recover precisely the classical convergence

rates, because, in this situation, D(x†; xδ
α) = ‖xδ

α − x†‖2 and R′(x†) = 2x†.

While the results stated above only apply if the operator F is linear, there also exist

analogous convergence rates for nonlinear operators. For their definition, it is, however,

necessary to restrict the non-linearity of the operator. For quadratic regularization on

Hilbert spaces, typically, one requires that F is Fréchet differentiable and its Fréchet

derivative satisfies an additional continuity condition. Then, convergence rates like in

the linear case can be derived under the range condition x† ∈ Ran(F ′(x†)∗F ′(x†))λ/2.

Although the smoothness assumptions on F appear natural, it has been shown

in [14] that, in fact, they are not necessary. Observing that the range condition

R′(x†) ∈ Ran(F ∗) can be interpreted as a separation condition for the functionals

x 7→ R(x)−R(x†) and x 7→ ‖Fx− y†‖2 and that the smoothness conditions in the non-

linear case only serve for guaranteeing a similar separation locally near x†, the authors

argue that convergence rates results for more general operators can be obtained, if one

postulates such a separation directly instead of first linearizing the functional at x†

and then imposing restrictions on the behaviour of F ′ near x†. Thus, they arrive at

conditions in the form of variational inequalities, which can be written as

βD(x†; xδ
α) ≤ (R(x) −R(x†)) + γ‖F (x) − y†‖ . (1)

Indeed, this inequality is a direct generalization of the range condition for the linear

case: the exposition in [20, Section 3.2] shows that, for bounded linear functionals F ,

the inequality (1) holds if and only if x† satisfies the range condition R′(x†) ∈ Ran F ∗.

In this paper, we will show that the method of variational inequalities can also

be generalized to work with non-convex regularization functionals R. To that end, we

define a generalized notion of the Bregman distance, as, in its original definition, it only

makes sense for convex functions. This generalization uses an abstraction of the notion

of convexity that relies an more general dualities than the one between a Banach space X

and the Banach space X∗ of all bounded linear functionals on X. Moreover, generalizing

the results of [16], we consider more general similarity terms than the squared norm of

the residual.

The main result of this paper is Theorem 3.3, which provides bounds on the

(generalized) Bregman distance between the regularized solution xδ
α of the perturbed

equation and the true solution x†. In addition, Corollary 3.4 yields convergence rates for

a parameter choice that depends on the behaviour of the similarity term near F (x†). For

the case of metric regularization, where the similarity term is some power of the distance

on the target space Y , these rates reduce precisely to the ones derived in [14, 16, 20]

(see Example 3.6).

In Sections 4 and 5 two exemplary applications of the results derived in Section 3

are presented. The first deals with regularization on Hilbert spaces using a non-convex

regularization term and a power of the norm of the residual as similarity term. Assuming

that R has a proximal subdifferential in the sense of Clarke et al. [6], that is, it can be

approximated from below by a quadratic function, we show that a variational inequality
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with respect to the Bregman distance derived from these approximation holds, if the

element x† satisfies a condition of range type (see Proposition 4.1). In the convex case

this condition reduces precisely to the standard condition ∂R(x†) ∩ Ran F ∗ 6= ∅. As a

concrete example, a functional suited for phase separation is treated.

Section 5 considers the setting of sparse regularization, which aims at enforcing

sparsity of the regularized solutions with respect to some given basis (or frame) of

the space X. This can be achieved by applying a sub-quadratic penalization on the

coefficients with respect to this basis. For instance, in [7], the usage of the ℓq norm of

the coefficients with 1 ≤ q < 2 has been suggested. Note that the particular case q = 1

is strongly related to the field of compressed sensing [5, 8]. It has been shown in [11]

by using a variational inequality for the q-th power of the norm that in such a situation

it is possible to obtain a rate ‖xδ
α − x†‖ = O(δ1/q), if one assumes sparsity of x† and a

restricted injectivity of the (linear) operator F . These result have been generalized in [3]

to arbitrary convex functionals of q-linear growth near zero. In addition, similar results

were obtained in [12] for the residual method. In this paper we will derive convergence

rates for non-convex regularization functionals of the same type. It turns out that the

obtained rates are only slightly weaker than the ones that hold in the convex case.

2. Abstract Convexity

In this section, we introduce the notion of Bregman distance that will be used for the

derivation of convergence rates. The definition is based on an abstract approach to

convexity, which largely follows the exposition in [21, Chapter 8], though in a simplified

setting.

Before we can define the generalized notions of convexity, it is necessary to

introduce some notation concerning addition and subtraction on the extended real line

R̄ := R ∪ {±∞}.
Definition 2.1 We define the upper and lower addition and subtraction on R∪ {±∞}
as the extensions of the usual definitions satisfying

+∞ ∔ (−∞) = −∞ ∔ ∞ = +∞ ,

+∞ .+ (−∞) = −∞ .+ ∞ = −∞ ,

+∞ .− (+∞) = −∞ .− (−∞) = +∞ ,

+∞ ·− (+∞) = −∞ ·− (−∞) = −∞ .

Definition 2.2 (Generalized Conjugation) Let X be some set and W a family of

functions w: X → R̄. The (generalized) Fenchel conjugate with respect to W of a

function R: X → R̄ is the function R∗: W → R̄ defined by

R∗(w) := sup
x∈X

[

w(x) ·− R(x)
]

.

The double conjugate of R is the function R∗∗: X → R̄ given by

R∗∗(x) := sup
w∈W

[

w(x) ·− R∗(w)
]

= sup
w∈W

inf
x̃∈X

[

w(x) .+ (R(x̃) .− w(x̃))
]

.
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The function R is convex with respect to W , if R∗∗ = R.

The function R is locally convex at x ∈ X with respect to W , if R∗∗(x) = R(x).

Remark 2.3 With the above definition of convexity, a function R is locally convex at

x ∈ X with respect to W , if and only if for every ε > 0 there exists wε ∈ W such that

R(x̃) ≥ R(x) ∔ (wε(x̃) ·− wε(x)) − ε (2)

for all x̃ ∈ X. Therefore, local convexity is in some sense a global property of R, as it

requires knowledge of the function R on the whole domain X, not only in a neighbourhood

of x.

Lemma 2.4 The function R is locally convex at x ∈ X with respect to W , if and only

if

R(x) = sup
{

w(x)+c : w ∈ W, c ∈ R, w(x̃)+c ≤ R(x̃) for all x̃ ∈ X
}

.(3)

Proof: See [21, Corollary 8.2, Remark 8.15(b)]. ⊓⊔

Remark 2.5 In [21, Chapter 5], a slightly different definition of convexity with respect

to W has been introduced. There, the mapping R: X → R̄ is said to be convex with

respect to W , if

R = sup{w ∈ W : w ≤ R} .

Lemma 2.4 implies that this coincides with the notion of convexity introduced in

Definition 2.2, if the set W is closed with respect to addition of scalars, that is, if

w ∈ W implies that w + c ∈ W for all c ∈ R.

In the following, we always assume that W is a family of functions w: X → R̄. In

order to exclude trivialities we assume that W is non-empty.

Definition 2.6 (W -subdifferential) Let R be locally convex at x ∈ X with respect

to W and assume that R(x) ∈ R. The W -subdifferential of R at x ∈ X, denoted by

∂WR(x), is defined as the set of all w ∈ W that satisfy w(x) ∈ R and

R(x̃) ≥ R(x) + (w(x̃) − w(x))

for all x̃ ∈ X.

Remark 2.7 The W -subdifferential is related to the generalized Fenchel conjugate in

the usual manner. That is, we have w ∈ ∂WR(x) if and only if R(x) = w(x) −R∗(w).

Definition 2.8 (W -Bregman Distance) Let R be locally convex at x ∈ X with

respect to W and assume that ∂WR(x) 6= ∅. For w ∈ ∂WR(x) and x̃ ∈ X we define the

W -Bregman distance between x and x̃ with respect to w as

Dw
W (x; x̃) := (R(x̃) −R(x)) .− (w(x̃) − w(x)) .

The W -Bregman distance is non-negative and satisfies Dw
W (x; x) = 0.
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Example 2.9 (Convexity) Assume that X is a Banach space and W = X∗ is the

space of bounded linear mappings on X. Then a function R is convex with respect to

X∗ if and only if it is lower semi-continuous and convex in the usual sense. Moreover,

the W -Bregman distance coincides with the usual Bregman distance defined in standard

convex analysis defined by

Dξ(x; x̃) = R(x̃) −R(x) − 〈ξ, x̃ − x〉 (4)

with ξ ∈ ∂R(x). Therefore, the abstract notion of convexity used in this paper is indeed

a generalization of the standard notion.

Example 2.10 (Generalized subdifferentiability) Let X be a locally convex space

and consider the space W of all negative semi-definite, continuous quadratic functions

on X. That is, w ∈ W if and only if there exist c ∈ R, ξ ∈ X∗, and a positive

semi-definite, symmetric, bounded quadratic form A on X such that

w(x) = c + 〈ξ, x〉 − A(x, x)

for all x ∈ X. Then (2) implies that a function R: X → R̄ is locally convex at x ∈ X

with respect to W , if and only if there exist for every ε > 0 some ξε ∈ X∗ and a positive

semi-definite, symmetric, bounded quadratic form Aε on X such that

R(x̃) + ε ≥ R(x) + 〈ξε, x̃〉 − Aε(x̃, x̃) − 〈ξε, x〉 + Aε(x, x)

= R(x) + 〈ξε, x̃ − x〉 − 2Aε(x, x̃ − x) − Aε(x̃ − x, x̃ − x) .

Defining ξ̃ε ∈ X∗ by 〈ξ̃ε, x̂〉 = 〈ξε, x̂〉 − 2Aε(x, x̂), it follows that R: X → R̄ is locally

convex at x ∈ X with respect to W , if and only if there exist ξ̃ε ∈ X∗ and a positive

semi-definite, symmetric, bounded quadratic form Aε on X such that

R(x̃) + ε ≥ R(x) + 〈ξ̃ε, x̃ − x〉 − Aε(x̃ − x, x̃ − x)

for all x̃ ∈ X. Moreover, the W -subdifferential of R at x consists of all functions

w(x̃) = c + 〈ξ, x̃ − x〉 − A(x̃ − x, x̃ − x) that satisfy

R(x̃) ≥ R(x) + 〈ξ, x̃ − x〉 − A(x̃ − x, x̃ − x)

for all x̃ ∈ X. The W -Bregman distance between x and x̃ therefore reads as

Dw
W (x; x̃) = R(x̃) −R(x) − 〈ξ, x̃ − x〉 + A(x̃ − x, x̃ − x) . (5)

Formally, the sole difference between the standard convex Bregman distance (4) and this

generalized definition is the additional quadratic term in (5), which guarantees that the

Bregman distance stays non-negative.

Example 2.11 (Generalized local subdifferentiability) In the following we con-

sider a localized variant of the generalized differentiability introduced in Example 2.10.

To that end we assume again that X is a locally convex space and consider the set Wl of

all locally negative semi-definite, continuous quadratic functions on X. That is, w ∈ Wl,

if and only if there exist x0 ∈ X, a neighbourhood U of x0, c ∈ R, ξ ∈ X∗, and a positive

semi-definite, symmetric, bounded quadratic form A on X such that

w(x) = c + 〈ξ, x〉 − A(x, x) for all x ∈ U .
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As in Example 2.10, it follows that w ∈ ∂Wl
R(x) if and only if there exist a

neighbourhood U of x, ξ ∈ X∗, and a positive semi-definite, symmetric, bounded

quadratic form A such that

R(x̃) ≥ R(x) + 〈ξ, x̃ − x〉 − A(x̃ − x, x̃ − x) for all x̃ ∈ U . (6)

Assume now that X is a Banach space. Then the inequality (6) is closely related

to the notion of proximal differentiability of R (see [6]): Recall that the proximal

subdifferential ∂PR(x) of R at x is defined as the set of all ξ ∈ X∗ that satisfy, for

some σ > 0 and ε > 0, the inequality

R(x̃) ≥ R(x) + 〈ξ, x̃ − x〉 − σ‖x̃ − x‖2 (7)

for all x̃ ∈ X with ‖x̃−x‖ < ε. The only difference between the inequalities (6) and (7)

is that the quadratic form in the latter is simply a multiple of the squared norm on X,

while in the first case any bounded quadratic form A can be used.

In particular it follows that a function R has a proximal subdifferential at x ∈ X

if and only if R is locally Wl-convex at x and its subdifferential with respect to Wl is

non-empty. Moreover the proximal subdifferential consists of all the linear parts of all

Wl-subgradients at x when written in the form (6).

Remark 2.12 In Examples 2.9–2.11, the local convexity of the topological vector space

X is only needed in order to guarantee that the dual space X∗ is rich enough as to

permit the existence of non-trivial continuous linear functionals; else the only W -convex

functionals would be constant and thus the applicability of the theory rather limited. In

principle, however, the same definitions can also be used for arbitrary topological vector

spaces. In particular, this applies to the interesting case of ℓp spaces with 0 < p < 1,

which are not locally convex, but whose topological dual space is ℓ∞.

3. Generalized Convergence Rates

We will now apply the definitions introduced in Section 2 for the derivation of

(generalized) convergence rates for Tikhonov regularization. The goal is the stable

solution of an operator equation

F (x) = y† , (8)

where F is a mapping between the sets X and Y .

We assume that the right hand side in (8) is known only approximately, that is,

instead of y† we are only given noisy data yδ ∈ Y close to y†. In addition, we assume

that we can estimate the difference between yδ and the unknown true data y† in terms

of some distance like functional S: Y × Y → R̄≥0 on the space Y . More precisely, we

know that yδ satisfies the inequality S(y†, yδ) ≤ δ.

For the stable approximate solution of (8) we consider some regularization term

R: X → R̄≥0 and define the Tikhonov functional Tα: X × Y → R̄ as

Tα(x, y) := S(F (x), y) + αR(x) .
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Given some noise level δ > 0 and noisy data yδ ∈ Y we denote for every regularization

parameter α > 0 the approximate solution of F (x) = yδ by

xδ
α := arg min

x∈X
Tα(x, yδ) .

In case we have no uniqueness, we denote by xδ
α any minimizer of Tα(·, yδ).

Collecting the results of [14, 16, 20], we see that the minimization of Tα is a well-

defined regularization method (that is, it attains a solution that is stable with respect

to data perturbations and converges to the true solution as the noise level decreases to

zero), if the following conditions are satisfied for some topologies on X and Y :

(A1) The distance measure S satisfies, for some s ≥ 1, the quasi-triangle inequality

S(y0, y1) ≤ s(S(y0, y2) + S(y2, y1)) (9)

for all y0, y1, y2 ∈ Y .

(A2) We have S(y0, y1) = 0 if and only if y0 = y1.

(A3) If (yk)k∈N ⊂ Y is a sequence satisfying S(yk, y) → 0, then yk → y.

(A4) For all y ∈ Y , the functional (x, y) 7→ S(F (x), y) is sequentially lower semi-

continuous. Here we define S(F (x), y) := +∞ if x 6∈ Dom(F ).

(A5) The functional R is sequentially lower semi-continuous.

(A6) For all α > 0, y ∈ Y , and t ∈ R the set {x ∈ X : Tα(x, y) ≤ t} is sequentially

pre-compact.

Basically, assumptions (A4)–(A6) guarantee the existence of a minimizer of Tα,

while (A1)–(A3) are required to obtain stability of the method, and convergence as the

noise level decreases to zero. In fact, as far as the well-posedness of the regularization

method is concerned, assumption (A1) can be weakened: One only requires that for

every y ∈ Y there exist δ > 0 such that S(y0, y1) < ∞ whenever S(y0, y) < δ and

S(y, y1) < ∞. The stronger assumption (A1), however, will be required below for the

derivation of convergence rates. More details on Tikhonov regularization in such a

general setting can be found in [16].

For the derivation of convergence rates with respect to the generalized Bregman

distance we will employ the method of variational inequalities, which has been

introduced in [14] for proving convergence rates for Tikhonov regularization on Banach

spaces, where the operator F is non-linear (and even possibly non-smooth).

In the following we always denote by x† any R-minimizing solution of the equation

F (x) = y†, that is,

x† ∈ arg min{R(x) : x ∈ X, F (x) = y†} .

Definition 3.1 Let W be a family of extended real valued functions on X, and assume

that R is W -convex at x† and ∂WR(x†) 6= ∅. We say that the regularization method

satisfies a variational inequality at x† ∈ X with respect to W , if there exist β > 0, ε > 0,
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a neighbourhood U of x†, w ∈ ∂WR(x†), and a concave, continuous, strictly increasing

function Φ: R≥0 → R≥0 satisfying Φ(0) = 0 such that

βDw
W (x†; x) ≤ (R(x) −R(x†)) + Φ(S(F (x), F (x†))) (10)

for all x ∈ Dom F ∩ U satisfying |R(x) −R(x†)| < ε.

We note that a similar form of variational inequalities has been recently considered

in [2], though only within the setting of standard convex analysis.

Remark 3.2 Let X be a Banach space and assume that assumptions (A4)–(A6) hold

with respect to the weak topology on X. Then, the regularization method satisfies a

variational inequality at x† with respect to W , if there exists a neighbourhood U of x†

with respect to the weak topology such that (10) holds for all x ∈ Dom F ∩ U with R(x)

sufficiently close to R(x†).

Now recall that the functional R satisfies the Radon–Riesz property, if the weak

convergence of a sequence (xk)k∈N to some x ∈ X together with the convergence

R(xk) → R(x) ∈ R implies that ‖xk − x‖ → 0. If this is the case, then it is sufficient

to verify (10) on a norm ball around x† in order to prove the validity of a variational

inequality. This can be of advantage, because the norm topology is often easier to deal

with than the weak topology (see for instance the proof of Theorem 5.2 below).

Theorem 3.3 Assume that a variational inequality at x† ∈ X with respect to W is

satisfied, and let β > 0 and Φ: R≥0 → R≥0 be as in Definition 3.1. Let δ > 0

and assume that yδ ∈ Y satisfies S(y†, yδ) ≤ δ and S(yδ, y†) ≤ δ. Moreover let

xδ
α ∈ arg min

x
Tα(x, yδ). Then, for δ small enough, the following hold:

(i) If γ := limt→0+ Φ(t)/t < +∞ and α ≤ 1/(γs), we have the estimate

βDw
W (x†; xδ

α) ≤ δ

α
+ Φ(sδ) . (11)

(ii) If limt→0+ Φ(t)/t = +∞, let Ψ: R≥0 → R≥0 be the conjugate of the convex mapping

t 7→ Φ−1(st). Then we have, for α sufficiently small, the estimate

βDw
W (x†; xδ

α) ≤ δ

α
+ Φ(sδ) +

Ψ(α)

α
. (12)

Proof: Since xδ
α is a minimizer of the Tikhonov functional Tα(·, yδ) and

S(F (x†), yδ) = S(y†, yδ) ≤ δ ,

we have the inequality

S(F (xδ
α), yδ) + αR(xδ

α) ≤ S(F (x†), yδ) + αR(x†) ≤ δ + αR(x†) .

Let now ε > 0 and x† ∈ U ⊂ X be as in Definition 3.1. Because the regularization

method is convergent, it follows that xδ
α satisfies xδ

α ∈ U and |R(xδ
α)−R(xδ

α)| < ε for δ

small enough. Therefore (10), (9), and the sub-additivity of Φ imply that

δ ≥ S(F (xδ
α), yδ) + α(R(xδ

α) −R(x†))

≥ S(F (xδ
α), yδ) + αβDw

W (x†; xδ
α) − αΦ(S(F (xδ

α), F (x†)))

≥ S(F (xδ
α), yδ) + αβDw

W (x†; xδ
α) − αΦ(sδ + sS(F (xδ

α), yδ))

≥ S(F (xδ
α), yδ) + αβDw

W (x†; xδ
α) − αΦ(sδ) − αΦ(sS(F (xδ

α), yδ)) . (13)
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Now assume that γ = limt→0+ Φ(t)/t < +∞. Because Φ is concave and Φ(0) = 0,

it follows that Φ(t) ≤ γt for all t ≥ 0. Consequently, we obtain from (13) the inequality

αβDw
W (x†; xδ

α) + (1 − αsγ)S(F (xδ
α), yδ) ≤ δ + αΦ(sδ) .

For α ≤ 1/(sγ), the term (1 − αsγ) is non-negative, and thus (11) holds.

Now consider the case limt→0+ Φ(t)/t = +∞. From Young’s inequality (see [13,

Thm. 13.2]) we obtain that

αΦ(sS(F (xδ
α), yδ)) ≤ Ψ(α) + Ψ∗(Φ(sS(F (xδ

α), yδ))) .

Now the definition of Ψ implies that Ψ∗(Φ(st)) = t for all t ∈ R. Therefore,

αΦ(sS(F (xδ
α), yδ)) ≤ Ψ(α) + S(F (xδ

α), yδ) .

Thus we obtain from (13) that

βDw
W (x†; xδ

α) ≤ δ

α
+ Φ(sδ) +

Ψ(α)

α
,

which shows (12). ⊓⊔

Corollary 3.4 Let the assumptions of Theorem 3.3 be satisfied.

(i) If γ := limt→0+ Φ(t)/t < +∞ we have for a constant parameter choice α ≤ 1/(γs)

the convergence rate

Dw
W (x†; xδ

α) = O(δ) .

(ii) If limt→0+ Φ(t)/t = +∞, then we have for a parameter choice α ∼ δ/Φ(sδ) the

convergence rate

Dw
W (x†; xδ

α) = O(Φ(sδ)) .

Proof: In case γ = limt→0+ Φ(t)/t < +∞, the assertion is an immediate consequence of

Theorem 3.3 and the inequality Φ(sδ) ≤ γsδ.

Now assume that limt→0+ Φ(t)/t = +∞ and α ∼ δ/Φ(sδ). Then Theorem 3.3

implies that

βDw
W (x†; xδ

α) ≤ δ

α
+ Φ(sδ) +

Ψ(α)

α

∼ δΦ(sδ)

δ
+ Φ(sδ) +

Ψ(δ/Φ(sδ))

δ
Φ(sδ) .

Thus it remains to show that Ψ(δ/Φ(sδ))/δ stays bounded for δ → 0.

Because Ψ is convex, its right derivative Ψ′ exists everywhere and satisfies tΨ′(t) ≥
Ψ(t) − Ψ(0) = Ψ(t) for every t > 0. Furthermore, because Ψ(0) = 0 and Ψ(t) ≥ 0 for

all t, the convexity of Ψ implies that Ψ is non-decreasing. Thus we obtain that

Ψ(δ/Φ(sδ))

δ
≤ Ψ(sδ/Φ(sδ))

sδ
≤ Ψ′(sδ/Φ(sδ))

Φ(sδ)
.

Setting t := Φ(sδ), we obtain that

lim sup
δ→0+

Ψ(δ/Φ(sδ))

δ
≤ lim sup

δ→0+

Ψ′(sδ/Φ(sδ))

Φ(sδ)
= lim sup

t→0+

Ψ′(Φ−1(t)/t)

t
.
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Now the convexity of Φ−1 and the definition of Ψ imply that

Ψ′(Φ−1(t)/t) ≤ Ψ′((Φ−1)′(t)) = t/s .

This shows that

lim sup
δ→0+

Ψ(δ/Φ(sδ))

δ
≤ 1/s ,

which proves the assertion. ⊓⊔

Remark 3.5 In the case limt→0+ Φ(t)/t < +∞ it follows from (11) that the Bregman

distance between the regularized solution and x† is zero if no noise is present. If, in

addition, the Bregman distance satisfies Dw
W (x†; x) > 0 for x 6= x†, then this implies that

the exact solution can be recovered from exact data using a sufficiently small but non-

zero regularization parameter. For this reason, regularization methods with this property

have been called exact penalization methods in [4]. These methods share the somewhat

surprising property that the best convergence rates are achieved if the regularization

parameter does not tend to zero but rather stays bounded away from zero at some small

enough value. This typically happens, if the distance measure S is non-smooth across

the diagonal (see for instance Examples 3.6).

In particular, the preceding results allow the recovery of the convergence rates

results derived in [14, 16, 20]:

Example 3.6 (Metric Regularization) Assume that Y is a metric space with metric

d and that

S(y1, y2) := (d(y1, y2))
p

for some p > 1. Then (9) holds with s = 2p−1.

With Φ(t) = γt1/p, the variational inequality (10) reads as

βDw
W (x†; x) ≤ (R(x†) −R(x)) + γd(F (x), F (x†)) , (14)

which is the metric equivalent of the condition applied in [14]. Denote by p∗ the conjugate

of p defined by 1/p + 1/p∗ = 1. Then

Ψ(t) =
γp∗tp∗

2pp∗pp∗
.

Thus (12) reads as

βDw
W (x†; xδ

α) ≤ d(y†, yδ)p

α
+ γ21/p∗d(y†, yδ) +

γp∗αp∗−1

2pp∗pp∗
.

Moreover, we obtain for a parameter choice α ∼ d(y†, yδ)p−1 a convergence rate

Dw
W (x†; xδ

α) ≤ O(d(y†, yδ)) .

Similarly, if p = 1 and (14) holds, then we have Φ(t) = γt, implying that we are in

the case of exact penalization methods. In this situation (11) implies the estimate

βDw
W (x†; xδ

α) ≤ (γ + 1/α) d(y†, yδ)

for α ≤ 1/γ.
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4. Regularization on Hilbert Spaces

Let X and Y be Hilbert spaces and let F : X → Y be a bounded linear operator. We

consider the space Wl defined in Example 2.11, which consists of all locally negative

semi-definite, continuous quadratic functions on X. Then the regularization term R is

locally convex at x† with respect to Wl and the Wl-subgradient at x† non-empty, if and

only if R has a proximal subdifferential at x† (see Example 2.11).

Moreover, we consider the similarity term

S(y, z) := Θ(‖y − z‖Y ) ,

where Θ: R≥0 → R≥0 is a convex and strictly increasing function satisfying Θ(0) = 0.

Let x† ∈ X be an R-minimizing solution of the equation Fx = y. If w ∈ ∂Wl
R(x†),

then there exist ε > 0, ξ ∈ X, and a positive semi-definite, symmetric, bounded

quadratic form A on X such that

w(x) = 〈ξ, x − x†〉 − A(x − x†, x − x†)

for all x ∈ X with ‖x − x†‖ < ε. Moreover, there exists a bounded linear, self-adjoint

mapping L: X → X such that

A(x, x̂) = 〈Lx, x̂〉X
for all x, x̂ ∈ X. In particular, we have the inequality

R(x) ≥ R(x†) + 〈ξ, x − x†〉 − 〈L(x − x†), x − x†〉 (15)

for all x ∈ X satisfying ‖x − x†‖ < ε.

Proposition 4.1 Assume that R satisfies the Radon–Riesz property. Let ξ ∈ X and

L: X → X satisfy (15). Assume that there exists some µ > 0 such that the mapping

µ2F ∗F − L is positive semi-definite and the range condition

ξ ∈ Ran(
√

µ2F ∗F − L)

holds. Then the regularization method satisfies a variational inequality at x† with respect

to Wl with Φ(t) := γΘ−1(t) for some γ > 0. In particular, we obtain for a parameter

choice according to Corollary 3.4 a convergence rate Dw
Wl

(x†; xδ
α) = O(‖yδ − y†‖).

Proof: By definition we have

Dw
Wl

(x†; x) = R(x) −R(x†) − 〈ξ, x − x†〉 + 〈L(x − x†), x − x†〉 .

Because ξ ∈ Ran(
√

µ2F ∗F − L), there exists a constant C > 0 such that

〈ξ, x − x†〉2 ≤ C2‖(µ2F ∗F − L)1/2(x − x†)‖2

= C2µ2‖F (x − x†)‖2 − C2〈L(x − x†), x − x†〉
= C2µ2‖F (x − x†)‖2 − C2A(x − x†, x − x†) .

Thus, for A(x − x†, x − x†) ≤ 1/C2, the estimate

|〈ξ, x − x†〉| ≤ 2Cµ‖F (x − x†)‖ − A(x − x†, x − x†)
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holds. Collecting the above inequalities, we obtain

Dw
Wl

(x†; x) ≤ R(x) −R(x†) + 2Cµ‖F (x − x†)‖ ,

which proves the assertion. ⊓⊔

Remark 4.2 Let again (15) be satisfied by ξ ∈ X and L: X → X. Then the same

inequality is also satisfied by λ2L for every λ2 > 1. Now assume in addition, that the

range condition ξ ∈ Ran(
√

µ2F ∗F − L) holds. Then, obviously, also the range condition

ξ ∈ Ran(
√

λ2µ2F ∗F − λ2L) is satisfied, and thus a convergence rate Dwλ

W (x†; xδ
α) with

respect to the subgradient wλ(x) = 〈ξ, x− x†〉 − λ2〈L(x− x†), (x− x†)〉 holds. Now note

that Dwλ

W satisfies the inequality

Dwλ

W (x†; x) ≥ (λ2 − 1)〈L(x − x†), x − x†〉 = (λ2 − 1)A(x − x†, x − x†) .

Thus the range condition of Proposition 4.1 implies at the worst a rate

A(xδ
α − x†, xδ

α − x†) = O(‖yδ − y†‖) .

Remark 4.3 Note that the assumption in Proposition 4.1 that R satisfies the Radon–

Riesz property can be dropped, if instead of Wl one uses the space W of all negative

semi-definite, bounded quadratic forms on X. That is, one requires (15) to hold globally

on X instead of merely locally around x†.

Example 4.4 Assume that Ω ⊂ R
n is a bounded Lipschitz domain and F : L2(Ω) → Y

a bounded linear operator. We consider the regularization functional

R(x) =

∫

Ω

f(x(s)) ds + |Dx|(Ω)

where

f(t) := (t2 − 1)2

and |Dx|(Ω) denotes the total variation of the function x on Ω (see [1]). That is, the

regularization functional encourages x to take only the values +1 and −1, with these

two phases separated by regular hypersurfaces. Functionals of this type are, for instance,

used in the theory of phase transitions [18]. Also, an application of similar functionals

to image classification and denoising has been proposed in [19].

We now consider the two components of R separately and define R1(x) :=
∫

Ω
f(x(s)) dx and R2(x) := |Dx|(Ω). The function R2 is convex in the classical sense

and its sub-differential at x† consists of all functions ξ2 ∈ L2(Ω) of the form

ξ2(s) = − div
( Dx†(s)

|Dx†(s)|
)

.

Moreover the proximal subdifferential ∂PR1(x
†) is the function

ξ1(s) = f ′(x†(x)) = 4x†(s)(x†(s)2 − 1) .

Now let

η0(s) := max{2(1 − x†(s)2), 0}
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and define the positive semi-definite bounded quadratic form A0: L
2(Ω) → R as

A0(x1, x2) :=

∫

Ω

η0(s) x1(s) x2(s) ds .

Then ∂WR2(x
†) consists of all mappings w2 of the form

w2(x) = 〈ξ1, x − x†〉 − A(x − x†, x − x†)

with A ≥ A0.

We now consider for simplicity only sub-differentials w of R, where the quadratic

part is of the form A(x1, x2) =
∫

Ω
η(s) x1(s) x2(s) ds with η ≥ η0. Then, the

corresponding self-adjoint operator L is the diagonal operator x 7→ ηx. The range

condition of Proposition 4.1 therefore reads as

4x†(x†2 − 1) − div
( Dx†

|Dx†|
)

∈ Ran(
√

µ2F ∗F − η) . (16)

Moreover, the Bregman distance defined by w equals

Dw
W (x†; x) = R(x) −R(x†) − 〈ξ1 + ξ2, x − x†〉 + A(x − x†, x − x†)

=

∫

Ω

f(x(s)) − f(x†(s)) − f ′(x†(s))(x(s) − x†(s)) ds

+

∫

Ω

η(s)(x(s) − x†(s))2 ds

+ |Dx|(Ω) +

∫

Ω

div
( Dx†(s)

|Dx†(s)|
)

x(s) ds .

5. Sparse Regularization on Sequence Spaces

We now assume that the space X is the sequence space ℓ2(Λ), where Λ is some countable

index set. We consider, for a given function φ: R → R̄≥0 and weights ωλ, λ ∈ Λ, the

regularization functional

R(x) =
∑

λ∈Λ

ωλφ(xλ) .

Here we denote by xλ the coefficients of the sequence x = (xλ)λ∈Λ ∈ ℓ2(Λ).

We assume that the following conditions hold:

(B1) The mapping φ is lower semi-continuous and φ(0) = 0.

(B2) We have limt→±∞ φ(t) = +∞.

(B3) There exists C > 0 such that

φ(t) ≥ Ct2

1 + t2

for all t ∈ R.

(B4) The weights satisfy infλ ωλ > 0.
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It has been shown in [10] that, under these assumptions, the functional R is weakly

lower semi-continuous and coercive (that is, its level sets are bounded and therefore

weakly pre-compact), and satisfies the Radon–Riesz property.

In addition, we assume that the operator F is a bounded linear operator from ℓ2(Λ)

to the Hilbert space Y and that the distance measure equals the squared norm on Y .

That is, the Tikhonov functionals reads as

Tα(x, y) = S(F (x), y) + αR(x) = ‖Fx − y‖2 + α
∑

λ∈Λ

ωλφ(xλ) .

In case φ, and therefore R, is convex, it is well known that the variational inequality (10)

holds with Φ(t) =
√

t, if and only if the R-minimizing solution x† of the equation

Fx† = y satisfies the range condition

Ran F ∗ ∩ ∂R(x†) 6= ∅
(see [20, Prop. 3.38]). In this situation, therefore, one obtains, for every ξ ∈
Ran F ∗∩∂R(x†) and a parameter choice α ∼ ‖y− yδ‖, a convergence rate Dξ(x†; xδ

α) =

O(‖y − yδ‖). Moreover, if φ(t) = |t|q with 1 < q < 2, one can derive a convergence rate

‖xδ
α − x†‖2 = O(‖y − yδ‖) (see [15]).

The results in [3, 11], however, show that better rates are possible, if the true

solution is finitely supported and the operator F is injective on the support of x†. Here,

the support of x† is defined as

supp(x†) := {λ ∈ Λ : xλ 6= 0} .

Then, if φ is convex, the range condition RanF ∗ ∩ ∂R(x†) 6= ∅ implies a rate

‖xδ
α − x†‖q = O(‖y − yδ‖), provided a growth condition of the form

φ(t) ≥ C|t|q

holds. The next result shows that a slightly weaker rate holds for non-convex functions.

Definition 5.1 Let 1 ≤ p ≤ 2. We define Wp as the set of all functions w: ℓ2(Λ) → R

for which there exist ε > 0, a sparse element x ∈ ℓ2(Λ), ξ ∈ ℓ2(Λ), and c > 0 such that

w(x̃) = 〈ξ, x̃ − x〉 − c
∑

λ∈supp(x)

|x̃λ − xλ|p

for all x̃ ∈ ℓ2(Λ) with ‖x − x̃‖ < ε.

Theorem 5.2 Let p > q > 0, and assume that there exists C > 0 such that

φ(t) ≥ C|t|q
1 + |t|q

for all t ∈ R. Assume moreover that x† is the unique solution of the equation Fx = y†,

that x† is sparse and that the restriction of F to ℓ2(supp(x†)) is injective. Then the

following hold:

(i) If p = 1, then

‖xδ
α − x†‖ℓ1 = O(‖yδ − y†‖) as δ → 0 .



Convergence Rates for Non-convex Regularization 16

(ii) If p > 1 and there exists w ∈ ∂Wp
R(x†) such that the linear part ξ of w satisfies

ξ ∈ Ran(F ∗) and ξλ = 0 for λ 6∈ supp(x†), then

‖xδ
α − x†‖ℓp = O(‖yδ − y†‖1/p) as δ → 0 .

Proof: The assertion for p = 1 has already been shown in [10]. It is therefore sufficient

to only consider the case p > 1. We will show that there exist β > 0 and γ > 0 such

that

βDw
Wp

(x†; x) ≤ (R(x) −R(x†)) + γ‖F (x − x†)‖
for all x sufficiently close to x†. Because R satisfies the Radon–Riesz property, this

allows us to apply Corollary 3.4.

Denote now for simplicity Ω := supp(x†) and define xΩ ∈ ℓ2(Λ) by (xΩ)λ := xλ if

λ ∈ Ω and (xΩ)λ = 0 else. Let moreover x⊥
Ω = x − xΩ. By definition of Wp there exist

ε > 0 and c > 0 such that

w(x) = 〈ξ, x − x†〉 − c‖xΩ − x†‖p
ℓp

for all x satisfying ‖x − x†‖ < ε. Choosing β = 1/2, we therefore have to show that

there exists γ > 0 such that

c

2
‖xΩ − x†‖p

ℓp − 1

2
〈ξ, x − x†〉 ≤ 1

2
(R(x) −R(x†)) + γ‖F (x − x†)‖ (17)

for all x satisfying ‖x − x†‖ℓp < ε.

Because the restriction of F to ℓ2(Ω) is injective and Ω is a finite set, there exists

γ1 > 0 such that

γ1‖F (x⊥
Ω − x†)‖p ≥ ‖x⊥

Ω − x†‖p
ℓp

for all x ∈ ℓ2(Λ). Consequently, there exist γ2 > 0 and γ3 > 0 such that

c‖xΩ − x†‖p
ℓp ≤ cγ1‖F (xΩ − x†)‖p

≤ 2p−1cγ1‖F (x − x†)‖p + 2p−1cγ1‖Fx⊥
Ω‖p

≤ γ2‖F (x − x†)‖ + γ3‖x⊥
Ω‖p

ℓp (18)

for all x ∈ ℓ2(Λ) satisfying ‖x − x†‖ℓp < ε. Now note that, after possibly choosing a

smaller ε > 0,

R(x) −R(x†) = R(x⊥
Ω) + R(xΩ) −R(x†)

=
∑

λ6∈Ω

ωλφ(xλ) + R(xΩ) −R(x†)

≥ C infλ ωλ

2
‖x⊥

Ω‖q
ℓq + 〈ξ, xΩ − x†〉 − c‖xΩ − x†‖p

ℓp . (19)

By assumption, ξλ = 0 for λ 6∈ Ω, implying that

〈ξ, xΩ − x†〉 = 〈ξ, x − x†〉 .

Because p > q, it follows that, again after possibly choosing a smaller ε > 0,

C infλ ωλ

2
‖x⊥

Ω‖q
ℓq ≥ 2γ3‖x⊥

Ω‖p
ℓp .
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Therefore we obtain from (19) the inequality

R(x) −R(x†) ≥ 2γ3‖x⊥
Ω‖p

ℓp + 〈ξ, x − x†〉 − c‖xΩ − x†‖p
ℓp .

Together with (18), this implies that

R(x) −R(x†) ≥ γ3‖x⊥
Ω‖p

ℓp + 〈ξ, x − x†〉 − γ2‖F (x − x†)‖ . (20)

The range condition ξ ∈ Ran(F ∗) implies the existence of γ4 > 0 such that

|〈ξ, x − x†〉| ≤ γ4‖F (x − x†)‖ .

From (20) we obtain therefore the estimate

γ3‖x⊥
Ω‖p

ℓp ≤ R(x) −R(x†) − (γ2 + γ4)‖F (x − x†)‖ .

Therefore (18) implies that

c

2
‖x⊥

Ω − x†‖p
ℓp − 1

2
〈ξ, x − x†〉 ≤ γ2 + γ4

2
‖F (x − x†)‖ +

γ3

2
‖x⊥

Ω‖p
ℓp

≤ (γ2 + γ4)‖F (x − x†)‖ +
1

2
(R(x) −R(x†)) .

Setting γ := γ2 + γ4, this proves (17). Corollary 3.4 therefore implies the rate

Dw
Wp

(x†; xδ
α) = O(‖yδ − y†‖) .

Now note that the same rate can be derived with w replaced by w̃(x) := 〈ξ, x −
x†〉 − 2c‖xΩ − x†‖p

ℓp . Moreover, we have the estimate

Dw̃
Wp

(x†; x) ≥ c‖xΩ − x†‖p
ℓp + C

∑

λ6∈Ω

ωλ
|xλ|q

1 + |xλ|q

≥ c‖xΩ − x†‖p
ℓp +

C infλ ωλ

2
‖x⊥

Ω − x†‖q
ℓq

for x sufficiently close to x†. Because p > q, this proves the rate

‖xδ
α − x†‖p

ℓp = O(‖yδ − y†‖) .

⊓⊔

6. Conclusion

In this paper we have introduced a generalized notion of Bregman distances that

allows the derivation of convergence rates for Tikhonov regularization with non-convex

regularization terms. The proof of the rates is based on the method of variational

inequalities introduced in [14], which can be extended without modifications to the

abstract setting of convexity on which the generalized Bregman distances are based.

We have demonstrated by means of two examples that the generalized theory can yield

relevant results.

The first example concerns the regularized solution of linear operator equations

on Hilbert spaces. Assuming that the regularization functional can be approximated

from below by a quadratic functional, we have shown that the corresponding variational



Convergence Rates for Non-convex Regularization 18

inequality can be derived from a range condition that reduces precisely to the standard

range condition ∂R(x†) ∈ Ran F ∗ from the convex theory, if the quadratic functional

degenerates to an affine one and the regularization functional becomes locally convex at

x†.

The second example treats sparse regularization with non-convex regularization

functionals. In the convex case recent results have shown that a rate ‖xδ
α − x†‖ =

O(‖yδ − y†‖1/q) holds, if the regularization functional satisfies a growth condition

R(x) ≥ C‖x‖q
ℓq near zero and the operator F is injective on the support of x†.

The results of this paper show that the same conditions also imply convergence

rates for non-convex regularization, albeit slightly weaker ones: only a rate of order

‖xδ
α − x†‖ = O(‖yδ − y†‖1/p) for any p > q is shown to hold in the non-convex case.

Acknowledgments

This work has been supported by the Austrian Science Fund (FWF) within the national

research network Industrial Geometry, project 9203-N12.

References

[1] L. Ambrosio, N. Fusco, and D. Pallara. Functions of Bounded Variation and Free Discontinuity

Problems. Oxford University Press, New York, 2000.
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