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Abstract. This paper considers the nonparametric regression model with an additive

error that is dependent on the explanatory variables. As is common in empirical studies

in epidemiology and economics, it also supposes that valid instrumental variables are

observed. A classical example in microeconomics considers the consumer demand

function as a function of the price of goods and the income, both variables often

considered as endogenous. In this framework, the economic theory also imposes shape

restrictions on the demand function, like integrability conditions. Motivated by this

illustration in microeconomics, we study an estimator of a nonparametric constrained

regression function using instrumental variables by means of Tikhonov regularization.

We derive rates of convergence for the regularized model both in a deterministic and

stochastic setting under the assumption that the true regression function satisfies a

projected source condition including, because of the non-convexity of the imposed

constraints, an additional smallness condition.
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1. Motivation

We consider the model

Yi = g(Xi) + εi, i = 1, . . . , n,

where (Yi, Xi)i=1,...,n is a sample of observations of size n representing respectively the

measured data and variables effecting the measurements. The function g describes the

dependence of the data on the variables, and εi is a combination of noise (measurement

errors) and modeling errors, often resulting from the omittance of relevant variables.

The goal is the estimation of the function g. If the modeling errors ε and the variables
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X are not dependent, that is, if the conditional expectation E(ε|X) of ε given X is zero,

then it is possible to identify g by

g(x) := E(Y |X = x). (1)

If, however, the conditional expectation of ε given X does not vanish, then this will lead

to a biased estimate, as

E(Y |X = x) = g(x) + E(ε|X = x).

The variablesX are then called endogenous variables. This issue of endogeneity typically

arises in the presence of modeling errors, in particular, if variables have been omitted

from the model that simultaneously influence both X and Y . This has been illustrated

in several applications, for example in epidemiology (see [11, 14, 28]) and in economics

(see [31] and also the survey [2]). In the classical microeconomic setting of consumer

demand, the endogeneity issue has also been raised. In this framework, the variable Y

represents the observed demand of a consumer for k goods, and the explanatory variables

X include the vector of prices P of the goods and the total budget Z > 0 of the consumer;

the function g:Rk
>0 ×R>0 → Rk

≥0 denotes the consumer demand. The problem of price

endogeneity has been highlighted in several research articles (see for example [8, 21, 22]).

In an industrial organization framework, the paper by [4] analyzes demand and supply

in differentiated product markets (like the US automobile industry) and highlight the

problem involved by correlation between prices and product characteristics, some of

which are observed by the consumer but not by the econometrician. Similarly total

expenditure endogeneity has been studied in particular for Engel Curves analysis, see

for example [7].

One remedy is the usage of instruments, that is, different variables W , which

influence both P and Z but are uncorrelated with ε (see [2] for an overview). The

analysis of nonparametric instrumental regression has been conducted in several works

such as [13, 17, 19, 27]. Therefore we consider the model

Y = g(X) + ε

and we assume that the random variable X = (P,Z) is described by instruments W in

such a way that E(ε|W ) = 0. Therefore, the equation (1) can be transformed into

E(g(X)|W = w) = E(Y |W = w). (2)

We assume in the following that the relation between Y , X and W is described by

a joint density fY XW : ΩY × ΩX × ΩW → R>0, where, for simplicity, the finite measure

spaces ΩY , ΩX and ΩW are assumed to be normalized. We consider L2 spaces with

respect to this joint probability density and denote for example by L2(ΩX) functions

depending on P and Z only. In addition, we denote by fYW , fXW , fW the corresponding

marginal densities defined by

fYW (y, w) =

∫
ΩX

fY XW (y, x, w) dx,
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fXW (x,w) =

∫
ΩY

fY XW (y, x, w) dy,

fW (w) =

∫
ΩX

∫
ΩY

fY XW (y, x, w) dx dy.

Now assume that the set Ω is bounded and fY XW is bounded away from zero. We

consider the operator T :L2(ΩX)→ L2(ΩW ) defined by

Tψ(w) := E(ψ(X)|W = w) =

∫
ΩX

ψ(x)
fXW (x,w)

fW (w)
dx. (3)

Then (2) can be rewritten as the Fredholm integral equation

Tg = h, (4)

where

h(w) = E(Y |W = w) =

∫
ΩY

y
fYW (y, w)

fW (w)
dy.

In addition, classical microeconomic theory imposes some shape restrictions on the

consumer demand, and the challenge is to take these constraints into account in the

nonparametric estimation of the function g. More precisely, standard micro-economic

theory (see [29]) states that the demand is the result of the maximization of some

(unknown) utility function. That is, there exists some function u:Rk
≥0 → R (the utility)

such that

g(x) = arg max{u(y) : y ∈ Rk
≥0, 〈y, p〉 ≤ z}, (5)

where x = (p, z). Here the utility function is assumed to be continuously differentiable,

concave, and strictly monotoneously increasing. Even though the utility is unknown,

the assumption of its existence (and of utility maximization) has some implications for

the demand function g, called the integrability conditions. First, it is rather obvious

that g is homogeneous of degree 0, that is, g(tx) = g(x) for every t > 0. Moreover,

the maximum in (5) is always attained at the boundary; more precisely, we have the

equality

〈y, g(x)〉 = z; (6)

this condition is usually called the budget constraint. Finally, defining the Slutsky matrix

Sg(x) := ∇pg(x) + ∂zg(x) · g(x)T ,

the conditions

Sg(x) = Sg(x)T and Sg(x) ≤ 0 (7)

hold. That is, the Slutsky matrix is symmetric and negative semi-definite in (almost)

every point x = (p, z).

Therefore, the objective of this work is to recover the function g characterized by

equation (4) and satisfying the constraints defined by the Slutsky matrix.

The paper is organized as follows: In Section 2, we present our model, the link

with ill-posed inverse problems in the case where the transform is unknown, and the
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conditions under which a regularized solution can be defined. In Section 3 we derive

rates of convergence in a deterministic setting and we extend the results in Section 4 to

the statistical setting.

2. Constrained Inversion of T

Let now T be the operator defined in (3) (operating on vector valued functions). Then,

in order to recover g, we have to solve the equation

Tg = h,

where h denotes the right hand side of (4) subject to the constraints that g is

homogeneous of degree 0 and satisfies the budget constraint (6) and the Slutsky

condition (7) almost everywhere in Ω := ΩX = ΩP ×ΩZ . In the following we will always

assume that the set Ω is bounded, open, connected and has a Lipschitz boundary.

Apart from the constraints, there are three problems: First, the operator T is

defined by the density fXW , which is not known exactly but can only by estimated up

to a certain error δ. Consequently, we will only have an approximation T δ of T available.

Second, the right hand side h is only known up to some error γ, as it may be prone to

measurement errors (in a deterministic setting) or is the realization of a random variable

(in a stochastic setting), and, again, it depends on the density fYW . In addition, the

assumption E(ε|w) = 0 need not hold exactly. Finally, the operator T (and also its

approximation T δ) is not boundedly invertible in L2(Ω;Rk). Thus a direct solution of

the operator equation

T δg = hγ

does not make sense, as its solution gδ,γ (if it exists) need not be close to the true solution

g†, even if the errors δ and γ are small. In addition, there is no reason why the exact

solution of the perturbed operator equation (if it exists) should satisfy the required

constraints, in particular, as the constraints are non-linear and describe a non-convex

set.

In order to find a solution nevertheless, it is necessary to consider some kind of

regularized solution. In the following, we consider the application of (constrained)

Tikhonov regularization, where we use the (weighted) first order Sobolev norm as

regularization functional. That is, denoting for µ ≥ 0 by

‖g‖2
µ := µ‖g‖2

L2 + ‖∇g‖2
L2 (8)

the weighted Sobolev norm, one minimizes, for some regularization parameter α > 0

depending on δ and γ, the functional

Tα(g;T δ, hγ) := ‖T δg − hγ‖2
L2 + α‖g‖2

µ

subject to the constraints of positivity, 0-homogeneity, the Slutsky condition, and the

budget constraint. For the sake of simplicity, we will omit in the following the subscripts

in the L2-norms and we will assume that Ω is compactly contained in Rk
>0 × R>0.
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We use in the following the abbreviation

X := {g ∈ H1(Ω;Rk) : g ≥ 0 is 0-homogeneous, 〈p, g(x)〉 = z and Sg = STg ≤ 0 a.e.}.

Then one can define

gδ,γα := arg min{‖T δg − hγ‖2 + α‖g‖2
µ : g ∈ X},

provided the Tikhonov functional attains its minimum in X . In the following, we will

show that this is indeed the case. The proof is based on the direct method in the

calculus of variations. As a first important result, we prove that the set X is weakly

closed in H1(Ω;Rk), which is not an obvious assertion, as X is non-convex, and the

weak closedness of a subset of a Hilbert space is usually strongly tied to its convexity.

Lemma 2.1. The set X is weakly sequentially closed in H1(Ω;Rk).

Proof. Obviously the set of non-negative 0-homogeneous functions satisfying the budget

constraint 〈p, g(x)〉 = z is convex and closed in H1(Ω;Rk), implying that it is also weakly

closed.

Next we show that the mapping S:H1(Ω;Rk)→ L1(Ω;Rk×k),

g 7→ S(g) = ∇pg + ∂zg · gT

is weak–weak continuous. To that end assume that the sequence (gn)n∈N weakly

converges to g ∈ H1(Ω;Rk). Then ∇gn weakly converges to ∇g in L2(Ω;Rk×(k+1))

(which in particular implies that the sequence is bounded) and the Rellich–Kondrachov

compactness theorem (see [1, Thm. 6.2]) implies that the functions gn converge strongly

to g with respect to the L2 topology. Thus, if 1 ≤ i, j ≤ k and u ∈ L2(Ω;R), we have

|〈∂zg(i)
n g

(j)
n − ∂zg(i)g(j), u〉| ≤ |〈∂zg(i)

n (g(j)
n − g(j)), u〉|+ |〈(∂zg(i)

n − ∂zg(i))g(j), u〉|
≤ ‖g(j)

n − g(j)‖‖u‖‖∂zg(i)
n ‖+ |〈∂zg(i)

n − ∂zg(i), g(j)u〉| → 0.

Consequently the product ∂zgn·gTn converges to ∂zg·gT with respect to the weak topology

on L1(Ω;Rk×k).

Now note that the set Sym−k of all symmetric and negative semi-definite (k × k)-

matrices is a closed and convex cone in Rk×k. Consequently also the set of all summable

functions on Ω with values in Sym−k is a closed and convex cone in L1(Ω;Rk×k) and

therefore, in particular, also weakly closed. Therefore the weak-weak continuity of

the mapping S implies that the set of functions g ∈ H1(Ω;Rk) satisfying the Slutsky

condition S(g) = S(g)T ≤ 0 is weakly closed.

This shows that the set X is the intersection of the (weakly closed) set of 0-

homogeneous, non-negative functions satisfying the budget constraint with a weakly

closed set, which proves that X itself is weakly closed in H1(Ω;Rk).

For the usage of the direct method in the calculus of variations, we still have to

prove the coercivity of the regularization functional. In the case µ > 0, the coercivity

is obvious, as the regularization term is equivalent to the H1-norm; in the case µ = 0,

however, the equivalence only holds, if the operator T does not annihilate constant
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functions (see [3, 30] for a related result on total variation regularization). In the next

result, we provide a detailed proof of this assertion by explicitly computing constants

defining this equivalence of norms. In particular, the results show that these constants

depend continuously on the operator T , which will be required in the proof of the

convergence result, where we also treat the case of operator errors.

Lemma 2.2. Assume that T :L2(Ω;Rk) → L2(Ω;Rk) is a bounded linear operator. If

µ = 0, assume in addition that Tc 6= 0 for every non-zero constant function c: Ω→ Rk.

Define for g ∈ H1(Ω;Rk)

‖g‖2
T := ‖g‖2

µ + ‖Tg‖2
L2 . (9)

Then ‖ · ‖T is a norm on H1(Ω;Rk) that is equivalent to the standard H1-norm. More

precisely, we have the following estimates: For every µ ≥ 0,

‖g‖T ≤ ‖T‖‖g‖H1 ; (10)

if µ > 0 in (9), then

‖g‖H1 ≤ 1

min{√µ, 1}
‖g‖T , (11)

and if µ = 0 in (9), then there exists a constant A > 0 only depending on the set Ω such

that

‖g‖H1 ≤ A(‖T‖D(T )−1 +D(T )−1 + 1)‖g‖T , (12)

where

D(T ) := inf{‖Tc‖ : c: Ω→ Rk is constant with |c| = 1}.

Proof. Inequality (10) follows from

‖g‖T ≤ ‖Tg‖L2 ≤ ‖T‖‖g‖L2 ≤ ‖T‖‖g‖H1 ,

and (11) is trivial.

Now assume that µ = 0. Then the assertion Tc 6= 0 for every non-zero constant

function c: Ω → Rk implies that 0 < D(T ) < +∞. Define now the projection

P :L2(Ω;Rk)→ L2(Ω;Rk), g 7→ 1
|Ω|

∫
Ω
g. Then

‖g‖2 = ‖g − Pg‖2 + ‖Pg‖2

≤ ‖g − Pg‖2 +D(T )−2‖TPg‖2

≤ ‖g − Pg‖2 + 2D(T )−2(‖Tg‖2 + ‖T (g − Pg)‖2)

≤ (1 + 2D(T )−2‖T‖2)‖g − Pg‖2 + 2D(T )−2‖Tg‖2.

From the Poincaré Inequality (see e.g. [32, Thm. 4.8.1]) it follows that there exists C > 0

such that ‖g − Pg‖ ≤ C‖∇g‖. Thus

‖g‖2
H1 = ‖g‖2 + ‖∇g‖2

≤ (C2(1 + 2D(T )−2‖T‖2) + 1)‖∇g‖2 + 2D(T )−2‖Tg‖2.

Setting A = 2(C + 1) we obtain (12).
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Lemma 2.3. Assume that T δ:L2(Ω;Rk) → L2(Ω;Rk) is bounded linear, hγ ∈
L2(Ω;Rk), α > 0, and µ ≥ 0. If µ = 0, assume in addition that T δc 6= 0 for

every non-zero constant function c: Ω → Rk. Then the regularization functional

Tα:L2(Ω;Rk)→ R≥0 ∪ {+∞}.

Tα(g;T δ, hγ) :=

{
‖T δg − hγ‖2 + α‖g‖2

µ if g ∈ X ,

+∞ else,

attains its minimum.

Proof. The weak closedness of the set X and the weak lower semi-continuity of the

mapping g 7→ 1
2
‖T δg − hγ‖2 + α

2
‖g‖2

µ on the space H1(Ω) imply that also the mapping

Tα(·;T δ, hγ) is weakly lower semi-continuous. Moreover, Lemma 2.2 implies that

Tα(·;T δ, hγ) is weakly coercive. Applying the direct method in the calculus of variations,

we obtain the existence of a minimizer.

Note that the previous result does not say anything about the uniqueness of the

minimizer. Because of the non-convexity of the set X , it is probable that the Tikhonov

functional has multiple local minima, but also possible that it has several global minima.

The following result is very similar to the convergence result in [25]. The

main difference is that we also consider the homogeneous Sobolev semi-norm as a

regularization term, which is not coercive by itself. The coercivity (or rather the equi-

coercivity of the functionals Tα(·;T δ, hγ)/α) is only obtained by means of Lemma 2.2.

Proposition 2.4. Assume that T :L2(Ω;Rk) → L2(Ω;Rk) is bounded linear satisfying

Tc 6= 0 for every non-zero constant function c: Ω → Rk and that the operator equation

Tg = h has a solution in X . Let δj → 0, γj → 0 and assume that T δj :L2(Ω;Rk) →
L2(Ω;Rk) are bounded linear operators satisfying ‖T δj − T‖ ≤ δj and that the functions

hγj ∈ L2(Ω;Rk) satisfy ‖hγj − h‖ ≤ γj. Let µ ≥ 0 be fixed; if µ = 0, assume in addition

that T δjc 6= 0 for every non-zero constant function c: Ω→ Rk.

Assume that αj > 0 is chosen such that αj → 0 and (δj + γj)
2/αj → 0. Then every

sequence (gj)j∈N ⊂ X satisfying

gj ∈ arg min{Tαj(g;T δj , hγj) : g ∈ X}
has a subsequence gj(i) converging with respect to the H1-norm to some

g† ∈ arg min{‖g‖2
µ : Tg = h, g ∈ X}.

Proof. Let g̃ be any solution of Tg = h in X . Then

‖T δjgj − hγj‖2 + α‖gj‖2
µ ≤ ‖T δj g̃ − hγj‖2 + α‖g̃‖2

µ

≤ (‖T δj − T‖‖g̃‖+ ‖h− hγj‖)2 + α‖g̃‖2
µ

≤ (δj‖g̃‖+ γj)
2 + α‖g̃‖2

µ.

Consequently,

‖gj‖2

T δj
≤ 2‖Tgj − hγj‖2 + 2‖hγj‖2 + ‖gj‖2

µ

≤ (δj‖g̃‖+ γj)
2 + α‖g̃‖2

µ + 2‖hγj‖2 +
(δj‖g̃‖2 + γj)

2

α
+ ‖g̃‖2

µ.
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From Lemma 2.2, it follows that ‖gj‖T δj ≥ C(T δj)‖gj‖H1 for some constants C(·) > 0

depending continuously on the operator T δj . Therefore, the assumption (δj+γj)
2/α→ 0

implies that the sequence (gj)j∈N is bounded. The proof of the subsequential convergence

is now along the lines of [26, Thm. 3.26].

3. Convergence Rates

Lemma 3.1. Assume that T :L2(Ω;Rk) → L2(Ω;Rk) is bounded linear and that the

equation Tg = h has a solution in X . Let

g† ∈ arg min{‖g‖2
µ : Tg = h, g ∈ X}.

Let moreover T δ:L2(Ω;Rk)→ L2(Ω;Rk) satisfy ‖T δ−T‖L2 ≤ δ, and let hγ ∈ L2(Ω;Rk)

satisfy ‖hγ − h‖ ≤ γ. If µ = 0, assume in addition that δ < ‖T‖ and Tc 6= 0 for every

non-zero constant function c: Ω→ Rk. Assume that there exists a set L ⊂ X such that,

for some β > 0, C ≥ 0 and every g ∈ L, we have

β‖g − g†‖2
µ ≤ ‖g‖2

µ − ‖g†‖2
µ + C‖T (g − g†)‖. (13)

Let moreover

gδ,γα ∈ arg min{Tα(g;T δ, hγ) : g ∈ X}.

Define for µ > 0

Dµ(α, δ, γ) :=
δ‖g†‖+ γ
√
µα

+
‖g†‖µ√

µ
,

and let

D0(α, δ, γ) := A
‖T‖+D(T ) + 1

D(T )− δ

[
‖h‖+ γ +

√
2
δ‖g†‖+ γ +

√
α‖∇g†‖

min{
√
α, 1}

]
with A > 0 and D(T ) > 0 as in Lemma 2.2.

Then the estimates

β‖gδ,γα − g†‖2
µ ≤

(γ + δ‖g†‖)2

α
+ C(γ + δDµ(α, δ, γ)) +

C2α

4

and

‖T (gδ,γα − g†)‖2 ≤ 2(γ + δ‖g†‖)2 + 2αC(γ + δDµ(α, δ, γ)) + C2α2

hold whenever gδ,γα ∈ L.

Proof. The inequality (13) and the optimality of gδ,γα imply that

β‖gδ,γα − g†‖2
µ ≤ ‖gδ,γα ‖2

µ − ‖g†‖2
µ + C‖T (gδ,γα − g†)‖

≤ 1

α

(
‖T δg† − hγ‖2 − ‖T δgδ,γα − hγ‖2

)
+ C‖T (gδ,γα − g†)‖

≤ (δ‖g†‖L2 + γ)2

α
+ C(δ‖gδ,γα ‖L2 + γ)

+ C‖T δgδ,γα − hγ‖ −
‖T δgδ,γα − hγ‖2

α
.
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Estimating

C‖T δgδ,γα − hγ‖ −
‖T δgδ,γα − hγ‖2

α
≤ sup

t≥0

[
Ct− t2

α

]
=
C2α

4
,

we obtain the inequality

β‖gδ,γα − g†‖2
µ ≤

(γ + δ‖g†‖L2)2

α
+ C(γ + δ‖gδ,γα ‖) +

C2α

4
. (14)

Moreover, using the estimate

C‖T δgδ,γα − hγ‖ −
‖T δgδ,γα − hγ‖2

α

≤ sup
t≥0

[
Ct− t2

2α

]
− ‖T

δgδ,γα − hγ‖2

2α
=
C2α

2
− ‖T

δgδ,γα − hγ‖2

2α
,

we obtain

‖T (gδ,γα − g†)‖2 ≤ 2(γ + δ‖g†‖L2)2 + 2αC(γ + δ‖gδ,γα ‖) + C2α2. (15)

Assume first that µ > 0. Then the definition of ‖·‖µ and the optimality of gδα imply

the estimate

‖gδ,γα ‖ ≤
1
√
µ
‖gδ,γα ‖µ ≤

1
√
µ

((δ‖g†‖+ γ)2

α
+ ‖g†‖2

µ

)1/2

≤ 1
√
µ

(δ‖g†‖+ γ√
α

+ ‖g†‖µ
)
,

which proves the assertion for µ strictly positive.

Now assume that µ = 0. Then Lemma 2.2 implies that, using the same notation

as in the Lemma,

‖gδ,γα ‖ ≤ A(‖T δ‖D(T δ)−1 +D(T δ)−1 + 1)‖gδ,γα ‖T δ .

Moreover, for ‖T‖ > δ, we have

D(T δ) = inf{‖T δc‖ : c: Ω→ Rk is constant with |c| = 1}
≥ inf{‖Tc‖ : c: Ω→ Rk is constant with |c| = 1} − δ
= D(T )− δ.

Therefore,

‖gδ,γα ‖ ≤ A((‖T‖+ δ)(D(T )− δ)−1 + (D(T )− δ)−1 + 1)‖gδ,γα ‖T δ

= A
‖T‖+D(T ) + 1

D(T )− δ
‖gδ,γα ‖T δ .

Now the optimality of gδ,γα implies that

‖gδ,γα ‖T δ ≤ ‖T δgδ,γα − hγ‖+ ‖∇gδ,γα ‖+ ‖hγ‖

≤ ‖h‖+ γ +
(2Tα(gδ,γα ;T δ, hγ))1/2

min{
√
α, 1}

≤ ‖h‖+ γ +
(2Tα(g†;T δ, hγ))1/2

min{
√
α, 1}
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Figure 1. Proximal normal cone to the non-convex set S at the point z ∈ ∂S.

≤ ‖h‖+ γ +
√

2
δ‖g†‖+ γ +

√
α‖∇g†‖

min{
√
α, 1}

.

Together, these estimates show that

‖gδ,γα ‖ ≤ A
‖T‖+D(T ) + 1

D(T )− δ

[
‖h‖+ γ +

√
2
δ‖g†‖+ γ +

√
α‖∇g†‖

min{
√
α, 1}

]
.

Inserting this inequality in (14) and (15) proves the assertion for µ = 0.

In the next result, we will present concrete conditions that imply the inequality (13).

These conditions are a generalization of projected source conditions, which are a classical

concept in the theory of inverse problems with convex contraints (see [10, 15, 24]), to

a non-convex setting. Recently, the relation between projected source conditions and

variational inequalities of the type (13) has also been studied in [16], though still in a

convex setting. In order to generalize this concept to non-convex constraints, we recall

the notion of a proximal normal cone to a subset of a Hilbert space (see [12]).

Definition 3.2. Let Y be a Hilbert space and let S ⊂ Y be non-empty. We define for

y ∈ Y the set projS(y) ⊂ S as the set of all points z ∈ S for which the distance to y is

minimal. Moreover we define for z ∈ S the proximal normal cone NP
S (z) to S at z as

NP
S (z) := {ζ = t(y − z) ∈ Y : t ≥ 0, z ∈ projS(y)}.

See also Figure 1.

For the following result, see [12, Prop. 1.5].

Proposition 3.3. A vector ζ belongs to NP
S (z), if and only if there exists τ ≥ 0 (possibly

depending on ζ and z) such that

〈ζ, y − z〉 ≤ τ‖y − z‖2 (16)

for all y ∈ S.
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In the following we will denote, for given z ∈ S and ζ ∈ NP
S (z), by τ(ζ, z) the

smallest τ ≥ 0 for which (16) holds. Then the function τ is positively homogeneous

with respect to its first variable, that is, τ(tζ, z) = tτ(ζ, z) whenever ζ ∈ NP
S (z) and

t > 0 (note that the fact that NP
S (z) is a cone implies that tζ ∈ NP

S (z)).

Theorem 3.4. Assume that g† ∈ X satisfies Tg† = h. In addition, assume that

∂νg
† = 0 on ∂Ω. Denote moreover by T ∗:L2(Ω;Rk) → L2(Ω;Rk) the adjoint of T

and let NP
X (g†) ⊂ L2(Ω;Rk) be the proximal normal cone to the set X at the point g†.

Assume that there exist ω ∈ L2(Ω;Rk) and ζ ∈ NP
X (g†) such that

2(µg† −∆g†) = T ∗ω + ζ.

• If µ > 0 and τ(ζ, g†) < µ, then (13) holds for every g ∈ X with C = ‖ω‖ and

β = 1− τ(ζ, g†)/µ.

• If µ = 0, assume in addition that Tc 6= 0 for every non-zero constant function

c: Ω→ Rk and that

E := A2(‖T‖D(T )−1 +D(T )−1 + 1)2 τ(ζ, g†)

with A and D(T ) as in Lemma 2.2 satisfies E < 1. Then for every s > 0 the

inequality (13) holds with β = 1− E and C = ‖ω‖ + sE whenever g ∈ X satisfies

‖T (g − g†)‖ < s.

Proof. First note that

〈2µg† − 2∆g† − ζ, g† − g〉 = 〈T ∗ω, g† − g〉
= 〈ω, T (g† − g)〉
≤ ‖ω‖‖T (g† − g)‖.

Now the assumption ζ ∈ NP
X (g†) implies that

〈ζ, g† − g〉 ≤ τ(ζ, g†) ‖g† − g‖2

for all g ∈ X . In addition, Stoke’s theorem and the assumption ∂νg
† = 0 on ∂Ω imply

that

2〈µg† −∆g†, g† − g〉 = 2µ〈g†, g† − g〉+ 2〈∇g†,∇(g† − g)〉
= ‖g† − g‖2

µ + ‖g†‖2
µ − ‖g‖2

µ.

Thus we obtain the estimate

‖ω‖‖T (g − g†)‖ ≥ ‖g†‖2
µ − ‖g‖2

µ + ‖g† − g‖2
µ − τ(ζ, g†) ‖g† − g‖2. (17)

In the case µ > 0, it follows that

(1− τ(ζ, g†)/µ)‖g† − g‖2
µ ≤ ‖g†‖2

µ − ‖g‖2
µ + ‖ω‖‖T (g − g†)‖,

which proves the first part of the assertion.

On the other hand, if µ = 0, then (17) and Lemma 2.2 imply that

(1− E)‖∇(g† − g)‖2 ≤ ‖∇g‖2 − ‖∇g†‖2 + ‖ω‖‖T (g − g†)‖+ E‖T (g − g†)‖2.

Thus (13) holds for ‖T (g − g†)‖ ≤ s.
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Corollary 3.5. Assume that the assumptions of Theorem 3.4 are satisfied. Then we

have, with the notation of Lemma 3.1, the estimates

(1− τ(ζ, g†)/µ)‖gδ,γα − g†‖2
µ ≤

(γ + δ‖g†‖)2

α
+ ‖ω‖(γ + δDµ(α, δ, γ)) +

‖ω‖2α

4

in the case µ > 0, and

(1− E)‖∇(gδ,γα − g†)‖2

≤ (γ + δ‖g†‖)2

α
+ (‖ω‖+ sE)(γ + δD0(α, δ, γ)) +

(‖ω‖+ sE)2α

4

in the case µ = 0. In particular, we have in both cases with a parameter choice

α � max{δ, γ} a convergence rate

‖gδ,γα − g†‖2
µ = O(max{δ, γ}).

Remark 3.6. Consider for the moment the setting where the constraint set X is closed

and convex. Then the convexity of X implies that τ(ζ, g†) = 0 whenever ζ ∈ NP
X (g†); in

other words, the proximal normal cone NP
X (g†) coincides with the (usual) normal cone

NX (g†) = {ζ : 〈ζ, g̃−g〉 ≤ 0 for all g̃ ∈ X}. Thus in the condition T ∗ω+ζ = 2(µg†−∆g†)

for some ζ ∈ NP
X (g†) no smallness condition is required for ζ, and therefore this condition

reduces to the classical projected source condition found in [10, 24].

Remark 3.7. The conditions and results of Theorem 3.4 and Corollary 3.5 can also be

translated into the context of convex analysis with subgradients and Bregman distances

(see [9, 20, 26]). Recall that the subdifferential ∂R(g†) ⊂ X of a convex mapping

R:X → [0,+∞] at g† consists of all elements ξ ∈ X satisfyingR(g) ≥ R(g†)+〈ξ, g−g†〉
for all g ∈ X. Moreover, the Bregman distance Dξ(·; g†) is defined as

Dξ(g; g†) := R(g)−R(g†)− 〈ξ, g − g†〉.

If R(g) := ‖g‖2
µ (setting R(g) = +∞ if g 6∈ H1(Ω;Rk)), we obtain that the

subdifferential is non-empty if and only if ∂νg
† = 0 on ∂Ω. Moreover, in this case

its unique element is the function 2(µg† − ∆g†). Finally, it is easy to see that the

Bregman distance between with g and g† with respect to ‖ · ‖2
µ is precisely ‖g − g†‖2

µ.

In this setting, Corollary 3.5 with µ > 0 reads as follows: If there exist ξ ∈ ∂R(g†)

and ζ ∈ NP
X (g†) with τ(ζ, g†) < µ, then

Dξ(gδ,γα ) = O(max{δ, γ}).

Note moreover that in [18] a theory based on abstract convex analysis has been

developed in order to derive convergence rates for non-convex regularization terms.

Again, the results of Corollary 3.5 can be seen as special cases of the results in [18,

Section 4] by realizing that the function 2(µg† −∆g†) − ζ is a generalized subgradient

of the mapping

R(g) =

{
‖g‖2

µ if g ∈ X ,

+∞ else.
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4. Extension to the stochastic setting

In this section, we allow the approximation errors ‖T δ−T‖ and ‖hγ−h‖ to be stochastic

and depend on the sample size n. More precisely, T δ is a nonparametric estimator of

the operator T depending on the random sample (Yi, Xi,Wi)i=1,...,n and we will denote

it by T̂ . Similarly, hγ is a nonparametric estimator of the function h depending on the

random sample (Yi, Xi,Wi)i=1,...,n and we will denote it by ĥ . Finally, the approximated

regularized solution gδ,γα will be denoted by ĝα.

In the following, we will derive convergence rates in probability for ĝα. To that end,

recall that a sequence of random variables Qn, n ∈ N, in a normed space is bounded in

probability, if for every ε > 0 there exists C > 0 and n0 ∈ N such that

P(‖Qn‖ > C) < ε for all n ≥ n0.

In this case, we say that

Qn = OP (1).

Similarly, if cn, n ∈ N, is any real sequence, we write

Qn = OP (cn) if
Qn

cn
= OP (1).

Note that an alternative to convergence rates in probability is the derivation of

convergence rates in expectation, which has been carried out for Tikhonov regularization

and generalizations in [5, 6]. In this paper, however, we will restrict ourselves to rates in

probability in order to be able to exploit the results in [13] on unconstrained instrumental

regression.

Following [13], we introduce the kernel approach with generalized kernel functions

of order l for estimating T̂ and ĥ. Note that the kernel is considered in generalized form

only to overcome edge effects. Let σ ≡ σn → 0 denote a bandwidth and Kσ(·, ·) denote

a univariate generalized kernel function with the properties Kσ(u, t) = 0 if u > t or

u < t− 1; for all t ∈ [0, 1],

σ−(j+1)

∫ t

t−1

ujKσ(u, t)du =

{
1 if j = 0,

0 if 1 ≤ j ≤ l − 1.

We call Kσ(·, ·) a univariate generalized kernel function of order l (see [23]). A special

class of multivariate generalized kernel functions of order l is given by that of products

of univariate generalized kernel functions of order l. Let KX,σ and KW,σ denote two

generalized multivariate kernel functions of dimension k + 1 and KY,σ a kernel function

of dimension 1. First we estimate the density functions fYW , fXW and fW . Note that,

for simplicity of notation, we use the same bandwidth to estimate the three densities

f̂YW (y, w) =
1

nσk+2

n∑
i=1

KY,σ(y − Yi, y)KW,σ(w −Wi, w),

f̂XW (x,w) =
1

nσ2k+2

n∑
i=1

KX,σ(x−Xi, x)KW,σ(w −Wi, w),
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f̂W (w) =
1

nσk+1

n∑
i=1

KW,σ(w −Wi, w).

Then the estimators of T and h are

T̂ψ(w) =

∫
ψ(x)

f̂XW (x,w)

f̂W (w)
dx,

ĥ(w) =

∫
y
f̂YW (y, w)

f̂W (w)
dy.

In order to derive a rate of convergence for ĝα, we require

Assumption 4.1. We assume that the following conditions are satisfied:

(i) The data (Yi, Xi,Wi), i = 1, . . . , n, define an i.i.d. sample of (Y,X,W ).

(ii) The probability density function fY XW is l times continuously differentiable in the

interior of ΩY × Ω× ΩW and bounded away from zero on ΩY × Ω× ΩW .

(iii) The conditional expectation E(ε2|W = w) is uniformly bounded on ΩW .

(iv) Both multivariate kernels KX,σ and KW,σ are product kernels generated from the

univariate generalized kernel function Kσ with the following properties:

(a) The kernel function Kσ is a generalized kernel function of order l.

(b) For each t ∈ [0, 1], the function Kσ(σ·, t) is supported on a set of the form

[(t − 1)/σ, t/σ] ∩ K where K is a compact interval not depending on t and

supσ>0,t∈[0,1],u∈K |Kσ(σu, t)| <∞.

(v) The bandwidth parameter satisfies σ → 0 and (nσ2k+2)−1 log(n)→ 0.

Proposition 4.2. Suppose Assumption 4.1 holds. Let ρ = min{l, k+1} ≥ 2 and µ ≥ 0.

Let

g† ∈ arg min{‖g‖2
µ : Tg = h, g ∈ X}.

and

ĝα ∈ arg min{Tα(g; T̂ , ĥ) : g ∈ X}.

Assume that ∂νg
† = 0 on ∂Ω. Denote moreover by T ∗:L2(Ω;Rk) → L2(Ω;Rk) the

adjoint of T and let NP
X (g†) ⊂ L2(Ω;Rk+1) be the proximal normal cone to the set X at

the point g†.

(i) Let µ > 0. Assume that there exist ω ∈ L2(Ω;Rk) and ζ ∈ NP
X (g†) with τ(ζ, g†) < µ

such that

2(µg† −∆g†) = T ∗ω + ζ.

Then the estimate

‖ĝα − g†‖2
µ = OP

(
(1 +

√
α)

1
nσ2k+2 + σ2ρ

α
+

1

nσk+1
+ σρ + α

)
holds.
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(ii) Let µ = 0 and assume that α → 0,
(

1
nσ2k+2 + σ2ρ

)
/α → 0 as n → ∞. Assume

moreover that there exist ω ∈ L2(Ω;Rk) and ζ ∈ NP
X (g†) such that

2(µg† −∆g†) = T ∗ω + ζ

and

A2(‖T‖D(T )−1 +D(T )−1 + 1)2 τ(ζ, g†) < 1,

where A and D(T ) are as in Lemma 2.2. Then the estimate

‖∇ĝα −∇g†‖2 = OP

( 1
nσ2k+2 + σ2ρ

α
+

1

nσk+1
+ σρ + α

)
holds.

In particular, if

α � n−
ρ

2(k+ρ+1) and σ � n−
1

2(k+ρ+1) ,

then we obtain in both cases the rate

‖ĝα − g†‖2
µ = OP (n−

ρ
2(k+ρ+1) ).

Proof. Note first that the assumption that the density fY XW is bounded away from zero

implies that the operator T is bounded and satisfies Tc 6= 0 for every constant function

c. Moreover, in [13] the convergence rate result

‖T̂ − T‖2 = OP

(
1

nσ2k+2
+ σ2ρ

)
,

‖ĥ− h‖2 = OP

(
1

nσ2k+2
+ σ2ρ

)
has been derived under Assumption 4.1. Together with the results of Lemma 3.1,

Theorem 3.4 and Corollary 3.5, this immediately proves the assertion in the case µ > 0.

In the case µ = 0, note that the assumption on the behaviour of α and

Proposition 2.4 imply that the regularized solutions ĝα converge in probability to g†.

Moreover, the convergence in probability of T̂ to T implies that 1/(D(T )−‖T̂ − T‖) =

OP (1), and therefore, as σ → 0 and 1/(nσ2k+2) → 0, we obtain in the notation of

Lemma 3.1 the estimate

D0(α, ‖T̂ − T‖, ‖ĥ− h‖) = OP (1).

Then the result follows again immediately from Lemma 3.1, Theorem 3.4 and

Corollary 3.5.
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5. Conclusion

In this paper, we have studied the problem of nonparametric regression in the presence of

endogenous variables and additional non-convex shape constraints. The main motivation

is the estimation of the consumer demand function, which, according to standard

microeconomic theory, satisfies certain (non-linear) integrability conditions. We have

used instruments in order to tackle the issue of endogeneity, which, in the case where

the coupling between the instruments and the explanatory variables is weak (that is,

only given by a density), leads to the solution of an ill-posed operator equation.

We propose to solve the resulting inverse problem by (constrained) Tikhonov

regularization using a weighted Sobolev norm as a regularization term. Because of the

weak closedness of the constrained set in the Sobolev space, the regularization method

is convergent. In addition, we have derived convergence rates under the additional

assumption that the true solution g† satisfies a certain variational inequality, which is

shown to hold if g† satisfies a projected source condition. In contrast to the usual convex

case, however, this condition is coupled with a smallness condition. The convergence

rates are derived in both a deterministic and a stochastic setting. In the latter situation

we have the additional problem that the correspondence between the instruments and

the explanatory variables, and thus the operator itself, is not known exactly but has to

be estimated in a first step. Here we propose to use a kernel estimator, which allows

us to obtain rates in probability for the operator error in dependence of the number of

measurements.
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