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Abstract We consider nonlinear inverse problems described by operator equa-
tions in Banach spaces. Assuming conditional stability of the inverse problem,
that is, assuming that stability holds on a compact, convex subset of the do-
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a nested family of compact, convex subsets on which stability holds and the
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desired discrepancy criterion, after a finite number of steps.
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1 Introduction

We consider nonlinear inverse problems described by operator equations in
Banach spaces. Assuming conditional stability of the inverse problem, we in-
troduce a nonlinear projected steepest descent iteration and analyze its con-
vergence. We take the point of view of reconstructing an approximation of the
solution to the inverse problem in a compact, convex subset of the domain on
which the operator is defined and where the stability holds. Assuming that we
can identify a nested sequence of compact, convex subsets on which the sta-
bility holds such that the stability constant grows in a controlled way, we then
extend our analysis to a multi-level approach which mitigates this growth via
successive approximation. We account also for the possibility that a parame-
ter in the operator which defines the inverse problems, and changes the data,
affects for a given compact, convex subset the accuracy of approximation, and
the stability constant. In the sequel of the paper we show with Example 4.6
that the radius of convergence can be enlarged by multi-level techniques. In
fact in this example the convergence radius is exponentially decreasing as a
function of the levels, and the conditions there show that multi-level itera-
tion stay within these sets, starting from a large initial set. In our analysis,
we incorporate inaccuracy of the data. Our analysis applies, for example, to
electrical impedance tomography (EIT) and inverse boundary value problems
for the Helmholtz equation using multiple frequencies.

Initially, we consider a class of inverse problems defined by a nonlinear map
from parameter or model functions to the data. The parameter functions and
data are contained in certain Banach spaces. This situation can be modeled
mathematically by the operator equation

F (x) = y, x ∈ D(F ), y ∈ Y, (1.1)

with domain D(F ) ⊂ X, where X is a p-convex and q-smooth Banach space,
with p, q > 1 and Y is an arbitrary Banach space. We assume that F is
continuous, and that F is locally Fréchet differentiable. We do not assume
that the data are attainable, that is, y may not belong to the range of F . We
assume that there exists a compact, convex subset Z ⊂ X such that

∆p(x, x̃) ≤ Cp∥F (x)− F (x̃)∥p, ∀x, x̃ ∈ Z. (1.2)

Here ∆p denotes the Bregman distance (defined below) and p > 1. This states
conditional Lipschitz stability of the inverse problem. Motivated by [12], we
employ a steepest descent iteration, here, to give an approximation to the so-
lution of (1.1). More precisely, we construct a sequence of parameter functions
by a projected gradient descent iteration with posterior stepsize.

In many inverse problems, logarithmic type stability is the optimal sta-
bility obtained with minimal assumptions on the domain or pre-image space;
see, for example, [19]. By constraining the pre-image space, however, Lipschitz
stability can be obtained; for the case of EIT, see [3,6] and for the case of in-
verse boundary value problems for the Helmholtz equation, see [5,4]. This is
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reflected by conditional stability given in (1.2). The mentioned projected gradi-
ent descent iteration can then be viewed as a projection regularization method,
which is natural and avoids possibly artificial regularization techniques [16].

Our first main result concerns restricted convergence of the projected steep-
est descent iteration with a certain Hölder or Lipschitz type stability condition
on a compact, convex subset. Moreover, we prove monotonicity of the resid-
uals defined by the sequence induced by the iteration. This result is related
to two areas of iterative regularization, which are steepest descent algorithms
for solving nonlinear inverse problems [20,21,18,23] and projected iteration
regularization techniques for the solution of inverse problems with convex-
ity constraints. While the first three mentioned papers [20,21,18] provide a
convergence analysis in a Hilbert space setting, the fourth one [23] provides
results in a Banach space setting. However, these results are for Landweber
iterations and iteratively regularized Gauss-Newton methods. As we show in
Remark 3.4 our method is a generalization of the classical steepest descent
method, as analyzed for instance by [14] for linear problems and [20,21] for
nonlinear problems in a Hilbert space setting, i.e., with an adaptive damping
parameter. Moreover, the developed steepest descent method, in the nonlinear
setting, takes into account previous iterates. In this sense it is similar to con-
jugate gradient type methods. Steepest descent methods have been analyzed
mostly in the context of linear inverse problems (see, for example, [13]) and
later as accelerated methods in [11]. Accelerated methods have been modified
for nonlinear problems by [24]. The main differences of our work to the above
mentioned papers are the conditions under which we prove convergence rate.
In fact, instead of source and nonlinearity conditions (as in [20,21]), we as-
sume certain Hölder or Lipschitz stability of the inverse problem. This is a
novel view point, which has been raised in [12].

In this paper, based on our first main result, we then introduce a mul-
tilevel algorithm. The motivation is to find progressively more accurate ap-
proximations to the model function, as the ‘stable subset’, Z, is incrementally
enlarged. Interest in designing a hierarchy algorithm comes from two sources.
In the beginning of the iterations, a coarse stable subset is preferred to ensure
a stabilized problem, and hence a large convergence radius. Near the end of
the iterations, a fine stable subset is expected to make a high accuracy ap-
proximation available. A fine stable subset usually does not fit the first several
iterations since it results in a decay of the convergence radius. We assume that
there are compact, convex subsets {Zα}α∈R of X, on which the restricted oper-
ator Fα = F |Zα exhibits a certain Hölder or Lipschitz type stability estimate
with stability constant Cα, that is,

∆p(x, x̃) ≤ Cp
α∥Fα(x)− Fα(x̃)∥p, ∀x, x̃ ∈ Zα. (1.3)

In fact, Fα need not be a restriction of F only, but can also account for a
varying parameter in F which does affect the data. Here, we assume that
Zα1 ⊂ Zα2 and Cα1 ≤ Cα2 if α1 < α2. In the context of discretization meth-
ods, Zα stands for a finite-dimensional subspace of X and the number of basis



4 M.V. DE HOOP, L. QIU AND O. SCHERZER

vectors increases as α increases, while the projection can be an orthogonal
projection on Zα. In our second main result, we introduce a condition on the
stability constants and on the approximation errors between neighboring lev-
els. These conditions between levels are coupled and guarantee that the result
from the previous level is a proper starting point for the present level. Thus,
the algorithm can continue from level to level until the desired discrepancy
criterion is satisfied.

2 Preliminaries

Let X and Y be Banach spaces. The duals of X and Y are denoted by X∗ and
Y ∗, respectively. Their norms are denoted uniformly by ∥ · ∥. Throughout this
paper, we assume that X is p-convex and q-smooth with p, q > 1, and hence
it is uniformly smooth and uniformly convex. Furthermore, X is reflexive and
its dual X∗ has the same properties with the roles of p and q interchanged. Y
is allowed to be an arbitrary Banach space; jp will be a single-valued selection
of the possibly set-valued duality mapping of Y with gauge function t 7→ tp−1,
p > 1.

Several constants appear in the analysis. For the readers convenience we
have grouped them notational wise:

1. C denotes a constant for the Lipschitz stability of the inverse mapping of
F (cf. (1.2), (1.3)),

2. L and L̂ are properties of the the operator F (cf. (3.1) and (3.2)).
3. C and G with and without subscripts denote properties of the Banach

space (cf. (2.6), (2.7)).

2.1 Duality mappings

We denote the space of continuous linear operators X → Y by L(X,Y ). Let
F : D(F ) ⊂ X → Y be continuous. HereD(F ) denotes the domain of definition
of the nonlinear operator F . Let h ∈ D(F ) and k ∈ X and assume that
h + t(k − h) ∈ D(F ) for all t ∈ (0, t0) for some t0 > 0, then we denote by
DF (h)(k) the directional derivative of F at h ∈ D(F ) in direction k ∈ D(F ),
that is,

DF (h)(k) := lim
t→0+

F (h+ tk)− F (h)

t
.

If DF (h) ∈ L(X,Y ), then F is called Gâteaux differentiable at h. If, in addi-
tion, the limit is uniform for all k belonging a neighborhood of 0, F is called
Fréhet differentiable at h. For x ∈ X and x∗ ∈ X∗, we write the dual pair as
⟨x, x∗⟩ = x∗(x). For a linear operator A ∈ L(X,Y ), we write A∗ for the dual
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operator A∗ ∈ L(Y ∗, X∗) and ∥A∥ = ∥A∗∥ for the operator norm of F . We let
1 < p, q <∞ be conjugate exponents, that is,

1

p
+

1

q
= 1.

For p > 1, the subdifferential mapping Jp = ∂fp : X → 2X
∗
of the convex

functional fp : x 7→ 1
p∥x∥

p defined by

Jp(x) = {x∗ ∈ X∗ | ⟨x, x∗⟩ = ∥x∥ · ∥x∗∥ and ∥x∗∥ = ∥x∥p−1} (2.1)

is called the duality mapping of X with gauge function t 7→ tp−1. Generally,
the duality mapping is set-valued. In order to let Jp be single valued, we need
to introduce the notion of convexity and smoothness of Banach spaces.

One defines the convexity modulus δX of X by

δX(ϵ) = inf
x,x̃∈X

{1− ∥ 12 (x+ x̃)∥ | ∥x∥ = ∥x̃∥ = 1 and ∥x− x̃∥ ≥ ϵ} (2.2)

and the smoothness modulus ρX of X by

ρX(τ) = sup
x,x̃∈X

{ 12 (∥x+ τ x̃∥+ ∥x− τ x̃∥ − 2) | ∥x∥ = ∥x̃∥ = 1}. (2.3)

Definition 2.1. A Banach space X is said to be

(a) uniformly convex if there exists an ϵ ∈ (0, 2] such that δX(ϵ) > 0 ,

(b) uniformly smooth if limτ→0
ρX(τ)

τ = 0,
(c) convex of power type p or p-convex if there exists a constant C > 0 such

that δX(ϵ) ≥ Cϵp,
(d) smooth of power type q or q-smooth if there exists a constant C > 0 such

that ρX(τ) ≤ Cτ q.

Let p > 1. In the following, we list some properties of the duality mapping
and convex and smooth Banach spaces. For a detailed introduction to this
topic, we refer to [10].

(a) For every x ∈ X, the set Jp(x) is not empty and it is convex and weakly
closed in X∗.

(b) Theorem of Milman-Pettis: If a Banach space is uniformly convex, it is
reflexive.

(c) A Banach space X is uniformly convex (resp. uniformly smooth) if and
only if X∗ is uniformly smooth (resp. uniformly convex).

(d) If a Banach space X is uniformly smooth, Jp(x) is single valued for all
x ∈ X.

(e) If a Banach space X is uniformly smooth and uniformly convex, Jp(x) is
bijective and the inverse J−1

p : X∗ → X is given by J−1
p = J∗

q with J∗
q

being the duality mapping of X∗ with gauge function t 7→ tq−1, where
1 < p, q <∞ are conjugate exponents.
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2.2 Bregman distances

Because the geometrical characteristics of Banach spaces are different from
those of Hilbert spaces, it is often more appropriate to use the Bregman dis-
tance instead of the conventional norm-based functionals ∥x− x̃∥p or ∥Jp(x)−
Jp(x̃)∥p for convergence analysis. This idea goes back to Bregman [7].

Definition 2.2. Let X be a uniformly smooth Banach space and p > 1. The
Bregman distance ∆p(x, ·) of the convex functional x 7→ 1

p∥x∥
p at x ∈ X is

defined as

∆p(x, x̃) =
1

p
∥x̃∥p − 1

p
∥x∥p − ⟨Jp(x), x̃− x⟩, x̃ ∈ X, (2.4)

where Jp denotes the duality mapping of X with gauge function t 7→ tp−1.
Note, that under the general assumptions of this paper the duality mapping Jp
is single valued.

In the following proposition, we summarize some facts concerning the Breg-
man distance and the relationship between the Bregman distance and the norm
[1,2,8,25].

Proposition 2.3. Let X be a uniformly smooth and uniformly convex Banach
space. Then, for all x, x̃ ∈ X, the following holds:

(a)

∆p(x, x̃) =
1

p
∥x̃∥p − 1

p
∥x∥p − ⟨Jp(x), x̃⟩+ ∥x∥p (2.5)

=
1

p
∥x̃∥p + 1

q
∥x∥p − ⟨Jp(x), x̃⟩.

(b) ∆p(x, x̃) ≥ 0 and ∆p(x, x̃) = 0⇔ x = x̃.
(c) ∆p is continuous in both arguments.
(d) The following statements are equivalent

(i) limn→∞ ∥xn − x∥ = 0,
(ii) limn→∞ ∆p(xn, x) = 0,
(iii) limn→∞ ∥xn∥ = ∥x∥ and limn→∞⟨Jp(xn), x⟩ = ⟨Jp(x), x⟩.

(e) If X is p-convex, there exists a constant Cp > 0 such that

∆p(x, x̃) ≥
Cp

p
∥x− x̃∥p. (2.6)

(f) If X∗ is q-smooth, there exists a constant Gq > 0 such that

∆q(x
∗, x̃∗) ≤ Gq

q
∥x∗ − x̃∗∥q, (2.7)

for all x∗, x̃∗ ∈ X∗.
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The Bregman distance ∆p is similar to a metric, but, in general, does not
satisfy the triangle inequality nor symmetry. In a Hilbert space, ∆2(x, x̃) =
1
2∥x− x̃∥2.

2.3 Bregman Projection

In this subsection, we briefly introduce the Bregman projection and its prop-
erties, especially, the non-expansiveness. A comprehensive introduction to this
topic, including a proof of Lemma 2.6, can be found in [8].

Definition 2.4. Let X be a uniformly smooth Banach space and p > 1. Given
a compact convex set Z ⊂ X and Bregman distance ∆p, which is defined in
Definition 2.4, the Bregman projection of a point x ∈ X onto Z is the point

PZ(x) = argmin{∆p(y, x) | y ∈ Z}. (2.8)

Definition 2.5. Let T : X → X be an operator. The point z ∈ X is called a
non-expansivity pole of T if, for every x ∈ X,

∆p(T (x), T (z)) +∆p(x, T (x)) ≤ ∆p(x, z).

A operator T , which has at least one non-expansivity pole, is called totally
non-expansive.

Lemma 2.6. Let X be a uniformly smooth Banach space and p > 1 and
Z ⊂ X be a compact convex subset. The following statements hold:

(a) The Bregman projection PZ is well defined;
(b) PZ is totally non-expansive and every point in Z is a non-expansivity pole

of PZ ;
(c) For every z ∈ Z,

∆p(PZ(x), z) ≤ ∆p(x, z), ∀x ∈ X. (2.9)

3 Convergence rate of a projected steepest descent iteration with a
priori stopping rule

Here, we assume conditional stability, that is stability if the operator F is
restricted to a compact, convex subset, Z, of X(see (3.3)). We introduce a
projected steepest descent iteration and analyze its convergence. In this sec-
tion, we keep Z fixed. We are concerned with an approximate solution, in Z, of
the inverse problem subject to a discrepancy principle. In the analysis, we note
that, if the iterate is close enough to the Z-best approximation, which gives
the least fidelity term, then the steepest descent direction is nearly orthogonal
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to Z. After the projection PZ applied (see (3.10)), the iterate is pulled back
to Z and the contribution of this iteration to the decrease of the fidelity term
is small. This usually causes a slow convergence rate. Hence, we use a discrep-
ancy principle rather than study the convergence to the Z-best approximation.
This promotes a uniform monotonicity estimate (see (3.13)).

Assumption 3.1. Let

B = B∆
ρ (z†) = {x ∈ X | ∆p(x, z

†) ≤ ρ} ⊂ D(F )

for some ρ > 0, where ρ here will come into play as a convergence radius (see
(3.9)) and z† is defined below.

(a) The Fréchet derative, DF , of F is Lipschitz continuous on B and

∥DF (x)∥ ≤ L̂ ∀x ∈ B, (3.1)

∥DF (x)−DF (x̃)∥ ≤ L∥x− x̃∥ ∀x, x̃ ∈ B. (3.2)

(b) F is weakly sequentially closed, i.e.,

xn ⇀ x,
F (xn) ⇀ y

}
⇒
{

x ∈ D(F ),
F (x) = y.

(c) Let Z denote a compact, convex subset of X. The inversion has the uniform
Lipschitz type stability for elements in Z, i.e., there exists a constant C > 0
such that

∆p(x, x̃) ≤ Cp∥F (x)− F (x̃)∥p ∀x, x̃ ∈ B ∩ Z. (3.3)

For given data y ∈ Y , we assume that

dist(y, F (Z)) ≤ η, (3.4)

for some η > 0. Note that F is continuous and Z is compact. Hence there
must exist a z† ∈ Z such that

∥F (z†)− y∥ = dist(y, F (Z)). (3.5)

Note, that this condition also accounts for data errors. In the case of noisy
data, even if the stable subset Z equals to the space X, η can be a positive
number associated with the noise level.

We introduce the following algorithm:
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Algorithm 3.2. We fix some abbreviations first: For xk, k = 0, 1, 2, . . ., fixed
denote

Rk = F (xk)− y , Tk = DF (xk)
∗jp(F (xk)− y) , rk = ∥Rk∥ , tk = ∥Tk∥ .

(3.6)
Moreover, we define

C̃ :=
1

2

(
Cp

p

)−2/p

LC2 , (3.7)

and for k = 0, 1, . . .

t̂k := Gqt
q
k ,

uk := −C̃r2k + (1− 2C̃η)rk − η − C̃η2 ,

vk := t̂
− 1

q−1

k u
1

q−1

k rp
2−p

k (rk − η)− 1

q
t̂
− 1

q−1

k up
kr

p2−p
k ,

wk :=
L

2

(
Cp

p

)−2/p

t̂
− 1

q−1

k u
1

q−1

k rp
2−p

k ,

µk := t̂
− 1

q−1

k u
1

q−1

k r
p−1
q−1

k .

(3.8)

Now, the main steps of the algorithm:

(S0) Choose a starting point x0 ∈ Z such that

∆p(x0, z
†) < ρ :=

Cp

p
(2C̃L̂)−p

(
1 +

√
1− 8C̃η − 4ηC̃

)p

, (3.9)

where z† is specified in Theorem 3.3 below.
(S1) Compute the new iterate via

x̃k+1 = J∗
q (Jp(xk)− µkTk)

xk+1 = PZ(x̃k+1).
(3.10)

(S2) Stop, if the discrepancy criterion

∥F (xk)− y∥ ≤ η̂,

is satisfied.
(S3) Set k ← k + 1 and go to step (S1).

With the Hilbert space setting and a twice Fréchet-differentiable operator
F the essence of the constants is more transparent. Let D2F stand for the
second-order Fréchet derivative of F and we have,

C̃ :=
1

2
LC2 ≈ 1

2

∥D2F (x)∥
∥DF (x)∥2

, (3.11)

which shows that the constant C̃ is a curvature to gradient condition, which
degenerates for linear operators to zero. Thus any bound on C̃ restricts the
nonconvexity of F . For aspects of curvature-size conditions see [9].
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X∗Xx0JpJp(x0) → Jp(x̃1)xKZJp(x1) → · · · → Jp(x̃K)x̃1x1PZPZ ◦ J∗
q∥F (x)− y∥ ≤ η̂

Fig. 1 Projected steepest descent iteration

Theorem 3.3. Let X be a p-convex and q-smooth Banach space with p, q > 1
and Y be an arbitrary Banach space. Assume that Assumption 3.1 holds and
the estimate (3.4) holds for some positive constant η ∈ (0, (8C̃)−1) and z† ∈ Z.
Moreover, choose the tolerance η̂ ≥ 3η.

Algorithm 3.2 stops after a finite number

K(η̂) := min{k ∈ N | rk := ∥F (xk)− y∥ ≤ η̂}. (3.12)

That is when the discrepancy principle is satisfied. Moreover, strict monotonic-
ity of the Bregman distance

∆p(xk+1, z
†) ≤ ∆p(xk, z

†) + wk∆p(xk, z
†)2/p − vk, (3.13)

holds with

wk∆p(xk, z
†)2/p − vk < 0,

for all k ≤ K(η̂)− 1.

Proof. We use the same abbreviations for rk and tk as in Algorithm 3.2.

We start with a collection of elementary estimates that will be used fre-
quently afterwards. With the abbreviations defined in (3.8), (3.7), inequalities
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(2.6) and (3.3) yield

L

2
∥xk − z†∥2 ≤L

2

(
∆p(xk, z

†)
p

Cp

)2/p

≤L

2

(
Cp

p

)−2/p

C2∥F (xk)− F (z†)∥2

≤C̃(rk + ∥F (z†)− y∥)2

≤C̃r2k + 2C̃ηrk + C̃η2

=rk − uk − η .

(3.14)

With the mean value inequality and (2.6), it follows that

rk ≤ ∥F (xk)− F (z†)∥+ η ≤ L̂

(
∆p(xk, z

†)
p

Cp

)1/p

+ η. (3.15)

Using the definition of µk it follows that for k = 0, 1, . . .,

µkr
p−1
k = t̂

− 1
q−1

k u
1

q−1

k rp
2−p

k ,
Gq

q
µq
kt

q
k =

1

q
t̂
− 1

q−1

k up
kr

p2−p
k . (3.16)

Now, we start with the main body of the proof: We claim that

∆p(xm, z†) < ρ, m = 0, 1, . . . ,K,

which we prove by induction. Note that (3.9) gives the base case. Assume the
induction hypothesis that

∆p(xk, z
†) < ρ.

With (3.15), we have that

rk < L̂(ρ
p

Cp
)1/p + η =

1 +

√
1− 8C̃η

2C̃
− η. (3.17)

Note that we can rewrite

uk = −C̃

rk −
1−

√
1− 8C̃η

2C̃
+ η

rk −
1 +

√
1− 8C̃η

2C̃
+ η

 .

Then, (3.17), combined with the fact that

rk > η̂ ≥ 3η >
1−

√
1− 8C̃η

2C̃
− η
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gives the positiveness of uk. Note that this leads to the positiveness of vk as
following

vk =t̂
− 1

q−1

k u
1

q−1

k rp
2−p

k (rk − η − 1

q
uk)

≥t̂−
1

q−1

k u
1

q−1

k rp
2−p

k (rk − η − uk)

=C̃t̂
− 1

q−1

k u
1

q−1

k rp
2−p

k (rk + η)2 > 0.

Using (2.5) and (2.1) we obtain, for the sequence of residues,

∆p(x̃k+1, z
†)

= ∆p(xk, z
†) +

1

q
(∥x̃k+1∥p − ∥xk∥p)− ⟨Jp(x̃k+1)− Jp(xk), z

†⟩

= ∆p(xk, z
†) +

1

q
(∥Jp(x̃k+1)∥q − ∥Jp(xk)∥q)− ⟨Jp(x̃k+1)− Jp(xk), z

†⟩.

(3.18)
Applying (2.5) and (f) of Proposition 2.3 with x∗ = Jp(x̃k+1) and x̃∗ = Jp(xk),
we get

1

q
(∥Jp(x̃k+1)∥q − ∥Jp(xk)∥q)

≤ Gq

q
∥Jp(x̃k+1)− Jp(xk)∥q + ⟨Jp(x̃k+1)− Jp(xk), xk⟩.

Substituting (3.10) and using this inequality in (3.18) yields

∆p(x̃k+1, z
†)−∆p(xk, z

†)

=
Gq

q
∥Jp(x̃k+1)− Jp(xk)∥q + ⟨Jp(x̃k+1)− Jp(xk), xk − z†⟩

=µk

(
Gq

q
µq−1
k tqk − ⟨Tk, xk − z†⟩

)
.

(3.19)

We estimate the second term in (3.19). Using (2.6) and the Lipschitz type
stability (3.3), and (3.4), we find that

− ⟨Tk, xk − z†⟩
=− ⟨jp(Rk), DF (xk)(xk − z†)⟩
=− ⟨jp(Rk), Rk⟩+ ⟨jp(Rk), F (z†)− y⟩)

+ ⟨jp(Rk), F (xk)− F (z†)−DF (xk)(xk − z†)⟩

≤ − rp−1
k

(
rk − η − L

2
∥xk − z†∥2

)
.

(3.20)

In the last step of above inequalities, we use the properties of the duality
mapping, ⟨jp(Rk), Rk⟩ = ∥Rk∥p and ∥jp(Rk)∥ = ∥Rk∥p−1 (see (2.1)). From
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(3.19) and (3.20), it follows that, for k = 0, 1, 2, . . .,

∆p(x̃k+1, z
†)−∆p(xk, z

†)

≤µkr
p−1
k

(
Gq

q

µq−1
k tqk
rp−1
k

− rk + η +
L

2
∥xk − z†∥2

)
,

(3.21)

and hence, by (3.21), (2.6) and the non-expansiveness of the Bregman projec-
tion (2.9), we arrive at

∆p(xk+1, z
†)−∆p(xk, z

†)

≤∆p(x̃k+1, z
†)−∆p(xk, z

†)

≤µkr
p−1
k

(
Gq

q

µq−1
k tqk
rp−1
k

− rk + η +
L

2

(
∆p(xk, z

†)
p

Cp

)2/p
)
.

(3.22)

Using the identities in (3.16) and abbreviations (3.8), (3.7), from the above
inequality, we derive that

∆p(xk+1, z
†)−∆p(xk, z

†)

≤1

q
t̂
− 1

q−1

k up
kr

p2−p
k − t̂

− 1
q−1

k u
1

q−1

k rp
2−p

k (rk − η)

+
L

2

(
Cp

p

)−2/p

t̂
− 1

q−1

k u
1

q−1

k rp
2−p

k ∆p(xk, z
†)2/p

=− vk + wk∆p(xk, z
†)2/p.

(3.23)

We finish the proof of the monotonicity of ∆p(xk, z
†) by showing that

−vk + wk∆p(xk, z
†)2/p < 0.

In fact,
wk∆p(xk, z

†)2/p

≤wkC
2∥F (xk)− F (z†)∥2

≤L

2

(
Cp

p

)−2/p

C2 (rk + η)2t̂
− 1

q−1

k u
1

q−1

k rp
2−p

k

=(−uk + rk − η)t̂
− 1

q−1

k u
1

q−1

k rp
2−p

k .

(3.24)

Hence

− vk + wk∆p(xk, z
†)2/p

≤− vk − t̂
− 1

q−1

k u
1

q−1+1

k rp
2−p

k + (rk − η)t̂
− 1

q−1

k u
1

q−1

k rp
2−p

k

=− 1

p
t̂
− 1

q−1

k up
kr

p2−p
k < 0.

(3.25)

The above monotonicity of∆p(xk, z
†) with the induction hypothesis completes

the induction.
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It is left to show that Algorithm 3.2 stops after a finite number of itera-
tions(i.e. K(η̂) iterations). We prove this by contradiction. Let us assume that
the number of iterations of Algorithm 3.2 is infinite, and hence,

rk > η̂, ∀k ≥ 0. (3.26)

Then, from the monotonicity of the Bregman distances (3.13) and (3.25), we
have that

0 ≤ ∆p(xk, z
†) ≤ ∆p(x0, z

†)− 1

p

k−1∑
n=0

t̂
− 1

q−1
n up

nr
p2−p
n , ∀k > 0.

It follows that
∞∑

n=0

t̂
− 1

q−1
n up

nr
p2−p
n <∞.

From the lower boundedness of rk, (3.26), and the uniform boundedness of the

Frechét derivative DF (xk), (3.1), we conclude that both t̂
− 1

q−1
n and rp

2−p
n are

uniformly positively bounded from below. Hence uk converges to 0 as k goes
to infinity. By writing

uk = −C̃

rk −
1−

√
1− 8C̃η

2C̃
+ η

rk −
1 +

√
1− 8C̃η

2C̃
+ η


we have that

lim
k→∞

rk =
1−

√
1− 8C̃η

2C̃
− η < 3η ≤ η̂,

which is a contradiction.

Remark 3.4. We refer to Algorithm 3.2 as a steepest descent algorithm in
the sense that it is a generalization of the steepest descent algorithm for linear
inverse problems. Indeed, let F be linear and assume that we have an uncon-
strained problem. Then both L and η can be chosen to be equal to zero. Then
we have

µk =

(
rpk

tqkGq

)1/(q−1)

, k = 0, 1, 2, . . . ,

with rk = ∥Fxk − y∥ and tk = ∥F ∗jp(Fxk − y)∥. In particular, for a Hilbert
space setting, where

p = q = 2, Cp = Gq = 1 , Jp = Jq = Id,

we get

µk =
r2k
t2k

, k = 0, 1, 2, . . . ,
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which is the standard parameter choice of the steepest descent method [14]. See
also [15] for efficient adaptations of the Landweber iteration.

In the Hilbert space setting, moreover, the condition (3.9) requires that
C̃ < 1

8η , which in some sense restricts the curvature. Note that for p = 2

we have 1
∥DF (x)∥ ≈ ∥x − x̃∥2/∥F (x) − F (x̃)∥2 ≤ C̃ and therefore ∥D2F (x)∥

∥DF (x)∥ ≤
C̃L, where ∥DF (x)∥ denotes the operator norm of a directional derivative in
direction x− x̃, and D2F is the second derivative in the same direction. Thus
condition (3.9) can be interpreted as a curvature to size condition (see [9] for
the curvature to size concept for variational regularization).

Remark 3.5. We refer to (3.9) as a generalized radius of convergence from
the nonlinear Landweber iteration to a steepest descent algorithm in Banach
spaces. Indeed, let η be equal to zero. Then (3.9) can be reduced to

∆p(x0, z
†) < ρ = L̂−pCp

p
C̃−p =

(
Cp

p

)3
(
L̂LC2

2

)−p

,

which coincides the convergence radius for the nonlinear Landweber iteration
in Banach spaces[12].

4 Extension to a multi-level algorithm

In this section, based on the results of the previous section, we introduce a
multi-level algorithm. The basic idea is to design an algorithm which incorpo-
rates both high accuracy and large convergence radius. This can be done by
using a varying stable subset and balancing the decay of the approximation
error and the blow-up of the stability constant.

We consider a set, {Zα}α≥0, of compact and convex subsets of X, and an
operator family {Fα}α≥0, where Fα is obtained as the restriction of F on Zα,
Fα = F |Zα . We let

B = B∆
ρ0
(x†) = {x ∈ X | ∆p(x, x

†) ≤ ρ0} ⊂ D(F )

for some ρ0 > 0, which is specified in Theorem 4.4 and invoke

Assumption 4.1. (a) F is weakly sequentially closed, that is,

xn ⇀ x,
F (xn) ⇀ y

}
⇒
{

x ∈ D(F ),
F (x) = y.
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(b) The Fréchet derivative, DFα, of Fα is Lipschitz continuous on B∩Zα and

∥DFα(x)∥ ≤ L̂α ∀x ∈ B ∩ Zα, (4.1)

∥DFα(x)−DFα(x̃)∥ ≤ Lα∥x− x̃∥ ∀x, x̃ ∈ B ∩ Zα. (4.2)

(c) The inversion has the uniform Lipschitz type stability for elements in Zα,
that is, there exists a constant Cα > 0 such that

∆p(x, x̃) ≤ Cp
α∥Fα(x)− Fα(x̃)∥p ∀x, x̃ ∈ B ∩ Zα. (4.3)

For the stability constants, {Cα}, and the approximation error, {ηα}, we
introduce

Assumption 4.2. (a) Let ηα = ηα(y) be defined by

ηα = dist(y, Fα(Zα)), y ∈ Y ;

Moreover, we assume that ηα is non-negative and monotonically decreasing
with respect to α for every fixed y ∈ Y .

(b) If Zα1 ⊂ Zα2 then Cα1 ≤ Cα2 .
(c) If α1 < α2 then Zα1 ⊂ Zα2 and therefore also ηα1 ≥ ηα2 .

Typically, the subsets Zα are finite dimensional and the stability constant
for the inversion grows with the dimension of these subsets. The nature of our
multi-level algorithm is intimately connected to finding sparse, albeit approx-
imate, representations of the solution to the inverse problem, mitigating the
mentioned growth of the stability constants. Indeed, the objective is very simi-
lar to multi-level techniques for solving inverse problems [22,16,17], where one
exploits that the finite-dimensional problems are stable and that the outcome
of an iteration on a coarse level gives a good initial guess on a finer level. In
this section, we combine any known controllable factors to an abstract index
α of the operator family and design a progressive iteration method with the
aid of the result from the previous section.

In the following algorithm, we refer to the parameter α as an index and
only nonnegative integer valued α is considered.

Algorithm 4.3. (S0) Use x0,0 as the starting point. Set α = 0.

(S1) Iteration. Use Fα and Zα as the modelling operator and convex subset
to run Algorithm 3.2 with the discrepancy criterion given by

Kα = min{k ∈ N | ∥Fα(xα,k)− y∥ ≤ (3 + ε)ηα}, (4.4)

where ε > 0 is a given uniform relaxation constant.
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CoarseFineAccuracyStability

prolongation

(α-level iteration)Kα

(N -level iteration)KN

Fig. 2 A illustration of Algorithm 4.3

(S2) Stop, if the discrepancy criterion

∥Fα(xα,Kα)− y∥ ≤ η̃,

is satisfied, where the tolerance η̃ is given.

(S3) Set xα+1,0 = xα,Kα
, α = α+ 1 and go to step (S1).

This algorithm is illustrated in Figure 2.

Theorem 4.4. Let X be a p-convex and q-smooth Banach space with p, q > 1.
Moreover, let Y be an arbitrary Banach space. Assume that Assumptions 4.1
and 4.2 hold. Assume that there exists a subset of operators, {Fα}Nα=0 family
{Fα} such that

(a) The starting point x0,0 is within the first convergence radius, that is,

∆p(x0,0, z
†
0) < ρ0, (4.5)

where z†0 denotes the Z0 best approximating solution, i.e.,

∥F0(z
†
0)− y∥ = dist(y, F0(Z0)),

and the Z0 convergence radius ρ0 is defined by

ρ0 :=
Cp

p
L̂−p
0

1 +

√
1− 8C̃0η0

2C̃0

− 2η0

p

,

with C̃0 = 1
2

(
Cp

p

)−2/p

L0C
2
0. Assume that 8C̃0η0 < 1;
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(b) For every two neighbor levels Zα and Zα+1, α = 0, . . . , N−1, the constants
ηα and ηα+1, L̂α+1, Lα+1, Cα+1 satisfy the following inequalities

8C̃α+1ηα+1 < 1, (4.6)

and

(3+ε)ηα <

(
Cp

p

)1/p

(L̂α+1Cα+1)
−1

1 +

√
1− 8C̃α+1ηα+1

2C̃α+1

− 2ηα+1

−ηα+1,

(4.7)

where C̃α+1 = 1
2

(
Cp

p

)−2/p

Lα+1C
2
α+1.

(c) N is the first positive integer such that ηN ≤ (3 + ε)−1η̃, that is,

(3 + ε)ηα > η̃ ∀α < N

and

(3 + ε)ηN ≤ η̃.

Then, Algorithm 4.3 has the property that it stops after a finite number of
iterations when the discrepancy criterion

∥FN (xN,KN
)− y∥ ≤ η̃ (4.8)

is satisfied.

In the above theorem, we focus on the condition of continuing the iteration
between levels. Note that, with a varying stable subset and hence a sequence
of approximation errors {ηα}, the tolerance η̃ is not required to be bounded
from below as in Section 3. In Theorem 3.3, we stop the iteration with a
tolerance η̂, three times the approximation error η, rather than the optimal Z-
best approximation z†. In this multi-level scheme, if the approximation error
ηα tends to zero as α goes to infinity, one can conclude the proper convergence
of {xα,Kα

} to the true solution by applying Theorem 4.4 with arbitrary small
tolerance η̃.

The strategy of the proof is to estimate the decreasing objective function
∥Fα(xα,Kα

) − y∥ level by level. That is, one applies Theorem 3.3 to guaran-
tee that the discrepancy criterion (4.4) is attained with a finite number of
iterations on each level. Then, with (4.7) and (4.4), we show that the initial
point xα+1,0 on (α + 1)-level, which coincides with the iteration result xα,Kα

on α-level, is within the convergence radius ρα+1. Therefore, the procedure
continues until (4.8) is satisfied.
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Proof. We first adapt the convergence radius, ρ, in Theorem 3.3 to a α-level
convergence radius ρα. For any α-level, α = 0, 1, 2, . . . , N , one can use Algo-
rithm 3.2 to obtain an approximate solution to the operator equation

Fα(x) = y, x ∈ Zα,

with a given starting point xα,0 and the discrepancy criterion given in (4.4).
If the starting point xα,0 satisfy

∆(xα,0, z
†
α) < ρα :=

Cp

p
L̂−p
α

1 +

√
1− 8C̃αηα

2C̃α

− 2ηα

p

, (4.9)

where z†α denotes the best Zα-approximation, then Theorem 3.3 can be applied
to show that Algorithm 3.2 stops after a finite number of iterations with

∥Fα(xα,k)− y∥ ≤ (3 + ε)ηα

satisfied.

Next, we show that, in particular with condition (4.7), if the starting point
for the present level, xα,0, is within the convergence radius, then the start-
ing point for the next level, xα+1,0, which is equal to xα,Kα , is within the
convergence radius for the next level. That is to say,

∆p(xα,0, z
†
α) ≤ ρα

implies
∆p(xα+1,0, z

†
α+1) ≤ ρα+1,

for all α < N . Indeed, for any α < N , according to (4.9) and Theorem 3.3,
after Kα steps, the α-level discrepancy criterion,

∥Fα(xα,Kα)− y∥ ≤ (3 + ε)ηα, (4.10)

is satisfied. Note that we set the (α+ 1)-level starting point xα+1,0 to be the
iteration result of α-level, xα,Kα . Moreover, Fα is the restriction of F on Zα.
Hence, Fα+1(xα+1,0) = Fα(xα,Kα). Then, with the above inequality (4.10) and
(4.3), we estimate

∆p(xα+1,0 , z
†
α+1)

1/p

≤Cα+1∥Fα+1(xα+1,0)− Fα+1(z
†
α+1)∥

≤Cα+1(∥Fα+1(xα+1,0)− y∥+ ∥Fα+1(z
†
α+1)− y∥)

≤Cα+1((3 + ε)ηα + ηα+1).

(4.11)

Note that (4.7) leads to the inequality

Cα+1((3 + ε)ηα + ηα+1) ≤
(
Cp

p

)1/p

L̂−1
α+1

1 +

√
1− 8C̃α+1ηα+1

2C̃α+1

− 2ηα+1
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Substituting this into (4.11), we have that

∆p(xα+1,0 , z
†
α+1)

1/p

≤
(
Cp

p

)1/p

L̂−1
α+1

1 +

√
1− 8C̃α+1ηα+1

2C̃α+1

− 2ηα+1

 = ρ
1/p
α+1. (4.12)

For the last N -level, we apply Theorem 3.3 again to find that

∥FN (xN,KN
)− y∥ ≤ (3 + ε)ηN ≤ η̃.

Remark 4.5. We interpret that Algorithm 4.3 is designed to achieve the op-
timal (or nearly optimal) accuracy for a feasible starting point. Usually, the
finest level bears both the smallest approximation error, which corresponds to
the optimal accuracy, and the largest stability constant. Note that the defini-
tion of the convergence radius (3.9) shows its algebraically decaying property
with respect to the stability constant. There are cases when only a rough start-
ing point is available. For these cases, one may fail to obtain a reasonable
result using Algorithm 3.2 directly on the finest level but Algorithm 4.3 leads
to a good approximation solution. The condition (4.7) can be interpreted as
a strategy for selecting next finer level, which is characterized by its stability
constant constants Cα+1, approximation error ηα+1 and L̂α+1, Lα+1.

Theorem 4.4, especially (4.7), indicates that a sufficient condition for the
existence of such a selection of operators is that the tolerated best-Zα-approximation
is within the convergence radius according to Zα+1. In fact, this condition
comes from a bootstrap type competition between ηα and ρα.

We give an example of how conditions in Theorem 4.4 can be satisfied.
The prototype for this example is the inverse boundary value problem for the
Helmholtz equation with multi-frequency data. The following dynamic models
for the constants can be examined. The detail will be discussed in another
paper.

Example 4.6. Assume that X and Y are Banach spaces and that we can rein-
dex the convex subsets {Zα} such that Assumptions 4.1 and 4.2 hold. Moreover,
for a given tolerance η̃ > 0, the following conditions hold:

(i) Given starting point x0,0 is within the first convergence radius ρ0, i.e.,

∆p(x0,0, z
†
0) < ρ0 :=

Cp

p
L̂−p
0

1 +

√
1− 8C̃0η0

2C̃0

− 2η0

p

.

(ii) The approximation error ηα = λe−3α for some constant λ >> η̃.
(iii) The stability constant Cα = 2eα,
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(iv) The dynamic models of the constants L̂α and Lα, which are related to
the Lipschitz continuity of the Fréchet derivative DFα, are given by

L̂α = α+ 1 and Lα = τ(α+ 1)2,

for some constant τ such that

0 < τ <
1

16λ

(
Cp

p

)2/p

.

Now, we can choose the operators {Fα}Nα=0 defined by Fα = F |Zα and set the
uniform relaxation constant ε = 1 (see (4.4)) to run Algorithm 4.3, where N
is the first integer such that 4ηN ≤ η̃ is satisfied. Applying Theorem 4.4, we
conclude that

∥FN (xN,KN )− y∥ ≤ η̃

is satisfied after a finite number of iterations.

In this example, we can quantify the helpful constant C̃α and the conver-
gence radius ρα by

C̃α = 2τ

(
Cp

p

)−2/p

(α+ 1)e2α

and

ρα =
Cp

p
L̂−p
α

1 +

√
1− 8C̃αηα

2C̃α

− 2ηα

p

.

Noting that

1

2
< 1− 4C̃αηα < 1 +

√
1− 8C̃αηα − 4C̃αηα < 2− 4C̃αηα < 2,

for α = 0, 1, . . . , N , we conclude that, for the convergence radius ρα, the
dynamic model is

(8τ)−p

(
Cp

p

)3

(α+ 1)−3pe−2αp < ρα < (2τ)−p

(
Cp

p

)3

(α+ 1)−3pe−2αp.

The convergence radius decays exponentially as the level number increases.
This helps us to understand how to enlarge the convergence radius by involving
this multi-level scheme. Let us assume that we are in a situation where only a
rough starting point x̃ is available such that

∆p(x̃, z
†
0) < (8τ)−p

(
Cp

p

)3

< ρ0 (4.13)

but

∆(x̃, z†N ) > (2τ)−p

(
Cp

p

)3

(N + 1)−3pe−2Np > ρN . (4.14)
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Without applying a multi-level scheme, if we run Algorithm 3.2 for single 0-
level, by (4.13), Theorem 3.3 can be applied but the optimal residue estimate
we can expect can not be smaller than the 0-level approximation error η0 =
λ >> η̃; if we run Algorithm 3.2 for single N -level, according to (4.14), there
is no guarantee that Algorithm 3.2 will stop after a finite number of iterations
nor yield a reasonable result. Hence a multilevel approach, as Algorithm 4.3,
is proposed to obtain a high-accuracy arroximation xN,KN

satisfying

∥F (xN,KN
)− y∥ ≤ η̃,

with a relatively larger convergence radius ρ0 >> ρN .

5 Discussion

We discuss a steepest descent iteration method for solving nonlinear opera-
tor equations in Banach spaces. Provided that the nonlinearity of the forward
operator obeys a Lipschitz type stability in a convex and compact subset of
the preimage space, we could prove a restricted convergence result and pro-
vide an estimate of the error decease. Based on the analysis of the radius of
convergence, we introduce a multilevel method and obtain a sufficient condi-
tion on the choices of the parameters, mainly on the approximation errors and
stability constants.
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