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Abstract

In this paper we derive time reversal imaging functionals for two strongly causal acous-
tic attenuation models, which have been proposed recently. The time reversal techniques
are based on recently proposed ideas of Ammari et al for the thermo-viscous wave equa-
tion. Here and there an asymptotic analysis provides reconstruction functionals from first
order corrections for the attenuating effect. In addition, we present a novel approach for
higher order corrections.

1 Introduction

Photoacoustic Imaging is a promising imaging technique for visualizing biological material
parameters. In experiments, the medium is exposed to a short pulse of an electromagnetic
wave. The medium absorbs a fraction of the induced energy, heats up, and reacts with
thermoelastic expansion. This in turn produces acoustic waves, which can be recorded and
which are used to determine the electromagnetic absorption coefficient [18, 6, 11, 19]. These
coupling properties explain why photoacoustic imaging is referred to as hybrid or Coupled
Physics Imaging. For some recent progress in hybrid imaging we refer to the surveys [14, 4].

In this paper we investigate the method of time reversal in attenuating media as it was
introduced in [2, 17, 3] for the thermo-viscous wave equation. In these references, the goal is
to construct a parameter dependent family of approximate reconstruction functionals, which
allow for approximation of the initial datum of the thermo-viscous wave equation. For time-
reversal technique for imaging in general, see for example [1, 7, 8].

In this work, we are using the asymptotic techniques from [2, 17] to develop time reversal
algorithms for the Nachman-Smith-Waag (NSW) [15] and the Kowar-Scherzer-Bonnefond
(KSB) models [12, 13]. These two models satisfy a strong causality property. That is, the
solutions of these equations are zero before the initialization and satisfy a finite front wave
propagation speed. We emphasize that the thermo-viscous wave equation considered in [2,
17] is not strongly causal [9]. While there is a large literature on inversion formulas and
time reversal algorithms for the standard wave equation much less is known in the case of
attenuating media [5, 12, 2, 15]. Partially, this is due to the fact that, so far, the reference
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attenuation model (that is, the governing wave equation) has not been established in this
field.

2 Review on time-reversal for the thermo-viscous equation

Let Ω be a bounded domain in R3. Standard photoacoustic imaging consists in determining
the absorption density f , which is assumed to have compact support K in Ω, in the acoustic
wave equation

∂2p

∂t2
(x, t)−∆p(x, t) =

∂δ0

∂t
(t)f(x), (x, t) ∈ R3 × R,

p(x, t) = 0 and
∂p

∂t
(x, t) = 0, x ∈ R3, t < 0,

(2.1)

from measurement data g(y, t) := p(y, t) for some y ∈ ∂Ω and t ∈ [0, T ], where T is supposed
to be sufficiently large.

In the following, let a := a(x) be a positive function, describing attenuation. The imaging
method considered in [2, 17] consist in reconstructing f from data

ga(y, t) := pa(y, t) for all y ∈ ∂Ω and t ∈ [0,+∞).

where pa solves the thermo-viscous wave equation,

∂2pa

∂t2
(x, t)−

(
I + a

∂

∂t

)
∆pa(x, t) =

∂δ0

∂t
(t)f(x), (x, t) ∈ R3 × R,

pa(x, t) = 0 and
∂pa

∂t
(x, t) = 0, x ∈ R3, t� 0 .

(2.2)

To derive the imaging technique we use Γ̃aω(x, ·), the fundamental solution at x of the
Helmholtz equation,

ω2ũ(x, y) + (1 + iaω)∆yũ(x, y) = −δx(y), y ∈ R3 . (2.3)

In [2, 17] the following results have been shown:

• For fixed cut off parameter ρ > 0 the function

vas,ρ(x, t) := − 1

2π

∫ ρ

−ρ

∫
∂Ω

iωΓ̃aω(x, y)ga(y, T − s)dσ(y)e−iω(t−s)dω , (2.4)

satisfies the thermo-viscous wave equation

∂2v

∂t2
(x, t)−

(
I − a ∂

∂t

)
∆v(x, t) = Sρ

[
∂δs
∂t

]
ga(x, T − s)δ∂Ω , (2.5)

where Sρ is as in (5.21). In this formula the necessity of the regularization becomes
evident because in the unregularized form the right hand side consists of a product of
two distributions, which a-priori is not well-defined.
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• Moreover, for small a it follows from the results in [17] that

Iaρ (x) =

∫ T

0
vas,ρ(x, T )ds −→ f(x), as ρ→ +∞ . (2.6)

Moreover, [17, Remark 2.3.6] also gives a reference how to obtain appropriate values
for the cut off parameter ρ. The regularization is required so that the function vas,ρ(x, t)
is well-defined in (2.4).

3 The KSB-model

In this section, we are deriving an imaging functional for the KSB model [12, Eqs.(28),(88)]
following the time reversal approach of [2] for the thermo-viscous wave equation, as outlined
above.

Let α0 > 0 and γ ∈ (1, 2] be fixed. Then the KSB model assumes that the attenuated
pressure pa satisfies the equation(

α0I + L1/2
)2 ∂2pa

∂t2
(x, t)− L ∆pa(x, t) = L

∂δ0(t)

∂t
f(x), x ∈ R3, t ∈ R,

pa(x, t) = 0 and
∂pa

∂t
(x, t) = 0, x ∈ R3, t < 0,

(3.1)

where L1/2 is the convolution operator (in time) with kernel
1√
2π
F−1

[(
1 + (−iτ0ω)γ−1

)1/2]
- we emphasize that L = L1/2 ◦L1/2. Here Dγ−1

t denotes a fractional time derivative operator
of order γ − 1 [10, 16].

The Fourier transforms, p̂a := F [pa](ω) and p̂ := F [p](ω), of (3.1) and (2.1) satisfy the
Helmholtz equations:

κ2(ω)p̂a(x) + ∆p̂a(x) = iωf(x), and ω2p̂(x) + ∆p̂(x) = iωf(x) ,

respectively. Here

κ(ω) = ω

(
1 +

α0

(1 + (−iτ0ω)γ−1)1/2

)
. (3.2)

Using the particular form of the Helmholtz equations it follows that

p̂a =
ω

κ(ω)
F [p](κ(ω)) ,

which after applying the inverse Fourier transform yields

pa(x, t) = La[p(x, ·)](t)

with

La[φ](t) := F−1

[
ω

κ(ω)
F [φ](κ(ω))

]
(t) =

1

2π

∫
R

ω

κ(ω)
e−iωt

∫
R
eiκ(ω)sφ(s)dsdω . (3.3)
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The goal is to find an imaging operator of the form, that is functions κ̃ and λ,

L̃a[φ](t) :=
1

2π

∫
R

ωλ(ω)

κ̃(ω)
e−iωt

∫
R
φ(s)eiκ̃(ω)sdsdω = F−1

[
ωλ(ω)

κ̃(ω)
F [φ](κ̃(ω))

]
(t) , (3.4)

for which the following expansion with respect to α0 (as in (3.2)) holds:

L̃∗aLa[φ](t) = φ(t) + o(α0), as α0 → 0 . (3.5)

Thereby,

L̃∗a[φ](t) :=
1

2π

∫
R

ω

κ̃(ω)
λ(ω)eiκ̃(ω)t

∫
R
e−iωsφ(s)dsdω (3.6)

is the adjoint of L̃a.
The derivation of imaging operators as in (3.4) follows general principles, which are used

later on for the other attenuation models as well. The principle consists in construction
auxiliary functions λ1, ν1, and ν2 which are determined from κ by general construction
without taking into account the special structure of the function. The explicit construction
comes at a later stage. We introduce the auxiliary function λ1 : R→ R which is related to κ
in the following way:

κ(ω) = ω(1− α0λ1(ω)) +O(α2
0). (3.7)

Then, it follows by expansion with respect to α0 that

ω

κ(ω)
= 1 + α0λ1(ω) +O(α2

0) for fixed ω ∈ R ,

eiκ(ω)s = eiωs(1− iα0ωλ1(ω)s) +O(α2
0) for fixed s ∈ R ,

and consequently for fixed s, ω ∈ R

ω

κ(ω)
eiκ(ω)s = eiωs (1 + α0(λ1(ω)− iωλ1(ω)s)) +O(α2

0) . (3.8)

This shows that

La[φ(s)](t) = φ(t) + α0F−1 [λ1(ω)F [φ(s)](ω)− iωλ1(ω)F [sφ(s)](ω)] (t) + o(α0)

= L0[φ(s)](t) + α0F−1 [λ1(ω)F [φ(s)](ω)− iωλ1(ω)F [sφ(s)](ω)] (t) + o(α0) .

Note that for α = 0, L0 = I. 1 In order to get an explicit form of L̃a we introduce auxiliary
functions νi : R→ R, i = 1, 2, and

κ̃(ω) := ω(1− α0ν1(ω)) +O(α2
0) ,

λ(ω) := 1 + α0ν2(ω) +O(α2
0).

(3.9)

1In [2, 17],
(
κ(ω) − ω

)
is an imaginary function, therefore the Stationary Phase Method is used for the

asymptotic analysis of the previous integral operators. Here the relevant function,
(
−α0λ1(ω)

)
in its general

form, is complex (with non-vanishing real part) and the usage of the method of Steepest Descent would provide
the relevant asymptotic expansion. The Stationary Phase Method can be seen as a special case of the method
of Steepest Descent. In this work, the relevant real part is zero for the NSW and the thermo-viscous model and
consequently the Stationary Phase Method can be applied. However for the KSB model this part is non-zero
and the use of the method of Steepest Descent is needed.
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Again, by expansion with respect to α0 it follows that

eiκ̃(ω)s = eiωs(1 + α0(−iων1(ω))s) +O(α2
0) ,

ωλ(ω)

κ̃(ω)
= 1 + α0(ν1(ω) + ν2(ω)) +O(α2

0) ,

and consequently,

ωλ(ω)

κ̃(ω)
eiκ̃(ω)s = eiωs(1 + α0(ν1(ω) + ν2(ω)− iων1(ω)s)) +O(α2

0) . (3.10)

Therefore, we have

L̃∗a[φ(s)](t) =φ(t)

+ α0

{
F−1 [(ν1(−ω) + ν2(−ω))F [φ(s)](ω)] (t)

+ t F−1 [iων1(−ω)F [φ(s)](ω)] (t)
}

+ o(α0).

The goal is to determine ν1, ν2 such that the corresponding operators La and L̃∗a satisfy
(3.5). Using the two expansions for La and L̃∗a it follows that

L̃∗aLa[φ(s)](t) =φ(t)

+ α0

{
F−1 [(λ1(ω) + ν1(−ω) + ν2(−ω))F [φ(s)](ω)] (t)

+ F−1 [−iωλ1(ω)F [sφ(s)](ω)] (t)

+tF−1 [iων1(−ω)F [φ(s)](ω)] (t)
}

+ o(α0)

(3.11)

To satisfy (3.5) we require that the first order term in α0 of the equation (3.11) has to vanish.
By taking the Fourier transform of this term we see that the term vanishes if(
λ1(ω) + ν1(−ω) + ν2(−ω)

)
F [φ](ω)− ωλ1(ω)

dF [φ]

dω
(ω) +

d

dω
(ων1(−ω)F [φ](ω)) = 0, (3.12)

where we have used the property (5.22) with n=1. Now, it is straightforward to see that the
solution of the following system

λ1(ω) + ν1(−ω) + ν2(−ω) +
d(ων1(−ω))

dω
= 0 ,

−ωλ1(ω) + ων1(−ω) = 0 ,
(3.13)

satisfies the equation (3.12) which directly implies (3.5). Equivalently, we get the following
conditions

ν1(−ω) = λ1(ω) and ν2(−ω) = −3λ1(ω)− ωdλ1(ω)

dω
. (3.14)

Now, we introduce Γω(x, y) and Γ̃aω(x, y) which are the fundamental solutions of the
Helmholtz equations

ω2Γω(x, y) + ∆yΓω(x, y) = −δx(y), y ∈ R3 (3.15)
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and
κ̃(ω)2Γ̃aω(x, y) + ∆yΓ̃

a
ω(x, y) = −λ(ω)δx(y), y ∈ R3, (3.16)

respectively. We can prove that
∂Γ̃a

∂t
= L̃a

[
∂Γ

∂t

]
, (3.17)

where L̃a is defined in (3.4),

Γ(x, y, t, τ) = F−1 {Γω(x, y)} (t− τ), (3.18)

and
Γ̃a(x, y, t, τ) = F−1

{
Γ̃aω(x, y)

}
(t− τ), (3.19)

and F−1 denotes the inverse Fourier transform with respect to ω.
Then, we define the function vas (x, t) by

vas (x, t) = − 1

2π

∫
R

∫
∂Ω

iωΓ̃aω(x, y)ga(y, T − s)dσ(y)e−iω(t−s)dω, (3.20)

where we recall that ga(y, t) := pa(y, t) for all y ∈ ∂Ω and t ∈ [0, T ).
For the KSB model, it follows from (3.2) and (3.7) that

λ1(ω) = −
(
1 + (−iτ0ω)γ−1

)−1/2
.

Using this in (3.14) we get

ν1(ω) = −
(
1 + (iτ0ω)γ−1

)−1/2
.

and

ν2(ω) =
7− γ

2

(
1 + (iτ0ω)γ−1

)−1/2
+
γ − 1

2

(
1 + (iτ0ω)γ−1

)−3/2
.

Using these expressions for ν1(ω) and ν2(ω) we suggest the following choice for κ̃(ω) and
λ(ω):

κ̃(ω) = ω(1− α0ν1(ω)) and λ(ω) = 1 + α0ν2(ω) , (3.21)

respectively. Note, that there is no remainder term in (3.14).
By applying the expressions (3.21) into (3.16), then the previous definition of the function

vas (x, t) yields the following identity:(
L̃1/2

(
α0I + L̃1/2

)2 ∂2

∂t2
− L̃1/2 L̃ ∆

)
vas (x, t)

=

(
L̃1/2 L̃+ α0

(
(γ − 1)I + (7− γ)L̃

))∂δs
∂t

(ga(x, T − s)δ∂Ω) for x ∈ Ω .

Here
L̃ = I + (−τ0)γ−1Dγ−1

t , (3.22)

and
ga(y, t) := pa(y, t) for all y ∈ ∂Ω , t ∈ [0, T ] ,
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where T is supposed to be sufficiently large such that pa(x, t) = 0 = ∂pa

∂t (x, t) for t ≥ T and
x ∈ Ω.

In the following subsection we prove that the functional

Ia(x) =

∫ T

0
vas (x, T )ds

is an approximation of the initial datum f(x). For doing this we have to make some regular-
ization of the relevant operators.

3.1 The regularized time reversal functional

Matters of convergence of some infinite integrals defined above, suggest a regularization in
the same way as in [2] and [17]. We define the function

vas,ρ(x, t) = − 1

2π

∫ ρ

−ρ

∫
∂Ω

iωΓ̃aω(x, y)ga(y, T − s)dσ(y)e−iω(t−s)dω. (3.23)

as an approximation of vas (x, t) defined in (3.20). Moreover, we define the regularized funda-
mental solution of Γ̃a as in (3.19)

Γ̃aρ(x, y, s, t) =
1

2π

∫ ρ

−ρ
e−iω(t−s)Γ̃aω(x, y)dω,

the regularized operator L̃a,ρ defined in (3.3)

L̃a,ρ[φ](t) =
1

2π

∫ ∞
0

φ(s)

∫ ρ

−ρ

ωλ(ω)

κ̃(ω)
eiκ̃(ω)se−iωtdωds,

and its adjoint

L̃∗a,ρ[φ](t) =
1

2π

∫ ρ

−ρ

ωλ(ω)

κ̃(ω)
eiκ̃(ω)t

∫ ∞
0

e−iωsφ(s)dsdω.

Using these definitions we write the approximated version of the equations (3.5) and (3.17),
respectively, that is

L̃∗a,ρLa[φ](t) = Sρ[φ](t) + o(α0) , (3.24)

and
∂Γ̃aρ
∂t

= L̃a,ρ
[
∂Γ

∂t

]
, (3.25)

where the operator Sρ [φ] and the function Γ were defined in (5.21) and (3.18), respectively.
Similarly to the previous subsection, applying the definition (3.23) of vas,ρ(x, t) in equation

(3.16) with usage of the expressions (3.21) and (3.21) we obtain the following wave equation(
L̃1/2

(
α0I + L̃1/2

)2 ∂2

∂t2
− L̃1/2 L̃ ∆

)
vas,ρ(x, t)

= Sρ

[(
L̃1/2 L̃+ α0

(
(γ − 1)I + (7− γ)L̃

))∂δs
∂t

]
(ga(x, T − s)δ∂Ω) for x ∈ Ω .

(3.26)
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Finally, we can obtain the reconstruction functional Iaρ . Indeed, since equations (3.24) and
(3.25) hold, then Proposition 2.3.5 in [17] shows that

Iaρ (x) =

∫ T

0
vas,ρ(x, T )ds −→ f(x), as ρ→ +∞.

Remark 1. The latter proposition suggest that the larger ρ we choose, the better approxi-
mation we get. However, the previous computation of Iaρ (x) involves the integration of the

fundamental solution Γ̃aω(x, y) which grows exponentially as exp {={κ̃(ω)}|x− y|}. In order
to ensure stability of Iaρ (x) this term must not be greater than one [17, Remark 2.3.6]. For

large ω, the expression |={κ̃(ω)}| is behaving like (and is less than) α0|ω| sin (γ−1)π
4 , γ ∈ (1, 2].

So one should not use frequencies larger than 1
α0diam(Ω) . Hence, we get ρ ' 1

α0diam(Ω) to be

the threshold for the imaging functional stability, where diam(Ω) denotes the diameter of
the domain Ω. A finer estimation of the threshold can be given if we use that |={κ̃(ω)}| is

behaving like α0τ
1−γ
2

0 |ω|
3−γ
2 sin (γ−1)π

4 , γ ∈ (1, 2], for large values of ω. Consequently,

ρ ' τ
γ−1
3−γ

0(
α0diam(Ω) sin (γ−1)π

4

) 2
3−γ

,

with γ ∈ (1, 2].

4 The NSW model

Let pa satisfy the following problem(
I + τ̃

∂

∂t

)
∂2pa

∂t2
−
(
I + τ

∂

∂t

)
∆pa =

(
I + τ

∂

∂t

)
∂δ0

∂t
f, (4.1)

along with the conditions in (3.1), where we consider the NSW model for one relaxation
process, as defined in [12]. Moreover, we assume that τ > τ̃ > 0 so that the strong causality
condition in [12] is satisfied and that τ and τ̃ are small and of the same magnitude.

Substituting τ̃ = α0r̃ and τ = α0r, we find

κ(ω) = ω

√
1− iωτ̃

1− iωτ
= ω

√
1− iα0ωr̃

1− iα0ωr
.

By applying the expansion (3.7) for κ(ω) in terms of α0 we get

λ1(ω) = −iωr − r̃
2

.

Consequently, the auxiliary functions νi, i = 1, 2 are given by the conditions (3.14) and read
as follows

ν1(ω) = iω
r − r̃

2
and ν2(ω) = −2iω(r − r̃) . (4.2)

Therefore, we obtain the expansion of κ̃(ω) and λ(ω) from (3.9), i.e.,

κ̃(ω) := ω(1− α0ν1(ω)) +O(α2
0) ,

λ(ω) := 1 + α0ν2(ω) +O(α2
0),
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where now the functions νi, i = 1, 2 are given by (4.2).
We make the following choices for the functions κ̃(ω) and λ(ω)

κ̃(ω) = ω

√
1 + iωτ̃

1 + iωτ
and λ(ω) =

(
1 + iωτ̃

1 + iωτ

)2

, (4.3)

which satisfy (3.9) for non-vanishing O(α2
0) terms. From here, using the Helmholtz equa-

tion (3.16) and with the same arguments as in the previous section we derive the following
regularized time reverted attenuated equation (which is of course not unique)((

I − τ ∂
∂t

)(
I − τ̃ ∂

∂t

)
∂2

∂t2
−
(
I − τ ∂

∂t

)2

∆

)
vas,ρ(x, t)

=Sρ

[(
I − τ̃ ∂

∂t

)2 ∂δs
∂t

]
(ga(x, T − s)δ∂Ω) ,

(4.4)

where Sρ is defined in (5.21). Here

ga(y, t) := pa(y, t) for all y ∈ ∂Ω , t ∈ [0, T ] ,

where pa(y, t) satisfies equation (4.1) and T is supposed to be sufficiently large such that
pa(x, t) = 0 = ∂pa

∂t (x, t) for t ≥ T and x ∈ Ω.
The reconstruction imaging functional is given by (2.6), i.e.

Iaρ (x) =

∫ T

0
vas,ρ(x, T )ds −→ f(x), as ρ→ +∞ .

Remark 2. For the case of N relaxation processes, the procedure will be conceptually the
same. Now, the attenuated wave equation has a more complicated form [15] and we have

κ(ω) = ω

√√√√ 1

N

N∑
j=1

1− iωτ̃j
1− iωτj

.

Here, we assume that {τj , τ̃j}N1 are small and of the same magnitude, i.e. all {τj , τ̃j}N1 are
of order O(α0). Then the expansions of the functions κ(ω), κ̃(ω) and λ(ω) in terms of α0,
as they were given in (3.7) and (3.9), and the relevant asymptotic analysis allow us to make
(as previously) the following choices

κ̃(ω) = ω

√√√√ 1

N

N∑
j=1

1 + iωτ̃j
1 + iωτj

and λ(ω) =

 1

N

N∑
j=1

1 + iωτ̃j
1 + iωτj

2

, (4.5)

which lead to the corresponding time-reverted attenuated equation. One can find the corre-
sponding wave equation by applying the inverse Fourier transform on the Helmholtz equation
(3.16), for the later values of κ̃(ω) and λ(ω). This procedure will lead to an equation similar
to (4.4), but this time one obtains a more complicated form.

Following the analysis of the previous section we will choose the value of the truncation
parameter ρ appearing in (4.4) by finding the behaviour of the expression |=(κ̃(ω))|, with κ̃(ω)
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given in (4.3). For |ω|τ̃ < |ω|τ < 1 we find that |=(κ̃(ω))| is behaving like
ω2

2
(τ − τ̃), which

(following the arguments from [17, Remark 2.3.6]) yields the truncation parameter

ρ ' 1√
diam(Ω)(τ − τ̃)

.

Moreover, this value of the truncation parameter is sufficient for the other two cases, i.e.

for 1 < |ω|τ̃ < |ω|τ and |ω|τ̃ < 1 < |ω|τ , when |=(κ̃(ω))| is behaving like 1
2

√
τ̃
τ

(
1
τ̃ −

1
τ

)
and√

|ω|
2τ

∣∣∣−1 + 1
2

(
|ω|τ̃ + 1

|ω|τ

)∣∣∣, respectively.

For the case of N relaxation processes, one can use similar arguments to get an estimation
of the truncation parameter ρ. In the case that |ω|τ̃j < |ω|τj < 1, for all j = 1, . . . , N we find

that |=(κ̃(ω)}|, with κ̃(ω) given in (4.5), is behaving like
ω2

2N

∑N
j=1(τj − τ̃j), which yields the

truncation parameter

ρ '
√

N

diam(Ω)
∑N

j=1(τj − τ̃j)
.

For the several other cases, the arguments of the previous remark, along with the usage of the
triangular inequality, give us the opportunity to observe that the above-mentioned estimation
for the truncation parameter is sufficient.

Remark 3. The formal procedure outlined above also applies to thermo-viscous model, as
this was defined by the wave equation (84) in [12]. This is the special case of the NSW-model
with one relaxation process and τ̃ = 0. Note that the thermo-viscous wave equation (84) in
[12] refers to a not strongly causal model and has a different RHS from the thermo-viscous
equation (2.2), which was analysed in [17].

5 Higher order terms

In this section we describe the procedure for evaluating higher order terms of the operators
La and L̃∗a, defined in (3.3) and (3.4) and consequently a higher order approximation of the
reconstruction functional Iaρ .

In particular, this method allows determining the higher order terms of the asymptotic
expansion for the functions κ̃(ω) and λ(ω), appearing in (3.4). We make the following ansatz

κ(ω) = ω

∞∑
j=0

(−1)jλj(ω)aj , λ0(ω) = 1 (5.1)

and consequently

ω

κ(ω)
=
∞∑
j=0

µj(ω)aj , (5.2)

with
µ0(ω) = 1, µ1(ω) = λ1(ω), µ2(ω) = λ2

1(ω)− λ2(ω) (5.3)
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and in general

µj(ω) = Pj
(
{λk(ω)}jk=1

)
,

where Pj denotes a polynomial (on several variables) of order j. In addition, the expansion
(5.1) yields the following

eiκ(ω)s = eiωs
∞∑
j=0

ψj(ω, s)a
j , (5.4)

with

ψ0(ω, s) = 1, ψ1(ω, s) = −iωλ1(ω)s, ψ2(ω, s) = iωλ2(ω)s+
1

2
(iωλ1(ω)s)2 (5.5)

and in general

ψj(ω, s) = Qj
(
{iωλk(ω)s}jk=1

)
, (5.6)

where Qj denotes a polynomial (on several variables) of order j. In the case of higher order
terms we make the ansatz

κ̃(ω) = ω
∞∑
j=0

(−1)jλj(−ω)aj . (5.7)

This expansion is without loss of generality. In the procedure described in section 3, concern-
ing the first order approximation of κ̃(ω), the relevant terms were considered unknown and
one had to determine them. However, applying the previous expansion we state a consistency
condition for the time-reversal algorithm which, instead of giving a system of equations, yields
a set of identities, as we will see below.

In the same way with the previously mentioned expansions we get

ω

κ̃(ω)
=
∞∑
j=0

µj(−ω)aj (5.8)

and

eiκ̃(ω)s = eiωs
∞∑
j=0

ψ̃j(ω, s)a
j , (5.9)

with
ψ̃j(ω, s) = Qj

(
{iωλk(−ω)s}jk=1

)
, (5.10)

where Qj denote the same polynomials as in (5.6) .
Finally, we consider the expansions

λ(ω) =
∞∑
j=0

βj(ω)aj , β0(ω) = 1 (5.11)

and
ω

κ̃(ω)
λ(ω) = ω

∞∑
j=0

γj(ω)aj , γ0(ω) = 1. (5.12)
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These, expansions along with (5.7) yield the following relation

βn(ω) =
∑
i+j=n

(−1)jγi(ω)λj(−ω). (5.13)

Now, since we know explicitly κ̃(ω), our strategy consists of determining λ(ω); conse-
quently the Helmholtz equation (3.16), under the procedure described in the relevant sec-
tion, provides the corresponding time-reverted wave equation. So, in what follows out target
is to describe a procedure to find βn(ω), n ∈ N, equivalently determine the terms of the
asymptotic expansion of λ(ω).

Applying the previous expansions in the expressions (3.3) and (3.6), we get

La[φ](t) =
∞∑
k=0

fk[φ](t)ak and L̃∗a[φ](t) =
∞∑
k=0

gk[φ](t)ak, (5.14)

with f0 ≡ g0 ≡ Id, {fk, gk}nk=1 being operators that can be obtained explicitly in terms of

{λj , µj , ψj , ψ̃j , γj}kj=1, for k = 1, . . . , n, respectively. In particular, {fk, gk}2k=1 are obtained
explicitly with use of the expressions (5.3), (5.5), (5.10), i.e.,

f1[φ(s)](t) = F−1 [−iωλ1(ω)F [sφ(s)](ω) + λ1(ω)F [φ(s)](ω)] (t),

f2[φ(s)](t) = F−1

[ (
λ2

1(ω)− λ2(ω)
)
F [φ(s)](ω)− iω

(
λ2

1(ω)− λ2(ω)
)
F [sφ(s)](ω)

+
1

2
(iωλ1(ω))2F [s2φ(s)](ω)

]
(t),

g1[φ(s)](t) = F−1 [γ1(−ω)F [φ(s)](ω)] + tF−1 [iωλ1(ω)F [φ(s)](ω)] (t),

g2[φ(s)](t) = F−1 [γ2(−ω)F [φ(s)](ω)] + tF−1 [iω (γ1(−ω)λ1(ω)− λ2(ω))F [φ(s)](ω)] (t)

+t2F−1

[
1

2
(iωλ1(ω))2F [φ(s)](ω)

]
(t).

Consequently, we get the following asymptotic expansion

L̃∗aLa[φ](t) = φ[t]+

(
f1[φ](t)+g1[φ](t)

)
a+

(
f2[φ](t)+g2[φ](t)+g1[f1[φ]](t)

)
a2+o(a2), (5.15)

when a→ 0, with {fk, gk}2k=1 defined above. The identity

L̃∗aLa[φ](t) = φ(t) + o(an), a→ 0 (5.16)

is satisfied, up to the 1st order (equivalently the identity (3.5) is satisfied), when

F [f1[φ] + g1[φ]] (ω) = 0, ∀ω ∈ R.

Using the definitions of the operators f1 and g1 given above and the property (5.22) this
condition yields the following equation

γ1(−ω) = −2λ1(ω)− ωdλ1(ω)

dω
, (5.17)
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which is equivalent with the conditions (3.13). By applying the condition (5.17) in the
expression (5.13) for n = 1, we get that

β1(−ω) = −λ1(ω) + γ1(−ω) = −3λ1(ω)− ωdλ1(ω)

dω
, (5.18)

which is the first order approximation, of the function λ(ω), as this was defined in (5.11).
From the expressions (3.9) and (5.11), one can see that ν2 ≡ β1, as they were introduced
in these equalities, respectively. So, equation (5.18) is exactly the second of the conditions
(3.14). Note that the first of these conditions, is satisfied as an identity by the choice of the
expansion of κ̃(ω), given in (5.7).

Following the same procedure for the 2nd order in the identity (5.16), the expression
(5.15) yields

F [f2[φ] + g2[φ] + g1[f1[φ]]](ω) = 0,

which after some calculations where we made use of the definitions of the operators f2, g2

and the fact that

g1[f1[φ(s)]](t) = F−1
[
γ1(−ω)λ1(ω)F [φ(s)](ω)− iωγ1(−ω)λ1(ω)F [sφ(s)](ω)

]
+tF−1

[
iωλ2

1(ω)F [φ(s)](ω)− (iωλ1(ω))2F [sφ(s)](ω)
]

(t)

we obtain the following equation

γ2(−ω) = −λ2
1(ω) + λ2(ω)− γ1(−ω)λ1(ω)

+
d

dω

(
ω
(
−λ2

1(ω) + λ2(ω)− γ1(−ω)λ1(ω)
))
− 1

2

d2

dω2

((
ωλ1(ω)

)2)
.

(5.19)

Substitution of the conditions (5.17) and (5.19) in the expression (5.13) provides the second
order approximation for the function λ(ω), i.e. β2(ω), as this was defined in (5.11).

A general treatment of this problem would appear as follows: The general form of (5.15)
would be

L̃∗aLa[φ](t) = φ(t) +
n∑
k=1

hk[φ](t)ak + o(an), a→ 0,

where {hk}nk=1 are operators expressed explicitly (after some calculations and the use of the
previous expansions) in terms of {λj , γj}kj=1, for k = 1, . . . , n, respectively. Consequently, the
condition

F [hk[φ]](ω) = 0, ∀ω ∈ R

yields γk(−ω) as an explicit expression of {λj(ω)}kj=1, {γj(−ω)}k−1
j=1 and their derivatives up

to order k. Hence, the expression (5.13) yields the k-th order approximation for the function
λ(ω), i.e. βk(ω).
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Appendix

In this paper we use the basic notation:

• δs denotes the one-dimensional Dirac distribution at s ∈ R. Moreover, we denote by δx
the 3-dimensional δ-distribution with center x - x is always a 3D variable.

• F denotes the Fourier transform

F [φ](ω) =
1√
2π

∫
R
eiωtφ(t)dt . (5.20)

• If we want to specify the argument, with which respect the Fourier transform is applied
it is specified as follows:

F [φ(s)](ω) =
1√
2π

∫
R
eiωsφ(s)ds.

In this case it is with respect to the variable s.

•
Sρ [φ] (t) =

1√
2π

∫ ρ

−ρ
e−iωtF [φ](ω)dω . (5.21)

• δ∂Ω denotes the surface Dirac mass on ∂Ω.

Moreover we use the following property of the Fourier transform

F [tnφ(t)](ω) = (−i)n
dn

dωn
F [φ(t)](ω), (5.22)

for n ∈ N.
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