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Abstract. In this work we consider optical flow on evolving Riemannian 2-
manifolds which can be parametrised from the 2-sphere. Our main motivation
is to estimate cell motion in time-lapse volumetric microscopy images depicting
fluorescently labelled cells of a live zebrafish embryo. We exploit the fact that
the recorded cells float on the surface of the embryo and allow for the extraction
of an image sequence together with a sphere-like surface. We solve the resulting
variational problem by means of a Galerkin method based on vector spherical
harmonics and present numerical results computed from the aforementioned
microscopy data.

1. Introduction. Motion estimation is a fundamental problem in image analysis
and computer vision. An important task within is optical flow computation. It is
concerned with the inference of a vector field which describes the displacements of
brightness patterns, such as moving objects, in a sequence of images. Ever since the
seminal work of Horn and Schunck [18] a variety of reliable and efficient methods
have been proposed and successfully applied in a wide number of fields.

Primarily, optical flow is computed in the plane. However, it is readily generalised
to non-Euclidean settings allowing, for instance, for cell motion analysis in time-
lapse microscopy data. It has been only recently that high-resolution observations
of biological model organisms such as the zebrafish became possible. Despite its
importance for tissue and organ formation, little is known about cell migration and
proliferation patterns during the zebrafish’s early embryonic development [1, 34].
Fluorescence microscopy nowadays allows to record time-lapse images on the scale
of single cells, see e.g. [20, 28, 34]. In view of increasing spatial as well as tem-
poral resolutions producing vast amounts of data, manual analysis through visual
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inspection by humans is impracticable. Automated cell motion estimation there-
fore is key to large-scale analysis of such data. Optical flow computation delivers
necessary quantitative methods and leads to insights into the underlying cellular
mechanisms and the dynamic behaviour of cells. See, for example, [2, 29, 33, 34]
and the references therein.

The primary biological motivation for this work is the desire to analyse cell
motion in a living zebrafish during early embryogenesis. The data at hand depict
endodermal cells expressing a green fluorescent protein. By virtue of laser-scanning
microscopy, (volumetric time-lapse) 4D images of these labelled cells can be recorded
without capturing the background. It is known that endodermal cells float on a so-
called monolayer during early embryonic development meaning that they do not
stack on top of each other [39]. Figure 1 depicts two frames of the captured sequence,
containing only the upper hemisphere of the animal embryo. Observe the salient
formation of the cells and the noise present in the images. More precisely, one can
see the nuclei of cells forming a round surface in a single layer. For more details on
the microscopy data we refer to Sec. 5.1.

Recent efforts which aim at efficient motion estimation in such highly-sparse mi-
croscopy data regard this layer of cells as a two-dimensional surface and consider
only the restriction—or a suitable projection—of the volumetric data to this pre-
scribed geometry, see e.g. [23, 24, 34]. As a result, the spatial dimension of the data
reduces by one, while simultaneously preserving the essential information.

In Schmid et al. [34], the geometry of choice is the static round sphere. Con-
ceptually, we build upon this approach, however, address a concern raised in this
article. In particular, in this article they acknowledge the need for more accurate
shape representations, as the spherical model can suffer from inaccuracies. See,
for instance, Fig. 1, the presumed surface in Fig. 2, and also the discussion in [34,
Suppl. Inf.].

During early zebrafish development the initially spherical yolk undergoes deform-
ation as endodermal cells converge towards the dorsal midline and the embryonic
axis forms, see [21, Figs. 11 and 15] and Fig. 1. The major goal of this article is to
address the following points. First, we allow for radial deviations from the perfect
sphere and thereby effectively reduce errors from projections. Second, we model the
layer of cells as an evolving surface, meaning that this surface reflects changes in the
geometry as the embryo develops over time. Third, we estimate cell motion directly
on the moving surface in contrast to computing it in—possibly distorting—map
projections.

In what follows, we model the embryo of a zebrafish during its early development
as a sphere-like surface. It is topologically diffeomorphic to the 2-sphere S2 and most
commonly defined as the set of points

{ρ̃(x)x : x ∈ S2}.

The function ρ̃ : S2 → (0,∞) can be thought of as a radial deformation of S2 and
will have a dependence on time in the present paper. As a consequence, changes
in the embryo’s geometry are attributed accordingly, albeit valid only during early
stages of its development as cells tend to cluster subsequently. The main intention
of this work is to conceive cell motion only on this moving 2-dimensional mani-
fold. Figure 2 depicts two frames of the surface together with images obtained by
projecting the volumetric microscopy data in Fig. 1 onto the sphere-like geometry.



OPTICAL FLOW ON EVOLVING SPHERE-LIKE SURFACES 3

Figure 1. Frames 140 (left) and 141 (right) of the volumetric
zebrafish microscopy images recorded during early embryogenesis.
The sequence contains a total number of 151 frames recorded at
time intervals of 120 s. Fluorescence response is indicated by blue
colour and is proportional to the observed intensity. The embryonic
axis of the animal forms around the clearly visible dent. All dimen-
sions are in micrometer (µm).

In this work we model the data as a time-dependent non-negative function f̂ . Its
value directly corresponds to the fluorescence response of the observed cells. For
a fixed time instant t ∈ [0, T ], the domain of f̂ is presumed to be a closed surface
Mt ⊂ R3. We assume that this surface can be parametrised by a smooth radial
map from the 2-sphere. The temporal evolution of the data f̂ can then be tracked
by solving an optical flow problem on this moving surface or, more conveniently, an
equivalent problem on the round sphere.

Traditionally, the starting point for optical flow is the assumption of constant
brightness: a point moving along a trajectory does not change its intensity over
time. On a moving domain M = {Mt}t one equivalently seeks, for every time
t ∈ [0, T ], a tangent vector field v̂ that solves a generalised optical flow equation

dV̂
t f̂ +∇Mf̂ · v̂ = 0 (1)

at every point x ∈M, where f̂ is the image sequence living onM. Here, for a fixed
time t, ∇M denotes the (spatial) surface gradient, dot the standard inner product,
and dV̂

t f̂ an appropriate temporal derivative.
The optical flow problem is ill-posed meaning that equation (1) is not uniquely

solvable. A common approach to deal with non-uniqueness is Tikhonov regularisa-
tion, which consists of computing a minimiser of

Eα(v̂) = D(v̂, f̂) + αR(v̂).

The first term of the sum is usually the squared L2 norm of the left-hand side of (1)
and, in the present article, the second term will be an H1 Sobolev norm.

1.1. Contributions. The primary concern of this article is optical flow computa-
tion on evolving 2-dimensional Riemannian manifolds which can be parametrised
from the sphere. Motivated by the aforementioned zebrafish microscopy data we
consider closed surfaces for which the mapping

(t, x) 7→ ρ̃(t, x)x, x ∈ S2 (2)
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Figure 2. Depicted are frames no. 140 (left) and 141 (right) of the
processed zebrafish microscopy sequence. Top and bottom row dif-
fer by a rotation of 180 degrees around the x3-axis. All dimensions
are in micrometer (µm).

is a diffeomorphism between the 2-sphere and Mt for every time t ∈ [0, T ]. As a
prototypical example we restrict ourselves to radially parametrised surfaces as they
suit quite naturally to the given data.

The contributions of this work are as follows. First, we give a variational formu-
lation of optical flow on 2-dimensional closed Riemannian manifolds. We assume
a dependence on time and speak of evolving surfaces. The main idea is to solve
the problem by a Galerkin method in a finite-dimensional subspace of an appro-
priate (vectorial) Sobolev space. We take advantage of the fact that tangential
vector spherical harmonics form a complete orthonormal system for L2(S2, TS2).
The sought vector field is thus uniquely determined when expanded in terms of the
pushforward—by means of the differential of (2)—of these functions. From that we
arrive at a minimisation problem over Rn, where n is the dimension of the finite-
dimensional space, and state the optimality conditions. They can be written purely
in terms of spherical quantities and solved on the 2-sphere. To this end, we use a



OPTICAL FLOW ON EVOLVING SPHERE-LIKE SURFACES 5

standard polyhedral approximation and locally interpolate spherical functions by
piecewise quadratic polynomials. For numerical integration we employ appropriate
quadrature rules on the approximated sphere.

Second, to obtain the smooth sphere-like surface, which is described by the
map (2), from the observed microscopy data, we formulate another variational
problem on the sphere. The problem is essentially surface interpolation with Hs

Sobolev seminorm regularisation. Approximate cell centres serve as sample points
of the surface. In particular, our microscopy data are supported only on the up-
per hemisphere, see Figs. 1 and 2. Scalar spherical harmonics are the appropriate
choice for the numerical solution of the surface fitting problem, as they provide
great flexibility with respect to the chosen space Hs.

Finally, we present numerical experiments on the basis of the mentioned cell
microscopy data of a live zebrafish. To this end we compute an approximation of
the sphere-shaped embryo and obtain a sequence of images living on this moving
surface. Eventually, we solve for the optical flow and present the results in a visually
adequate manner.

1.2. Related Work. The first variational formulation of optical flow is commonly
attributed to Horn and Schunck [18]. They attempted to compute a displacement
field in R2 by minimising a Tikhonov-regularised energy functional. It favours
spatially regular vector fields by penalising the squared H1 Sobolev seminorm. For
introductory material on the subject we refer to [4, 5] and to [40] for a survey on
various optical flow functionals. Well-posedness of the aforementioned energy was
first shown by Schnörr [35]. Moreover, there the problem was extended to irregular
planar domains and solved by means of finite elements.

Weickert and Schnörr [42] considered a spatio-temporal model by extending the
domain to R2 × [0, T ]. It additionally favours temporal regularity of the solution
by including first derivatives with respect to time. Such models are of particular
interest whenever trajectories are to be computed from the optical flow field. A
unifying framework including several spatial as well as temporal regularisers was
proposed in [41]. For the purpose of evaluation and flow field visualisation a frame-
work was created by Baker et al. [6].

Recently, generalisations to non-Euclidean domains have gained increasing atten-
tion. In [19] and [37] optical flow was considered in a spherical setting. Lefèvre and
Baillet [27] adapted the Horn-Schunck functional to surfaces embedded in R3. Fol-
lowing Schnörr [35], they proved well-posedness of their formulation and employed
a finite element method for solving the discrete problem on a triangle mesh. With
an application to cell motion analysis, Kirisits et al. [22, 24] recently considered op-
tical flow on evolving surfaces with boundary. They generalised the spatio-temporal
model in [42] to a non-Euclidean and dynamic setting. Eventually, the problem was
tackled numerically by solving the corresponding Euler-Lagrange equations in the
coordinate domain. Similarly, Bauer et al. [7] studied optical flow on time-varying
domains, with and without spatial boundary. They proposed a treatment on sur-
faces parametrised by product manifolds, constructed an appropriate Riemannian
metric, and proved well-posedness of their formulation.

In Kirisits et al. [23], the authors considered various decomposition models for
optical flow on the 2-sphere. The proposed functionals were solved by means of
projection to a finite-dimensional space spanned by vector spherical harmonics.
Concerning projection methods, Schuster and Weickert [36] solved the optical flow
problem in R2 solely based on regularisation by discretisation.
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Regarding sphere-like surfaces and spherical harmonics expansion of closed sur-
faces we refer to [32] and the references therein.

Finally, let us mention [2, 29, 33, 34], where optical flow was employed for the
analysis of cell motion in microscopy data. In particular, in Schmid et al. [34] the
embryo of a zebrafish was modelled as a round sphere and motion of endodermal
cells computed in map projections.

The remainder of this article is structured as follows. In Sec. 2, we formally
introduce evolving sphere-like surfaces, recall the definition of vectorial Sobolev
spaces on manifolds, and discuss both scalar and vector spherical harmonics on
the 2-sphere. Section 3 is dedicated to optical flow on evolving surfaces and our
variational formulation. In Sec. 4 we discuss the numerical solution. In particular,
we propose to solve the resulting energy in a finite-dimensional subspace and rewrite
the optimality conditions to be defined solely on the 2-sphere. Moreover, we show
how to fit a sphere-like surface to the labelled cells in the microscopy data. Finally,
in Sec. 5, we solve for the optical flow field and visualise the results. The appendix
contains deferred material.

2. Notation and Background.

2.1. Sphere-Like Surfaces. Let
S2 = {x ∈ R3 : ‖x‖ = 1}

be the 2-sphere embedded in the 3-dimensional Euclidean space. The norm of Rn,
n = {2, 3}, is denoted by ‖x‖ =

√
x · x. We denote by

x : Ω ⊂ R2 → R3 (3)
a smooth (local) parametrisation of S2 mapping coordinates ξ = (ξ1, ξ2)> ∈ Ω to
points x = (x1, x2, x3)> ∈ S2.

Furthermore, let I := [0, T ] ⊂ R denote a time interval and letM = {Mt}t∈I be
a family of closed smooth 2-manifoldsMt ⊂ R3. EachMt, t ∈ I, is assumed to be
regular and oriented by the outward unit normal field N̂(t, x) ∈ R3, x ∈ Mt. We
assume thatM (locally) admits a smooth parametrisation of the form

y : I × Ω→ R3, (t, ξ1, ξ2)> 7→ ρ̃(t,x(ξ1, ξ2))x(ξ1, ξ2) ∈Mt, (4)
where ρ̃ : I × S2 → (0,∞), and callM an evolving sphere-like surface.

We denote by f̂ :M→ R a smooth function on the moving surface. Its coordin-
ate representation f : I × Ω → R and its corresponding spherical representation
f̃ : I × S2 → R are given by

f(t, ξ) = f̃(t,x(ξ)) = f̂(t,y(t, ξ)). (5)
As a notational convention we indicate functions living on S2 with a tilde and
functions onM with a hat, respectively. Their corresponding coordinate version is
treated without special indication.

For convenience, we define a smooth (spatial) extension of f̂ to R3 \ {0} by

f̄(t, x) := f̂

(
t, ρ̃

(
t,

x

‖x‖

)
x

‖x‖

)
, (6)

which is constant along radial lines. The extension f̄(t, ·) is chosen such that it
coincides with f̃(t, ·) on S2 and with f̂(t, ·) onMt, respectively. For functions such
as ρ̃(t, ·) in (4) which are only introduced on S2, the extension is well-defined by
considering Mt = S2, that is, ρ̃(t, ·) ≡ 1 for all t ∈ I. Note that, while f̄(t, ·) is
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x

ρ̃(t, x)x
N̂

Ñ

S2

Mt

Figure 3. Schematic illustration of a cut through the surfaces S2

andMt intersecting the origin. In addition, we show a radial line
along which the extension f̄(t, ·) is constant. The surface normals
are shown in grey.

constant in the direction of the surface normal of S2, it is in general not constant
in the direction of the surface normal of Mt. We point at Fig. 3 illustrating the
setting.

Similarly, for a vector-valued function v̂ : M → R3 the extension to R3 \ {0}
is defined component-wise and for all times t ∈ I, and is denoted by v̄. As a
notational convention, boldface letters are used to denote vector fields. Moreover,
we distinguish between lower and upper case boldface letters. The former identify
tangent vector fields and their extensions to R3 \ {0} whereas the latter indicate
general vector fields in R3, with the exception of the parametrisations x and y. At
this point let us refer to Tab. 1 at the end of this section containing a summary of
the notation.

For a differentiable function f : I × Ω→ R, we write ∂if as an abbreviation for
the partial derivative of f with respect to ξi. That is, ∇R2f = (∂1f, ∂2f)>, where
∇R2 is the gradient of R2.

The tangent plane at a point y(t, ξ) ∈Mt is denoted by Ty(t,ξ)Mt and the tan-
gent bundle by TMt =

{
{y(t, ξ)} × Ty(t,ξ)Mt : ξ ∈ Ω

}
. The orthogonal projector

onto the tangent plane TxMt at x ∈Mt, t ∈ I, is given by

PM(t, x) = Id− N̂(t, x)N̂(t, x)> ∈ R3×3.

In particular ifMt = S2, that is ρ̃ in (4) is identically one for all t ∈ I, the outward
unit normal and the orthogonal projector are given by Ñ and PS2 , respectively.

In what follows, we define spatial differential operators. As they are identical
to those on static surfaces we consider time t ∈ I arbitrary but fixed. Then, the
surface gradient of f̂ , as given in (5), is defined by

∇Mf̂ := PM∇R3 f̄ ∈ R3, (7)

where ∇R3 denotes the usual gradient of the embedding space and f̄ is the extension
from (6). Let us stress that it is independent of the chosen extension, see e.g. [13,
p. 389].

We emphasise that, in particular, ifMt = S2 for all t ∈ I it follows that
∇R3 f̄ = PS2∇R3 f̄ + (Id− PS2)∇R3 f̄ .
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The last term of the sum on the right hand side is the normal derivative of f̄ , which
according to the definition of the extension in (6) vanishes. Thus,

∇S2 f̃ = PS2∇R3 f̄ = ∇R3 f̄ . (8)

For convenience let us observe that, by taking ∂if in (5), we arrive at

∂if(t, ξ) = ∇R3 f̄(t,x(ξ)) · ∂ix(ξ) = ∇S2 f̃(t,x(ξ)) · ∂ix(ξ) (9)

due to the chain rule and the projection onto the tangent plane Tx(ξ)S2.
Analogously to the surface gradient we define the spherical Laplace-Beltrami of

f̃ : I × S2 → R as
∆S2 f̃ = −∆R3 f̄ , (10)

where ∆R3 is the standard Laplacian of R3.
The set

{∂1y(t, ξ), ∂2y(t, ξ)} ⊆ R3, (11)
where y is the parametrisation defined in (4), forms a basis of the tangent space
Ty(t,ξ)Mt at y(t, ξ). Its elements form the gradient matrix Dy, which is derived as
follows.

Let ρ̄ be the extension of ρ̃ : I ×S2 → (0,∞) according to (6). Then, y from (4)
can be rewritten as

y(t, ξ) = ρ̄(t,x(ξ))x(ξ).
By the chain rule,

∂iy(t, ξ) =
(
∇R3 ρ̄(t,x(ξ)) · ∂ix(ξ)

)
x(ξ) + ρ̄(t,x(ξ))∂ix(ξ).

Using (8) and the fact that ρ̄ equals ρ̃ on S2 gives

∂iy =
(
∇S2 ρ̃ · ∂ix

)
x + ρ̃∂ix,

where we have omitted the arguments (t, ξ) and (ξ) for better readability. Whenever
convenient and no confusion will arise we will continue to do so.

By applying (9) backwards and the fact that ρ̃(t,x(ξ)) = ρ(ξ) we have shown

Dy =
(
∂1y ∂2y

)
=
(
(∂1ρ)x (∂2ρ)x

)
+ ρDx ∈ R3×2,

(12)

where Dx = (∂1x, ∂2x) is the gradient matrix associated with x.
Provided that x is a regular parametrisation it is straightforward to show that

also y is regular. By computing Lagrange’s identity one has ∂1y× ∂2y 6= 0 proving
that the columns of Dy are linearly independent or, in other words, that y indeed
is regular. We highlight that (19) below is in fact Lagrange’s identity.

As a consequence, we can uniquely represent a tangent vector v̂ ∈ Ty(t,ξ)Mt as
v̂ =

∑2
i=1 v

i∂iy, where v = (v1, v2)> ∈ R2 is its coordinate representation, see e.g.
[26, Prop. 3.15]. We call vi the components of v̂.

In the sequel we will use Einstein summation convention. We sum over every
index letter that appears exactly twice in an expression, once as a sub- and once as
a superscript. For instance, we write v̂ = vi∂iy for the sake of brevity.

We underline that the coordinate basis (11) is not orthogonal in general. We
will, however, require an orthonormal frame {ê1(t, ξ), ê2(t, ξ)} of the tangent space
Ty(t,ξ)Mt from this section on. In the coordinate basis it reads

êi = αji∂jy, (13)



OPTICAL FLOW ON EVOLVING SPHERE-LIKE SURFACES 9

where αji : I ×Ω→ R, i, j = {1, 2}, are functions obtained from the Gram-Schmidt
process.

Combining (5) and (9) with the expressions derived for Dx and Dy we can
conveniently state that

∇R2f = Dx>∇S2 f̃ and ∇R2f = Dy>∇Mf̂ . (14)

Let us derive the following useful generalisation of (9). For a tangent vector
ṽ = vi∂ix ∈ TxS2, x ∈ S2, the directional derivative of f̃ along ṽ at x is

∇S2 f̃ · ṽ = ∇S2 f̃ · vi∂ix = (Dx>∇S2 f̃) · v = ∇R2f · v = vi∂if, (15)

where the third equality follows from the first equation in (14). Analogously, for
v̂ = vi∂iy ∈ TxMt, with x ∈Mt and t ∈ I, one can derive

∇Mf̂ · v̂ = vi∂if. (16)

As soon as we have established the relation between v̂ and ṽ it will conveniently
allow us to switch between (15) and (16).

Moreover, the coordinate representation of the surface gradient (8) is derived as
follows. Let us start out with the first equation in (14). By writing ∇S2 f̃ in the
coordinate basis, that is ∇S2 f̃ = Dxv for some v, we obtain from (14)

∇R2f = Dx>Dxv.

Multiplying with (Dx>Dx)−1 from the left yields

(Dx>Dx)−1∇R2f = v.

Thus,
∇S2 f̃ = Dxv = Dx(Dx>Dx)−1∇R2f. (17)

Furthermore, let t ∈ I be fixed and let f̂(t, ·) :Mt → R. The surface integral of
f̂ is ∫

Mt

f̂ dMt =
∫

Ω
fJy dξ, (18)

where Jy is the Jacobian of y. According to Theorem 3 in [11, p. 88], it is given by

(Jy)2 = det(Dy>Dy)

and by using (12) yields

(Jy)2 = ρ2 ((∂1ρ)2∂2x · ∂2x + (∂2ρ)2∂1x · ∂1x
+ρ2(∂1x · ∂1x)(∂2x · ∂2x)− 2∂1ρ∂2ρ(∂1x · ∂2x)− ρ2(∂1x · ∂2x)2 ). (19)

Note that x·x = 1 and thus, terms of the form ∂ix·x vanish. By the differentiability
of x, ones has

∂i(x · x) = 0.
Therefore, ∂ix · x = 0, meaning that tangential and normal vectors are orthogonal.
We emphasise that Dy>Dy is commonly referred to as Riemannian metric. It is
positive definite and thus, (Jy(t, ξ))2 > 0 for all (t, ξ) ∈ I × Ω.

The parametrisations x and y defined in (3) and (4), respectively, suggest the
straightforward construction of a smooth map φ̃(t, ·) : S2 →Mt. It is given by the
composition (y ◦ x−1)(t, ·), that is

φ̃(t, x) : x 7→ ρ̃(t, x)x.
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The differential Dφ̃(t, x) : TxS2 → Tφ̃(t,x)Mt of φ̃ is a linear map and is given by

Dφ̃(t, x) = ρ̃(t, x)Id + x∇S2 ρ̃(t, x)> ∈ R3×3. (20)

It follows from a direct calculation akin to the derivation of Dy in (12).
Let us exhibit the action of Dφ̃(t, x), for x = x(ξ) and t ∈ I, onto a tangent

vector ṽ = vi∂ix ∈ TxS2. We have
Dφ̃(t, x)(ṽ) = ρ̃(t, x)ṽ + x(∇S2 ρ̃(t, x) · ṽ)

(15)= ρ̃(t, x)ṽ + xvi∂iρ(ξ)
= ρ̃(t, x)vi∂ix + xvi∂iρ(ξ)
= vi

(
ρ̃(t, x)∂ix + x∂iρ(ξ)

)
(12)= vi∂iy(ξ).

(21)

In other words, the components (v1, v2)> are preserved whenever a tangent vector
is mapped from S2 toMt via the differential (20).

As a matter of fact, given a tangent vector field ṽ = vi∂ix on S2, the differential
Dφ̃ gives rise to a unique tangent vector field v̂ = vi∂iy on Mt, see [26, Chapter
8]. Whenever we use ṽ and v̂ in the sequel we refer to their unique identification
via the differential (20) and call v̂ the pushforward of ṽ. At this point, the reader
might find it helpful to have a look at Fig. 5.

With the above definitions at hand we are able to relate the surface integral (18)
to an integral on S2 via a change of variables. The key is to compute a meaningful
surface element as |det(Dφ̃)| is the magnitude of the change of the volume element.
The following lemma provides the required form.

Lemma 2.1. Let x : [0, π]× [0, 2π)→ R3 be the standard parametrisation of S2,

(ξ1, ξ2)> 7→ (sin ξ1 cos ξ2, sin ξ1 sin ξ2, cos ξ1)>,

and let f̂ :M→ R and ρ̃ : I × S2 → (0,∞) be as above. Then, for t ∈ I,∫
Mt

f̂ dMt =
∫
S2
f̃ ρ̃
√
‖∇S2 ρ̃‖2 + ρ̃2 dS2.

Proof. Let us denote by ẽ1(ξ) and ẽ2(ξ) the orthogonal unit vectors on S2 in dir-
ection of ξ1 and ξ2, respectively, which are obtained by normalising the coordinate
basis {∂1x(ξ), ∂2x(ξ)}. That is,

ẽ1(ξ) = ∂1x(ξ) and ẽ2(ξ) = ∂2x(ξ)
‖∂2x(ξ)‖ . (22)

Moreover, a straightforward calculation gives

Dx>Dx =
(

1 0
0 sin2 ξ1

)
and thus, the surface gradient of ρ̃ in spherical coordinates (17) is given by

∇S2 ρ̃(t,x(ξ)) = ∂1ρ(ξ) ∂1x(ξ) + 1
sin2 ξ1 ∂2ρ(ξ) ∂2x(ξ)

(22)= ∂1ρ(ξ) ẽ1(ξ) + 1
sin ξ1 ∂2ρ(ξ) ẽ2(ξ),

where we have replaced the coordinate basis with the orthonormal basis.
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Using Dx>Dx in (19), the Jacobian Jy can be written as
(Jy)2 = ρ2((∂1ρ)2 sin2 ξ1 + (∂2ρ)2 + ρ2 sin2 ξ1)

= ρ2((∂1ρ)2 + 1
sin2 ξ1 (∂2ρ)2 + ρ2) sin2 ξ1

= ρ2(‖∇S2 ρ̃‖2 + ρ2) sin2 ξ1.

Here, we have omitted the argument (t,x(ξ)) of ∇S2 ρ̃. Then, the integral turns out
to be ∫

Mt

f̂ dMt =
∫ 2π

0

∫ π

0
fJy dξ

=
∫ 2π

0

∫ π

0
fρ
√
‖∇S2 ρ̃‖2 + ρ2 sin ξ1 dξ

=
∫
S2
f̃ ρ̃
√
‖∇S2 ρ̃‖2 + ρ̃2 dS2,

where the last equation follows from (18) ifMt = S2, the fact that sin ξ1 ≥ 0, and

Jx =
√

det(Dx>Dx) = sin ξ1.

The concepts introduced above, and further properties thereof, may be found in
any standard differential geometry book. For instance, in [9, 10, 25, 26].

2.2. Vectorial Sobolev Spaces on Manifolds. We briefly introduce the ap-
propriate function spaces required for the variational optical flow formulation on
Riemannian manifolds. Again, let us consider time t ∈ I arbitrary but fixed and
recall that, for a tangent vector field v̂(t, ·) on Mt, the component-wise radially
constant extension of v̂ is denoted by v̄, cf. (6).

We denote by ∇ûv̂(t, x) the covariant derivative of v̂ at x ∈ Mt along the
direction of a tangent vector û ∈ TxMt. It is defined as the tangential part of the
usual directional derivative of the extension v̄ along û in the embedding space, that
is,

∇ûv̂(t, x) :=
(
PM∇R3 v̄(û)

)
(t, x) (23)

and in matrix-vector form reads

∇ûv̂(t, x) = PM(t, x)

∇R3 v̄1(t, x)>
∇R3 v̄2(t, x)>
∇R3 v̄3(t, x)>

 û.

It is a linear operator ∇v̂(t, x) : TxMt → TxMt and its Hilbert-Schmidt norm
is given by

‖∇v̂(t, x)‖22 =
2∑
i=1
‖∇êi

v̂(t, x)‖2, (24)

where {ê1, ê2} denotes the orthonormal basis of the tangent space TxMt, cf. (13).
We stress that (24) is invariant with respect to the chosen parametrisation.

For each t ∈ I, we define the Sobolev space H1(Mt, TMt) as the completion of
the space of vector fields C∞(Mt, TMt) with respect to the norm

‖v̂(t, ·)‖2H1(Mt,TMt) :=
∫
Mt

‖∇v̂(t, x)‖22 dMt, (25)



12 OPTICAL FLOW ON EVOLVING SPHERE-LIKE SURFACES

where the surface integral is defined in (18). Let us emphasise that (25) is indeed a
norm wheneverMt is diffeomorphic to the 2-sphere. The reason is that, by virtue
of the Hairy Ball Theorem, there is no covariantly constant tangent vector field but
v̂ = 0, see e.g. [17, p. 125]. From now on we will omit the arguments (t, x) inside
norms for the sake of simplicity whenever clear from the context.

Alternatively, one can define Sobolev spaces of vector fields such that each com-
ponent of a vector field originates from a scalar Sobolev space. See, for instance,
Lefèvre and Baillet [27]. On the 2-sphere, however, they are typically introduced
by means of the spherical Laplace-Beltrami operator, see e.g. [30, Chapter 6.2] and
Sec. 2.3 for the scalar counterpart. For a thorough treatment of Sobolev spaces on
Riemannian manifolds we refer to the books [14, 38].

2.3. Spherical Harmonics. We denote by Harmn the space of homogeneous har-
monic polynomials of degree n ∈ N0 = {0, 1, 2, . . . } with their domain restricted to
S2. Its dimension is

dim(Harmn) = 2n+ 1.
An element Ỹn ∈ Harmn, n ∈ N0, is called a (scalar) spherical harmonic. It is an
infinitely often differentiable eigenfunction of the Laplace-Beltrami operator ∆S2 ,
defined in (10), with corresponding eigenvalue

λn = n(n+ 1).
We refer to Theorem 5.6 and Lemma 5.8 in [30, Sec. 5.1] for detailed proofs of the
previous statements.

The set {
Ỹn,j : n ∈ N0, j = 1, . . . , 2n+ 1

}
(26)

is a complete orthonormal system of L2(S2) with respect to the inner product
〈·, ·〉L2(S2) on S2. In further consequence, for a function f̃ ∈ L2(S2), we have the
Fourier series representation

f̃ =
∞∑
n=0

2n+1∑
j=1
〈f̃ , Ỹn,j〉L2(S2)Ỹn,j ,

Again, we refer to [30, Sec. 5.1] for the proofs, in particular to Theorem 5.25. In
the present article we employ fully normalised spherical harmonics. For the explicit
construction see [30, Sec. 5.2].

Moreover, the norm of L2(S2) is readily stated in terms of the coefficients in the
above expansion via Parseval’s identity

‖f̃‖2L2(S2) =
∑
n,j

〈f̃ , Ỹn,j〉2L2(S2).

For an arbitrary real number s ∈ R, we define the Sobolev space Hs(S2) as the
completion of all C∞(S2) functions with respect to the norm

‖f̃‖2Hs(S2) := ‖(∆S2 + 1)s/2f̃‖2L2(S2) =
∑
n,j

(λn + 1)s〈f̃ , Ỹn,j〉2L2(S2).

We stress that, by (10), ∆S2 f̃ = −∆R3 f̄ and we have λn ≥ 0 for all n ∈ N0 yielding
a sound definition. Accordingly, for s ∈ R, we define the Hs seminorm of order s
by

|f̃ |2Hs(S2) := ‖∆s/2
S2 f̃‖2L2(S2) =

∑
n,j

λsn〈f̃ , Ỹn,j〉2L2(S2). (27)
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Now that the space L2(S2) is endowed with a basis, we can proceed to define an
orthonormal system for square integrable tangent vector fields on the sphere. This
will immediately allow us to treat vector-valued problems consistently.

Let Ỹn ∈ Harmn be a scalar spherical harmonic of degree n ∈ N0. Any vector
field ỹ : S2 → R3 that can be written in the form ỹ = ỹ(i)

n , where

ỹ(1)
n := ỸnÑ,

ỹ(2)
n := ∇S2 Ỹn,

ỹ(3)
n := ∇S2 Ỹn × Ñ,

is called a vector spherical harmonic of degree n and type i, cf. [12, Definition 5.2].
Recall that Ñ is the outward unit normal to S2.

By definition, ỹ(1)
n is a normal field whereas ỹ(2)

n and ỹ(3)
n are tangent vector fields.

Consequently, the latter are called tangential vector spherical harmonics. Note that,
by means of the Hairy-Ball Theorem, no tangential vector spherical harmonics of
degree zero exist.

In further consequence, let us denote by L2(S2, TS2) the space of square integ-
rable tangent vector fields on S2 equipped with the inner product

〈ũ, ṽ〉L2(S2,TS2) =
∫
S2

ũ · ṽ dS2.

Here, dS2 denotes the usual spherical surface measure, see also Lemma 2.1.
Since (26) is an orthonormal set for L2(S2), the set{

ỹ(i)
n,j : n ∈ N, j = 1, . . . , 2n+ 1, i = 2, 3

}
, (28)

is an orthonormal system for L2(S2, TS2), where we have defined

ỹ(2)
n,j = λ−1/2

n ∇S2 Ỹn,j ,

ỹ(3)
n,j = λ−1/2

n ∇S2 Ỹn,j × Ñ,
(29)

for orthonormalisation purpose, see [12, Sec. 5.2]. Thus, every vector field ṽ ∈
L2(S2, TS2) can be written uniquely as

ṽ =
3∑
i=2

∞∑
n=1

2n+1∑
j=1
〈ṽ, ỹ(i)

n,j〉L2(S2,TS2)ỹ
(i)
n,j .

We refer to the books [12, 30] for further details on the subject. Table 1 contains
a summary of notation used in the sequel.

3. Optical Flow on Evolving Surfaces.

3.1. Generalised Optical Flow. Optical flow models are typically based on the
assumption of constant brightness. Given a sequence of (planar) images

f : I × Ω ⊂ R× R2 → R

such that f ∈ C1(I × Ω), it assumes that the intensity f(t, γ(t, ξ)) stays constant
over time when moving along a trajectory γ(·, ξ) : I → Ω starting at ξ ∈ Ω. In
other words, in the planar setting, we have

d

dt
f(t, γ(t, ξ)) = ∂tf +∇R2f · ∂tγ = 0,
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Ω coordinate domain
I time interval
S2 2-sphere
M family of sphere-like surfacesMt

TxS2 tangent plane at x ∈ S2

TyMt tangent plane at y ∈Mt

Ñ, N̂ outward unit normals to S2 andM
x, y parametrisations of S2 andM
Dx, Dy gradient matrix of x and y
{∂1x, ∂2x} basis for TS2

{∂1y, ∂2y} basis for TM
{ê1, ê2} orthonormal basis for TMt

V̂ surface velocity ofM
φ̃,Dφ̃ smooth map from S2 toM and its differential
f̃ , f̂ , f scalar function on S2,M, and their coordinate version
∇S2 f̃ , ∇Mf̂ surface gradient on S2 andMt

ṽ, v̂, v tangent vector fields on S2,M, and their coordinate version
∇ûv̂ covariant derivative of v̂ along direction û onMt

f̄ , v̄ radially constant extensions of f̂ and v̂ to R3 \ {0}
Ỹn,j scalar spherical harmonic of degree n and order j
ỹ(i)
n,j vector spherical harmonic of degree n, order j, and type i

ŷ(i)
n,j pushforward of ỹ(i)

n,j via the differential Dφ̃
Table 1. Summary of notation used throughout the paper.

which is termed optical flow equation and must hold for all ξ ∈ Ω and all t ∈ I. For
the sake of consistency, we denote by ∂t the partial and by d/dt the total derivative
with respect to time.

It is possible to generalise the idea to a non-Euclidean setting where the image
lives on a, potentially moving, manifold. To this end, let us be given an evolving
surface

M :=
⋃
t∈I

(
{t} ×Mt

)
⊂ R4

specified by a parametrisation y : I ×Ω→ R3 as in (4) together with a function f̂ ,
its domain beingM. For a time t ∈ I,

f̂(t, ·) :Mt → R

is then an image on the surface. Adapting the above idea of constant brightness to
the new setting requires that, along a smooth trajectory γ(·, x) : t 7→ γ(t, x) ∈ Mt

that starts at x ∈M0 and always stays on the surface, we must have

f̂(t, γ(t, x)) = f̂(0, x). (30)
However, in order to proceed as above one needs to define a meaningful derivative
with respect to time.

One possibility, which is pursued in [22, 24], is to consider derivatives along
trajectories following the moving surface. Let y be as above and let ∂ty = V̂ be
the surface velocity, its domain being

⋃
t∈I({t} ×Mt) ⊂ R4. We emphasise that

V̂ is in general not tangent toMt, t ∈ I, and hence in our notation denoted by a
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Mt0

Mt0+∆t

V̂
M̂

v̂

γ(·, x0)ψN̂
y(·, ξ)

x0

Figure 4. Illustration of trajectories through the evolving surface.
Their corresponding velocities are shown in grey.

boldface capital letter. Then,

dV̂
t f̂(t0, x0) := d

dt
f̂(t,y(t, ξ))

∣∣∣∣
t=t0

(31)

is the time derivative of f̂ at x0 = y(t0, ξ) along the parametrisation y(·, ξ). As a
consequence, one can deduce that

dV̂
t f̂ = dN̂

t f̂ +∇Mf̂ · V̂

holds, where dN̂
t f̂(t0, x0) is the time derivative of f̂ in normal direction. It is defined

analogously to (31) albeit following a trajectory ψN̂ through x0 ∈ Mt0 for which
∂tψN̂(t0, x0) is orthogonal to Tx0Mt0 .

From that one can immediately formulate the above idea of constant bright-
ness (30) along γ. To this end, we define by M̂ := ∂tγ the velocity of a point
moving along the trajectory γ and demand that

dM̂
t f̂ = dN̂

t f̂ +∇Mf̂ · M̂ = 0 (32)

must hold. Equation (32) is a generalised optical flow equation. In Fig. 4 we
sketch the various trajectories through the evolving surface and their corresponding
velocities.

Since we are, however, interested in a coordinate representation of γ, we define
a family of trajectories β : I × Ω→ Ω such that

γ(t,y(0, ξ)) = y(t, β(t, ξ))

holds for all t ∈ I and all ξ ∈ Ω. In other words, we want the composition of β with
y, and γ to coincide. By taking the total derivative d/dt on both sides of the above
equation we get

∂tγ = ∂ty + ∂tβ
i∂iy.

Let us denote v̂ := ∂tβ
i∂iy and recall that ∂ty = V̂ is the surface velocity. The

above relation states that the total velocity M̂ = ∂tγ along a level line of constant
intensity is

M̂ = V̂ + v̂ (33)
and v̂ is a tangential velocity relative to the prescribed surface velocity V̂.

Solving the generalised optical flow equation (32), however, is inconvenient as ψN̂
and, in further consequence, dN̂

t is unknown or hard to estimate. Nevertheless, one
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can relate (32) and (33), as shown in [24, Lemma 2], and arrive at the parametrised
optical flow equation

dV̂
t f̂ +∇Mf̂ · v̂ = 0. (34)

Solving for the optical flow then means finding a (time-varying) vector field v̂ that
is tangent to the surface at all times and satisfies the above equation at every point
x ∈M on the moving surface.

Let us conclude this subsection with the following remarks. In general, there
exist infinitely many parametrisations y for a given evolving surface M. Never-
theless, the solution v̂ to the optical flow problem is independent of the choice
of the parametrisation. See also [7, Sec. 3] regarding invariance with respect to
reparametrisations.

The actual surface velocity V̂ might be unknown or cannot be estimated from
the data, as it is the case in this work. As a remedy we propose to decompose the
total motion M̂ into a presumed velocity V̂ and a tangential component v̂ relative
to it. Ideally, V̂ is chosen so that it is consistent with M. We refer to [24] for a
detailed discussion.

Moreover, we stress that the sought tangent vector field v̂ depends on the chosen
V̂ and should be interpreted with care. However, it is reasonable to assume that the
total motion M̂ is close to the true velocity of a cell. The actual trajectories γ can
be reconstructed by finding the integral curves of (33). For this precise approach
we point the reader to [24].

3.2. Variational Formulation. The optical flow equation (34) derived above is
underdetermined and, in general, a unique solution is not ensured. A common
technique to deal with non-uniqueness is Tikhonov regularisation, where one finds
a minimiser of

‖dV̂
t f̂ +∇Mf̂ · v̂‖2L2(M) + αR(v̂).

Here, R(v̂) is a regularisation functional and α > 0 a regularisation parameter, bal-
ancing the two terms. The first term is typically referred to as data term whereas the
second is called smoothness term. The latter enforces uniqueness and incorporates
prior knowledge about favoured solutions.

A common choice for R(v̂) is the squared H1 Sobolev seminorm, involving first
derivatives with respect to space and time. It favours spatial as well as temporal
regularity and is of particular interest when trying to estimate trajectories of objects,
albeit computationally more demanding. See, for example [24, 42] and [7].

Alternatively, one can omit temporal regularisation leading to a regulariser of
the form

R(v̂) =
∫
I

‖v̂(t, ·)‖2H1(Mt,TMt) dt,

which is equivalent to solving for each time instant separately. It resembles the
original formulation in [18] and its extension to 2-manifolds [27]. In the present
article we follow this approach and attempt in finding the unique minimiser v̂ ∈
TMt of the energy

Eα(v̂) := ‖dV̂
t f̂ +∇Mf̂ · v̂‖2L2(Mt) + α‖v̂‖2H1(Mt,TMt) (35)

for each time instant t ∈ I separately. Superimposing temporal regularisation
however is straightforward, see [24, Sec. 2.2.2], but not considered here.

4. Numerical Solution.
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R2 TS2 TMt

Ω S2 Mt

Dx Dφ̃(t, ·)

x φ̃(t, ·)

Dy(t, ·)

y(t, ·)

yp ỹp ŷp

Figure 5. Commutative diagram relating spaces Ω, S2, andMt,
and tangent vector fields. We highlight that yp is the coordinate
representation, see Sec. 2.1, of a particular tangential vector spher-
ical harmonic ỹp and ŷp is its uniquely identified tangent vector
field onMt.

4.1. Finite-dimensional Projection. For the subsequent discussion we let t ∈ I
be arbitrary but fixed and assume to be given a parametrisation y(t, ·) : Ω →Mt

as defined in (4). We defer the question of how to find it to Sec. 4.3. Moreover,
for notational convenience, we relabel the set of tangential vector spherical har-
monics (28) using a single index letter p ∈ N. For instance, for the expansion of
a tangent vector field on S2 we simply write ũ =

∑
p upỹp, where up ∈ R are the

coefficients.
We intend to approximate the solution of the problem

min
v̂∈H1(Mt,TMt)

Eα(v̂)

in a finite-dimensional subspace U ⊂ H1(Mt, TMt), where Eα is defined in (35).
We define this space as

U = span{ŷp : p ∈ JU},
where JU ⊂ N is a finite index set and ŷp is the pushforward of a particular vector
spherical harmonic ỹp via the differential Dφ̃, see (20). Figure 5 gives a descriptive
view of the relation between the introduced spaces and tangent vector fields.

The sought vector field is then uniquely expanded as

v̂ =
∑
p∈JU

vpŷp, (36)

with vp ∈ R, p ∈ JU , being the coefficients. Minimisation of functional (35) results
in a finite-dimensional optimisation problem over R|JU |. Plugging ansatz (36) into
(35) and writing out definition (25) of the Sobolev H1(Mt, TMt) norm gives

Eα(v̂) =
∫
Mt

((
dV̂
t f̂ +

∑
p∈JU

vp(∇Mf̂ · ŷp)
)2 + α‖

∑
p∈JU

vp∇ŷp‖22
)
dMt. (37)

By applying the definition of the Hilbert-Schmidt norm (24), using linearity of
the covariant derivative ∇ûv̂ with respect to v̂, and the definition of the norm of
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R3 we obtain the representation

‖∇
∑
p∈JU

vpŷp‖22 =
2∑
i=1
‖
∑
p∈JU

vp∇êi
ŷp‖2

=
2∑
i=1

(∑
p∈JU

vp∇êi
ŷp ·

∑
q∈JU

vq∇êi
ŷq
)

=
2∑
i=1

∑
p,q∈JU

vpvq
(
∇êi

ŷp · ∇êi
ŷq
)

for the regularisation term.
The optimality conditions for the discrete minimisation problem (37) are ob-

tained by taking ∂Eα/∂vp = 0, for all p ∈ JU , and are given by∑
q∈JU

vq

∫
Mt

((
∇Mf̂ · ŷp

)(
∇Mf̂ · ŷq

)
+ α

2∑
i=1

(
∇êi

ŷp · ∇êi
ŷq
))

dMt

= −
∫
Mt

dV̂
t f̂
(
∇Mf̂ · ŷp

)
dMt, p ∈ JU .

(38)

In matrix form they read
(A+ αD)v = b,

where v = (v1, . . . , v|JU |)> ∈ R|JU | is the vector of unknowns. The entries of the
matrix A = (apq)pq are

apq =
∫
Mt

(
∇Mf̂ · ŷp

)(
∇Mf̂ · ŷq

)
dMt,

the entries of the matrix D = (dpq)pq associated with the regularisation term are
given by

dpq =
∫
Mt

2∑
i=1

(
∇êi

ŷp · ∇êi
ŷq
)
dMt,

and the entries of the vector b = (bp)p are

bp = −
∫
Mt

dV̂
t f̂
(
∇Mf̂ · ŷp

)
dMt.

4.2. Rewriting the Optimality Conditions. Even tough directly solving the
derived optimality conditions (38) is perfectly legitimate, we take a different ap-
proach. The goal of this section is to rewrite the optimality conditions in terms
of quantities defined on the 2-sphere, thereby allowing a more general treatment.
On the one hand, we want to deal with all surfaces Mt for all t ∈ I in a uni-
fied manner and, on the other hand, we aim at evaluating (38) numerically on the
(approximated) sphere without having to deal with multiple charts, see e.g. [9].

The following is a straight-forward generalisation of [24, Lemma 2].

Lemma 4.1. Consider time t ∈ I arbitrary but fixed. Let ṽ = vi∂ix and v̂ = vi∂iy
be two tangent vector fields on S2 andMt, respectively, such that they are related via
the differential (20). Then, the parametrised optical flow equation (34) is equivalent
to

∂tf̃ +∇S2 f̃ · ṽ = 0.
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Proof. According to the definitions (31) and (5), we have

dV̂
t f̂(t,y(t, ξ)) = d

dt
f̂(t,y(t, ξ))

= d

dt
f̃(t,x(ξ))

= ∂tf̃(t,x(ξ))

and it remains to show the identity

∇Mf̂ · v̂ = ∇S2 f̃ · ṽ,

where we have omitted the arguments (t,y(t, ξ)) on the left and (t,x(ξ)) on the
right hand side, respectively. It follows directly from the coordinate representation
of the directional derivatives (15) and (16).

In order to give coordinate expressions for the terms in (38) arising from the
regularisation term we locally choose an orthonormal frame {ê1(t, ξ), ê2(t, ξ)} of
the tangent space, see (13). As a consequence, the sought tangent vector field v̂
can be written as

v̂ = wiêi (39)
for some components (w1, w2)>. The reason for expressing the unknown in an
orthonormal frame, rather than the coordinate frame, is to simplify matters with
regard to the Hilbert-Schmidt norm (24) of the covariant derivative.

However, the chosen Galerkin method expands the unknown v̂ in terms of the
pushfoward of vector fields which are defined on the 2-sphere, cf. (36). We necessar-
ily need to establish the relation between the intended form (39) and the expression
in terms of the coordinate frame.

Lemma 4.2. Again, let t ∈ I be arbitrary but fixed and let ũ = ui∂ix be a tangent
vector field on S2. Then, for a tangent vector field v̂ = wiêi on Mt, we have
v̂ = Dφ̃(ũ) if and only if wi = (α−1)i`u`.

Proof. (⇐) First, note that αji (α−1)i` = δj`. Expanding v̂ gives

v̂ = wiêi = wiαji∂jy = (α−1)i`u`α
j
i∂jy = uj∂jy = Dφ̃(ũ),

where we have used (21), cf. also Fig. 5.
(⇒) Suppose v̂ = Dφ̃(ũ). Let us take the inner product with êi on both sides.

For the left hand side we have

v̂ · êi = wj êj · êi = wjδji = wi.

For the right hand side we first observe that, by inversion of the matrix α in (13),
it holds that ∂jy = (α−1)`j ê`. Then,

Dφ̃(ũ) · êi = u`∂`y · êi
= u`(α−1)j` êj · êi
= u`(α−1)j`δji
= u`(α−1)i`

and we conclude that wi = u`(α−1)i` as required.

With the above relation at hand we obtain the following form.
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Lemma 4.3. Let t ∈ I and let û = ui∂iy and v̂ = vi∂iy be two tangent vector
fields onMt. Then, we have

∇êi
û · ∇êi

v̂ =
2∑
j=1

Diu
jDiv

j ,

where
Diu

j := αki ∂k
(
(α−1)j`u

`
)

+ (α−1)k`u`Γ̂
j
ik, i, j = {1, 2},

and Div
j are defined accordingly.

Γ̂jik denote the Christoffel symbols with regard to the orthonormal frame {ê1, ê2}
and are defined as

∇êi
êk = Γ̂jikêj . (40)

We refer to [24, Lemma 3] for their derivation.

Proof. First let us show that, for û = wj êj as in (39), it holds that

∇êi
û = Diu

j êj .

By the product rule for the covariant derivative (23),

∇êi
wj êj = êj∇êi

wj + wj∇êi
êj . (41)

Consider the first term of the sum and let êi be represented in the coordinate basis
as in (13). Then,

∇êi
wj = ∇αk

i
∂kyw

j .

Linearity of the lower argument of the covariant derivative with respect to C∞(Mt)
functions, cf. (16), yields

∇αk
i
∂kyw

j = αki∇∂kyw
j

and by realising that ∇∂kyw
j is just the directional derivative (16) along ∂ky we

obtain
αki∇∂kyw

j = αki ∂kw
j .

Moreover, in the second term of the sum in (41) we use definition (40). Thus,
by summing up all terms in (41) we obtain

∇êi
wj êj =

(
αki ∂kw

j + wkΓ̂jik
)
êj .

Applying the previous lemma gives coefficients Diu
j and Div

j in the intended form.
Finally, it remains to observe that

∇êi
û · ∇êi

v̂ = Diu
j êj ·Div

j êj

=
2∑
j=1

Diu
jDiv

j ,

since by definition êi · êj = δij .

Finally, by combining Lemmas 2.1, 4.1, and 4.3 we are able to express the op-
timality conditions (38) in terms of integrals on the 2-sphere. Thus, we arrive at
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the optimality conditions∑
q∈JU

vq

∫
S2

((
∇S2 f̃ · ỹp

)(
∇S2 f̃ · ỹq

)
+ α

2∑
i,j=1

Diy
j
pDiy

j
q

)
ρ̃
√
‖∇S2 ρ̃‖2 + ρ̃2 dS2

= −
∫
S2
∂tf̃
(
∇S2 f̃ · ỹp

)
ρ̃
√
‖∇S2 ρ̃‖2 + ρ̃2 dS2, p ∈ JU ,

(42)
where ρ̃

√
‖∇S2 ρ̃‖2 + ρ̃2 arises from the Jacobian (19), see also Lemma 2.1.

The entries of the matrices A, D and of the vector b, respectively, are then given
by

apq =
∫
S2

(
∇S2 f̃ · ỹp)(∇S2 f̃ · ỹq

)
ρ̃
√
‖∇S2 ρ̃‖2 + ρ̃2 dS2, (43)

dpq =
∫
S2

2∑
i,j=1

Diy
j
pDiy

j
q ρ̃
√
‖∇S2 ρ̃‖2 + ρ̃2 dS2, (44)

and
bp = −

∫
S2
∂tf̃
(
∇S2 f̃ · ỹp

)
ρ̃
√
‖∇S2 ρ̃‖2 + ρ̃2 dS2. (45)

4.3. Surface Parametrisation. In order to actually compute the above optim-
ality conditions it remains to determine the radius ρ̃ : I × S2 → (0,∞) in the
presumed parametrisation (4). Again, we continue the discussion for one particular
but fixed time t ∈ I and drop the argument whenever convenient.

Estimating ρ̃(t, ·) : S2 → (0,∞) is closely related to surface interpolation from
scattered data. Given noisy data ρ̃δ and a parameter β > 0, it amounts to finding
the unique minimiser of the functional

Fβ(ρ̃) := ‖ρ̃− ρ̃δ‖2L2(S2) + β|ρ̃|2Hs(S2), (46)

where s > 0 is a sufficiently large real number, cf. definition (27). The first term
penalises deviation from the observed data whereas the second term enforces spatial
regularity of the solution.

In practice, however, N > 0 evaluations {ρ̃δ(xi) : xi ∈ S2}Ni=1 are given at pair-
wise distinct points on the 2-sphere. In our particular application these correspond
to taking the norm in R3 of pairwise distinct sampling points lying on the sphere-like
surfaceMt:

ρ̃δ(x̄i) = ‖xi‖, xi ∈ R3 \ {0}, i = 1, . . . , N, (47)
where x̄i = xi/‖xi‖ is the radial projection onto S2. We again point the reader to
Fig. 3.

Furthermore, before turning to the numerical solution of (46), let us briefly dis-
cuss the regularity requirements. In [7], the authors demand twice continuous dif-
ferentiability for both the manifoldMt and the map y(t, ·) to obtain well-posedness
of the optical flow problem. By definition of the parametrisation (4) we require that
ρ̃(t, ·) ∈ C2(S2). As a consequence of Theorem 2.7 in [15, Chapter 2.6] regarding
Sobolev embeddings, the space Hs(S2) for s > 3 is the appropriate choice, i.e.
Hs(S2) ⊂ C2(S2).

Numerically, we approximate the solution of the problem

min
ρ̃∈Hs(S2)

Fβ(ρ̃)
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by considering a finite-dimensional subspaceQ ⊂ Hs(S2) and point evaluations (47).
In contrast to above, the space

Q = span{Ỹp : p ∈ JQ},

where JQ ⊂ N0 again is an index set, is spanned by scalar spherical harmonics. The
sought function is expanded as

ρ̃ =
∑
p∈JQ

ρpỸp,

where the unknowns are the coefficients ρp ∈ R, for p ∈ JQ. Plugging into (46),
applying definition (27), and taking ∂F/∂ρp, for all p ∈ JQ, gives the optimality
conditions∑

q∈JQ

ρq

( N∑
i=1

Ỹp(x̄i)Ỹq(x̄i)
)

+ βλspρp =
N∑
i=1
‖xi‖Ỹp(x̄i), p ∈ JQ. (48)

Denoting by % = (ρ1, . . . , ρ|JQ|)> ∈ R|JQ| the vector of unknown coefficients, the
equations (48) can be written in matrix-vector form as

(L+ βM)% = c,

The entries of the matrix L = (lpq)pq are

lpq =
N∑
i=1

Ỹp(x̄i)Ỹq(x̄i),

the matrix M = diag(λs1, . . . , λs|JQ|) is a diagonal matrix, and

cp =
N∑
i=1
‖xi‖Ỹp(x̄i).

4.4. Numerical Approximation. Let us finally discuss the numerical solution of
the optimality conditions (42). In particular, one needs to (approximately) evaluate
the integrals (43), (44), and (45). Even though integrals on the 2-sphere can be
computed exactly and quadrature rules exist up to a certain degree, see e.g. [3, 16],
we instead prefer to use a triangulation together with an appropriate quadrature.
The reason is that numerical quadrature on the sphere would have to be of rather
high degree to reproduce small details and features of the data, contrary to the
chosen quadrature, which can easily be refined up to the desired precision. Finally
let us mention that, for a more accurate evaluation of the integrals, one can intro-
duce an intermediate (radial) map from the polyhedron to geodesic triangles. See
e.g. [16, Sec. 7.2].

We use a polyhedral approximation S2
h = (V, T ) of the 2-sphere S2. It is defined

by a set V = {v1, . . . , vn} ⊂ S2 of vertices and a set T = {T1, . . . , Tm} ⊂ V ×V ×V
of triangular faces. Each triangle is most easily parametrised using barycentric
coordinates, see e.g. [8, Chapter 5]. We associate with each triangle Ti ∈ T a tuple
(i1, i2, i3) identifying the corresponding vertices (vi1 , vi2 , vi3), which are arranged in
clockwise order. The parametrisation (3) then reads

xi(ξ) = vi1 + ξ1(vi3 − vi1) + ξ2(vi2 − vi1)

with
Ω = {ξ ∈ R2 : ξ1 ∈ [0, 1] and ξ2 ∈ [0, 1− ξ1]},
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vi

(1− ε)ρ̃h(j, vi)vi

(1 + ε)ρ̃h(j, vi)vi

S2

v`

ρ̃h(j, v`)v`

Figure 6. Illustration of a triangular face (filled gray) intersecting
the sphere S2 at the vertices (hollow circles). The six nodal points
consist of the vertices of the triangle together the edge midpoints
(filled black dots). The approximated sphere-like surface is shown
by the hatched gray area. A radial line passing through the vertex
vi is shown. The hollow circle indicates the intersection with S2

at which f̄(vi) in (49) is taken. f̄ itself, as described in Sec. 5.2, is
assigned by taking the maximum image intensity along the drawn
radial line between the two cross marks.

which is referred to as the reference triangle. The gradient matrix of Ti is then
simply

Dxi =
(
∂1xi ∂2xi

)
=
(
vi3 − vi1 vi2 − vi1

)
.

The surface normal is constant on Ti and is denoted by Ñi.
We approximate all functions on S2 by corresponding functions on the polyhed-

ron S2
h. A continuous function f̃ : S2 → R is replaced by its piecewise polynomial

interpolation f̃h : S2
h → R on S2

h. We define it as

f̃h(·) :=
Nh∑
j=1

f̄(vj)ϕ̃j(·). (49)

Here, {ϕ̃j} are Nh = 6 quadratic shape functions forming a nodal basis together
with nodal points {vj} ⊂ S2

h and f̄ is the usual radially constant extension, cf. (6)
in Sec. 2.1. In other words, f̃h is both a radial projection from the 2-sphere to the
polyhedron S2

h and to piecewise quadratic functions. Note that the shape functions
are defined on the triangular faces Ti. Whenever a function f̃ has a dependence on
time we simply compute its approximation f̃h separately for all times t ∈ I. We
point the reader to Fig. 6 for a figurative illustration.

In further consequence, the fully normalised scalar spherical harmonics, which
were introduced in (26), are substituted with their corresponding approximations
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on S2
h. For Ỹ ∈ Harmn, n ∈ N0 , we have

Ỹh(·) =
Nh∑
j=1

Ȳ (vj)ϕ̃j(·). (50)

We chose piecewise quadratic approximations for Ỹ so that we can adequately
apply ∇S2

h
and obtain piecewise linear vector fields. Accordingly, we define approx-

imations of the vector spherical harmonics, introduced in (29), as follows.

Proposition 1. Let Ỹ ∈ Harmn, n ∈ N. The piecewise linear interpolations of the
corresponding tangential vector spherical harmonics on a triangular face Ti ∈ T are

ỹ(2)
h (xi(ξ)) = λ−1/2

n

Nh∑
j=1

Ȳ (vj)∇S2
h
ϕ̃j(xi(ξ)), (51)

ỹ(3)
h (xi(ξ)) = λ

−1/2
n

2|Ti|

Nh∑
j=1

Ȳ (vj)
(
∂2ϕj(ξ)∂1xi(ξ)− ∂1ϕj(ξ)∂2xi(ξ)

)
. (52)

Their derivation is deferred to the appendix.
Without loss of generality, let f̃h(0, ·) and f̃h(1, ·) be the approximations of the

data f̃ at two subsequent frames. We define the derivative with respect to time by
the forward difference

∂tf̃h(·) := f̃h(1, ·)− f̃h(0, ·).
Moreover, we replace the surface gradient∇S2 f̃ of a function on S2 with its counter-
part ∇S2

h
f̃h on S2

h, which is computed according to (17). The function ρ̃ is obtained
by solving (48) and, for numerical computations, is further replaced with its piece-
wise quadratic interpolation ρ̃h as in (49). Coefficients αji are computed by the
Gram-Schmidt process at the nodal points. For numerical computations piecewise
quadratic approximations, as defined in (49), are used.

Finally, for the calculation of the integrals we employ the standard quadrature
on triangulated spheres, see e.g. [3, 16]. Let ξc = (1/3, 1/3)> be the centroid of the
reference triangle Ω. Then, we approximate the spherical integral over a function
f̃ : S2 → R on the 2-sphere by∫

S2
f̃ dS2 ≈

∫
S2

h

f̃h dS2
h ≈

m∑
i=1
|Ti|f̃h(xi(ξc)).

5. Experiments.

5.1. Microscopy Data. The present data consist of volumetric time-lapse (4-
dimensional) images of a live zebrafish embryo during the gastrula period. These
videos were recorded approximately five to ten hours after fertilisation by means of
confocal laser-scanning microscopy and feature endodermal cells expressing a green
fluorescence protein. As a consequence, these labelled cells are recorded without
background and allow for a separate treatment. We refer the reader to [21] for many
illustrations and a detailed discussion of the zebrafish’s developmental process. Re-
garding the imaging techniques used during data acquisition we refer to [28] and
for the treatment of the specimen we point the reader to [31].

The crucial feature of endodermal cells is the fact that they form a so-called
monolayer during early morphogenesis, see [39]. Essentially, it means that the
labelled cells do not sit on top of each other but float side by side forming an
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artificial sphere-shaped layer. It can be regarded as a surface and allows for the
straightforward extraction of an image sequence. Clearly, this surface is subject to
geometric approximations. For instance, in [23, 34] it is assumed an ideal sphere,
whereas in [7] and [24] only a fraction of the data is considered and modelled as a
moving manifold and a height field, respectively, both possessing a boundary.

The recorded data features a cuboid region of approximately 860×860×320µm3

of the animal hemisphere. The spatial resolution is 512 × 512 × 44 voxels and the
recorded image intensities are in the range {0, . . . , 255}. Our sequence contains 151
images with a temporal interval of 120 s. For the further discussion, we denote the
data by

fδ ∈ {0, . . . , 255}151×512×512×44.

5.2. Preprocessing and Surface Data Acquisition. Let us briefly discuss the
preprocessing steps required to obtain an image sequence together with the evolving
surface. We limit our consideration to two consecutive frames and denote the re-
spective volumetric data by fδ0 and fδ1 .

For each frame, the approximate surface is found by minimising the functional
(46) with approximate cell centres acting as sample points. They appear as local
maxima in image intensity and are readily located by Gaussian filtering followed by
plain thresholding. However, beforehand the points are centred around the origin
by fitting a sphere to the cell centres of the first frame and subsequently subtracting
the spherical centre.

The triangle mesh S2
h is obtained by iterative refinement of an icosahedron that

is inscribed in the 2-sphere, see e.g. [8, Chapter 1.3.3]. Every refinement step halves
the edge lengths by connecting the edge midpoints and projecting them to the unit
sphere. Consequentially, every triangular face is split into four smaller triangles and
the total number of faces after k ∈ N0 subdivisions is 20 · 4k. In our case, k = 7
refinements are required to resolve the data adequately.

It remains to discuss the acquisition of the approximations f̃h(0, ·) and f̃h(1, ·)
on the polyhedron. For a frame j ∈ {0, 1}, we define the value at a nodal point
vi ∈ S2

h in (49) via the projection

f̄(j, vi) := max
c∈[1−ε,1+ε]

f̊δj (cρ̃h(j, vi)vi),

where ε > 0 is chosen sufficiently large. f̊δj denotes the piecewise linear extension
of fδj to R3, which is necessary for gridded data. The above projection within the
narrow band

[(1− ε)ρ̃h(j, vi)vi, (1 + ε)ρ̃h(j, vi)vi]
corrects for small deviations of the cells from the fitted surface. Again, we refer
to Fig. 6 for illustration. Finally, all intensities are scaled to the interval [0, 1].
Figure 2 shows two frames of the extracted image sequence defined on the sphere-
like evolving surface. Figure 7 depicts the same matter but in a top view. For better
illustration we have added an artificial mesh. Its radius has been widened by one
percent.

5.3. Visualisation of Results. We employ the standard flow colour-coding [6]
for the visualisation of the computed vector fields. Its purpose is to create a colour
image by assigning every vector a colour from a pre-defined colour disk. The colour
associated is determined by a vector’s angle and its length.
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Figure 7. Frames no. 140 (left) and 141 (right) of the processed
image sequence in a top view. The embryo’s body axis is oriented
from bottom left to top right.

However, it was originally defined for planar vector fields and requires adaptation
to our particular purpose of tangent vector field visualisation. To this end, we
follow the idea developed in [23] by first projecting each vector to the plane and
then rescaling its length. Let us denote by Px3 : (x1, x2, x3)> 7→ (x1, x2, 0)> the
orthogonal projector of R3 onto the x1-x2-plane. For a tangent vector field v̂ we
apply the colour-coding to the planar vector field

‖v̂‖
‖Px3 v̂‖Px3 v̂.

It is constructed so that the length of individual vectors is preserved. Subsequently,
the obtained colour image is mapped back onto the surface. Clearly, in the above
construction, one has to distinguish the cases where x3 ≥ 0 and x3 < 0. Moreover,
Px3 is required to be injective in either case.

The radius R of the colour disk is chosen to be equal to the longest vector in the
respective vector field we attempt to visualise. Table 2 lists all values of R for the
different figures in this section. In Fig. 9 we show a colour-coded tangent vector
field together with the colour disk.

For simplicity reasons, for image functions as well as surfaces we plot their piece-
wise linear approximations. Moreover, the visualised vector fields are evaluated at
the centroids and result in piecewise constant colour-coded images.

5.4. Results. We performed several experiments on said zebrafish microscopy data.
In order to obtain an approximation of the evolving surface, we minimised func-
tional (46) by solving the optimality conditions (48). As mentioned in Sec. 5.2,
approximate cell centres serve as input. The parameter of the Sobolev space Hs(S)
was chosen as s = 3 + ε, where ε = 2.2204 · 10−16 is the machine precision, cf. also
the discussion regarding theoretical requirements in Sec. 4.3. The regularisation
parameter was set to β = 10−4 and the finite-dimensional subspace was chosen as

Q = span
{
Ỹn,j : n = 0, . . . , 30, j = 1, . . . , 2n+ 1

}
.
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Figures 9(a) 9(b) 9(c) 9(d)
10(a) 10(b) 10(c) 10(d) 11(a) 11(c) 11(d) 12(a) 12(b) 12(c) 12(d)

R 8.92 4.62 2.90 2.19 12.07 2.90 12.02 9.23 4.87 2.92 2.10
Table 2. Radii R of the colour disks used for colour-coded visu-
alisation of tangent vector fields.

In the second step, we computed a minimiser of functional (35) as outlined in
Sec. 4.4. Here, the finite-dimensional subspace was chosen as

U = span
{

ŷ(i)
n,j : n = 1, . . . , 50, j = 1, . . . , 2n+ 1, i = 2, 3

}
.

The linear systems resulting from optimality conditions (42) and (48) were solved
by means of the General Minimal Residual Method (GMRES) using an Intel Xeon
E5-1620 3.6 GHz workstation equipped with 128 GB RAM. Solutions to (42) and
(48) converged within 1000 and 100 iterations, respectively, to a relative residual
of 10−2. The overall runtime was dominated by the evaluation of the integrals
(43), (44), and (45). In our Matlab implementation it amounts to several hours.
However, the resulting linear system can typically be solved within seconds. Both
implementation and data are available on our website.1

Figures 8 portrays a minimising function of Fβ for frames 140 and 141 of the
image sequence. The resulting surface is depicted in Fig. 2 and in Fig. 7. Clearly,
it reflects the geometry appropriately and contains the desired cell features, cf. also
the unprocessed microscopy data in Fig. 1.

In a second step we solved for minimisers of Eα for different values of the regular-
isation parameter α. The tangent vector field is visualised as discussed in Sec. 5.3.
Note that in all figures the colour disk has been scaled for better illustration. In
Fig. 9, we illustrate tangent vector fields by means of the colour-coding obtained
for α = 10−2, α = 10−1, α = 1, and α = 10. In Fig. 10 the same results are shown
but in a top view.

As the central theme of this article is cell motion estimation of fluorescently
labelled cells, we also computed their total motion. Recall from (33) in Sec. 3.1
that it is given by M̂ = V̂ + v̂, where V̂ denotes the surface velocity and v̂ the
optical flow, respectively. By our choice of the parametrisation (4) of the evolving
surface its velocity is given by

V̂ = ∂ty = ∂tρ̃x.
Figure 11 depicts the surface velocity V̂ in the usual colour-coding and the signed
norm, i.e. sign(∂tρ̃)‖V̂‖, indicating radial expansions and contractions. Moreover,
we visualise the optical flow for one particular value of α and the total motion M̂.

For comparison, we chose to compute the optical flow on the static round sphere.
As this geometry is just a special case of the proposed framework it amounts to
finding ρ̃ constant in time and space by choosing

Q = span
{
Ỹn,j : n = 0, j = 1

}
.

Note that for static surfaces the surface velocity V̂ vanishes, that is, M̂ = v̂.
Moreover, we highlight that for computing the optical flow on the static sphere a
more efficient approach was proposed in [23]. However, since in this article a norm

1http://www.csc.univie.ac.at

http://www.csc.univie.ac.at
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Figure 8. Function ρ̃h obtained by minimising Fβ for frames 140
(left column) and 141 (right column). Colour corresponds to the
radius (µm) of the fitted surface. The top row depicts S2

h in a top
view.

equivalent to the Hilbert-Schmidt norm (24) is used, we prefer to compare with the
same definition and the same regularisation parameters. Figure 12 visualises the
optical flow computed for the static spherical geometry with the same regularisation
parameters as in Fig. 10.

6. Conclusion. With the goal of efficient cell motion analysis we considered optical
flow on evolving surfaces. As a prototypical example we restricted ourselves to
surfaces parametrised from the round sphere and showed that 4D microscopy data
of a living zebrafish embryo can be faithfully represented in this way. In contrast
to previous works, where only a section of the embryo or a spherical approximation
was considered, our approach fully attributes the geometry and models the embryo
as a closed surface of genus zero. The resulting energy functional was solved by
means of a Galerkin method based on vector spherical harmonics. Moreover, the
parametrisation of the moving sphere-like surface was obtained from the data by
solving a surface interpolation problem. Scalar spherical harmonics expansion allows
to easily meet the smoothness requirements of the surface. Finally, we conducted
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Figure 9. Tangent vector field minimising Eα. Depicted is the
colour-coded optical flow field computed between frames 140 and
141 for different values of α. The bottom row differs from the top
view by a rotation of 180 degrees around the x3-axis. From left to
right: a) α = 10−2, b) α = 10−1, c) α = 1, and d) α = 10.

several experiments based on said microscopy data. Our results show that cell
motion can be indicated reasonably well by the proposed approach.
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Appendix. It remains to give the calculations regarding the piecewise linear ap-
proximations of vector spherical harmonics on S2

h. Both equations in Prop. 1 follow
directly by expanding the definitions of the tangential vector spherical harmon-
ics (29). For the fist identity, that is (51), we have

ỹ(2)
h = λ−1/2

n ∇S2
h
Ỹh = λ−1/2

n

Nh∑
j=1

Ȳ (vj)∇S2
h
ϕ̃j .

The second identity, that is (52), follows from the fact that

2|Ti| = |∂1xi × ∂2xi|, Ñi = ∂1xi × ∂2xi
|∂1xi × ∂2xi|

,
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Figure 10. Top view of the optical flow field computed for differ-
ent values of α. From left to right, top to bottom: a) α = 10−2, b)
α = 10−1, c) α = 1, and d) α = 10.

by application of the vector triple product rule, yielding

ỹ(3)
h = λ−1/2

n ∇S2
h
Ỹh × Ñi

= λ−1/2
n ∇S2

h
Ỹh ×

∂1xi × ∂2xi
|∂1xi × ∂2xi|

= λ
−1/2
n

2|Ti|
(
(∇S2

h
Ỹh · ∂2xi)∂1xi − (∇S2

h
Ỹh · ∂1xi)∂2xi

)
,

from the definition of the interpolation (50) of Ỹh, and the directional derivative (9)
on the triangular face, that is

∇S2
h
Ỹh · ∂kxi =

Nh∑
j=1

Ȳ (vj)∂kϕj .
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Figure 11. From left to right, top to bottom: a) colour-coded
surface velocity V̂, b) signed norm sign(∂tρ̃)‖V̂‖, c) optical flow v̂
for α = 1, and d) total motion M̂ = V̂+v̂. Values are computed for
the interval between frames 140 and 141. All surfaces are depicted
in a top view.
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