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Abstract. In this paper we present a decomposition algorithm for compu-
tation of the spatial-temporal optical flow of a dynamic image sequence. We

consider several applications, such as the extraction of temporal motion fea-

tures and motion detection in dynamic sequences under varying illumination
conditions, such as they appear for instance in psychological flickering ex-

periments. For the numerical implementation we are solving an integro-
differential equation by a fixed point iteration. For comparison purposes

we use a standard time dependent optical flow algorithm, which in contrast to

our method, constitutes in solving a spatial-temporal differential equation.

1. Introduction. Analyzing the motion in a dynamic sequence is of interest in
many fields of applications, like human computer interaction, medical imaging, psy-
chology, to mention but a few. In this paper we study the extraction of motion in
dynamic sequences by means of the optical flow, which is the apparent motion of
objects, surfaces, and edges in a dynamic visual scene caused by the relative motion
between an observer and the scene. There have been proposed several computational
approaches for optical flow computations in the literature. In this paper we empha-
size on variational methods. In this research area the first method is due to Horn
& Schunck [15]. Like many alternatives and generalizations, the Horn & Schunck
method calculates the flow from two consecutive frames. Here, we are calculating
the optical flow from all available frames simultaneously. Spatial-temporal optical
flow methods were previously studied by Weickert & Schnörr [28, 29], [11], [26] and
[2], to name but a few. However, in contrast to these paper we emphasize on a
decomposition of the optical flow into components, instead of calculating the flow
itself.
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Variational modeling of patterns in stationary images has been initialized with
the seminal book of Y. Meyer [20]. In the context of total variation regularization,
reconstructions of patterns was studied first in [24]. Here, we are implementing simi-
lar ideas as have been used before for variational image denoising [3, 4, 5, 6, 7, 13, 25]
and optical flow decomposition [1, 18, 30, 31, 32]. However, a conceptual difference
is that we aim for extracting temporal features, while, in all the cited papers the
decomposition was for finding spatial components of the flow. We emphasize that
the proposed method is one of very few variational optical flow algorithms in a
space-time regime and within this class, this algorithm is the only spatial-temporal
decomposition algorithm.

The outline of this paper is as follows: In Section 2 we review the optical flow
equation. In Section 3 we present analytical examples of the optical flow equation in
case of illumination changes. In Section 4 we introduce the new model for spatial-
temporal optical flow decomposition. We formulate it as a minimization problem
and derive the optimality conditions for a minimizer. In Section 5 we derive a fixed
point algorithm for numerical minimization of the energy functional. Finally in
Section 6 and Section 7 we present experiments, results and a discussion of them.

2. Registration and optical flow. The problem of aligning dynamic sequences
f(·, t), t ∈ (0, 1) can be formulated as the operator equation for finding a flow Ψ of
diffeomorphisms,

Ψ(·, t) : Ω→ Ω, ∀ t ∈ (0, 1),

such that

f(Ψ(~x, t), t) = f(~x, 0), ∀ ~x ∈ Ω and t ∈ (0, 1). (1)

For the sake of simplicity of presentation we consider the time interval as the unit
interval all along the paper.

Differentiation of (1) with respect to t for a fixed ~x gives

∇f(Ψ(~x, t), t) · ∂tΨ(~x, t) + ∂tf(Ψ(~x, t), t) = 0, ∀ ~x ∈ Ω and t ∈ (0, 1). (2)

Switching from a Lagrangian to an Eulerian description we obtain the optical flow
equation (OFE) on Ω:

∇f(~x, t) · ~u(~x, t) + ∂tf(~x, t) = 0, ∀ ~x ∈ Ω and t ∈ (0, 1). (3)

Although the derivation is based on a constant brightness assumption along char-
acteristics, mathematically, (3) even makes sense under varying illumination condi-
tions. However, as we show in simple examples below, standard regularity assump-
tions on the optical flow are violated when the characteristics degenerate (collapse
or originate) or when the illumination changes. Instead of solving (3) usually the
relaxed problem is considered, which consists in minimizing the functional

argmin S(~u) :=

∫
Ω

(∇f(~x, t) · ~u(~x, t) + ∂tf(~x, t))2 d~x , ∀t ∈ (0, 1), (4)

subject to appropriate constraints.

3. The optical flow equation in case of illumination changes. In this section
we are providing simple motivating examples explaining properties of the solution
of the optical flow equation (3) under changing illumination conditions. Here we
are restricting attention to a spatial domain ∅ 6= Ω = (0, 1) ⊂ R.

The following two examples simulate a day to night illumination situation. The
optical flow is calculated analytically, and the level lines of f are visualized, which
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represent the trajectories Ψ of constant brightness. As we show, smoothness of the
optical flow is affected by changing illumination and in the first example also by
joining of characteristic curves.

Example 1. In this example the flow is not even an element of the Bochner-
space L2((0, 1);H−1(Ω)), meaning that the anti-derivative of u with respect to
time is not in L2((0, 1);L2(Ω)). Because L2((0, 1);H−1(Ω)) is a strict superset of
L2((0, 1);L2(Ω)), the elements have in general less regularity (smoothness). The
next Example 2 provides a flow where f models again changing illumination. Here
the flow is in L2((0, 1);H−1(Ω)) but not in L2((0, 1);L2(Ω)). We conjecture from
the difference of the two examples that the difference in smoothness is caused by the
fact that in the first example two characteristics are joining during the evolution.

We consider the 1D optical flow equation, to solve for u in

∂xf(x, t)u(x, t) + ∂tf(x, t) = 0, ∀(x, t) ∈ (0, 1)× (0, 1) (5)

for the specific data

f(x, t) = f̃(x)g(t), ∀(x, t) ∈ (0, 1)× (0, 1). (6)

f represents a static scene f̃ , which is affected by brightness variations over time,
described by g. We are more specific and take:

f̃(x) = x(1− x) and g(t) = 1− t, ∀(x, t) ∈ (0, 1)× (0, 1). (7)

The function f and the level lines are plotted in Figure 1 and the optical flow can
be calculated explicitly:

u(x, t) =
x(1− x)

1− 2x

1

1− t
, ∀(x, t) ∈ (0, 1)× (0, 1),

indicates a transport of intensities from outside to the center 1/2. We observe that
u(1/2, t) and u(x, 1) are singularities of the optical flow. From the definition of u it

Figure 1. f(x, t) = x(1− x)(1− t) from (7). Level lines of f are
parametrized by (Ψ(x, t), t).

follows that

û(x, t) :=

∫ t

0

u(x, τ) dτ = −x(1− x)

1− 2x
log(1− t), ∀(x, t) ∈ (0, 1)× (0, 1)

and thus

‖û‖2L2((0,1)2) =

∫ 1

0

x2(1− x)2

(1− 2x)2
dx

∫ 1

0

log2(1− t) dt = 2

∫ 1

0

x2(1− x)2

(1− 2x)2
dx =∞,

or in other words û /∈ L2((0, 1)2).
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Example 2. This example is similar to Example 1, and simulates again a day
to night illumination, with the difference that characteristics of f never join. We
consider input data f of the form (6) with

f̃(x) = x(1− x) and g(t) = exp

{
− 1

β
(1− t)β

}
with some 0 < β < 1 (8)

for (x, t) ∈ Ω̂ := (0, 1/4)× (0, 1). The optical flow is given by

u(x, t) = −x(1− x)

1− 2x
(1− t)β−1.

Integrating this function over time gives

û(x, t) :=

∫ t

0

u(x, τ) dτ =
x(1− x)

1− 2x

1

β
((1− t)β − 1),

and consequently with

Figure 2. g(t) = exp
{
− 1
β (1− t)β

}

C :=

∫ 1/4

0

x2(1− x)2

(1− 2x)2
dx <∞ ,

we get

‖u‖2L2(Ω̂) = C

∫ 1

0

t2β−2 dt =

{
C 1

2β−1 if β > 1
2 ,

∞ else .

‖û‖2L2(Ω̂) =
C

β2

∫ 1

0

t2β − 2tβ + 1 dt =
C

β2

(
1

2β + 1
− 2

β + 1
+ 1

)
if β > 0 .

This shows that u /∈ L2(Ω̂) for every β ∈ (0, 1
2 ], but û ∈ L2(Ω̂) for all β ∈ (0, 1).

The bottom line of these examples is that illumination changes, such as flickering,
may result in singularities of the optical flow and a violation of standard smoothness
assumptions of the optical flow (such as ~u ∈ L2((0, 1);Hs(Ω)) for some s > 0). The
potential appearance of the singularities motivates us to consider regularization
terms for optical flow computations, which allow for singularities over time, such as
negative Sobolev-norms.



ON A SPATIAL-TEMPORAL DECOMPOSITION OF OPTICAL FLOW 5

4. Optical flow decomposition: basic setup and formalism. In this paper we
derive an optical flow model which allows for decomposing the flow field into spatial
and temporal components. We consider each frame of the movie {f(·, t) : t ∈ (0, 1)}
defined on the two-dimensional spatial domain Ω = (0, 1)2.

We assume that the optical flow field is a compound of two flow field components

~u(~x, t) =~u(1)(~x, t) + ~u(2)(~x, t) =

(
u

(1)
1 (~x, t)

u
(1)
2 (~x, t)

)
+

(
u

(2)
1 (~x, t)

u
(2)
2 (~x, t)

)
,

∀~x ∈ Ω and t ∈ (0, 1).

Because there appears a series of indices and variables we specify the notation in
Table 1.

~x = (x1, x2) vector in two-dimensional Euclidean space

∂k = ∂
∂xk

differentiation with respect to spatial variable xk

∂t = ∂
∂t differentiation with respect to time

∇ = (∂1, ∂2)T gradient in space

∇3 = (∂1, ∂2, ∂t)
T gradient in space and time

∇· = ∂1 + ∂2 divergence in space

∇3· = ∂1 + ∂2 + ∂t divergence in space and time

~n outward pointing normal vector to Ω

f input sequence

f(·, t) movie frame

~u(i) optical flow module, i = 1, 2

~u = ~u(1) + ~u(2) optical flow

u
(i)
j j-th optical flow component of the i-th module

û(·, t) =
∫ t

0
u(·, τ) dτ primitive of u

̂̂u(·, t) = −
∫ 1

t
û(·, τ) dτ 2nd primitive of u - note that ∂t̂̂u(·, t) = û(·, t)

Table 1. Continuous notation.

The OFE-equation (3) contains four unknown (real valued) functions u
(i)
j , i, j = 1, 2,

and thus is highly under-determined. To overcome the under-determinacy, the
problem is formulated as a constrained optimization problem, to determine, for
some fixed α > 0,

argmin
(
R(1)(~u(1)) + αR(2)(~u(2))

)
(9)
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subject to (3).

Instead of solving the constrained optimization problem, we use a soft variant and
minimize the unconstrained regularization functional:

F(~u(1), ~u(2)) := E(~u(1), ~u(2)) +

2∑
i=1

α(i)R(i)(~u(i)),

E(~u(1), ~u(2)) :=

∫
Ω×(0,1)

(∇f · (~u(1) + ~u(2)) + ∂tf)2 d~xdt with α =
α(2)

α(1)
.

(10)

For the sake of simplicity of presentation, we omit arguments of the functions u
(i)
j

and f , whenever it simplifies the formulas without causing misinterpretations.

In the following we design the regularizers R(i):

• For R(1) we use a common spatial-temporal regularization functional for op-
tical flow regularization (see for instance [29]):

R(1)(~u(1)) :=

∫
Ω×(0,1)

ν

(∣∣∣∇3u
(1)
1

∣∣∣2 +
∣∣∣∇3u

(1)
2

∣∣∣2)d~xdt, (11)

where ν : [0,∞)→ [0,∞) is a monotonically increasing, differentiable function
satisfying that r → ν(r2) is convex. According to [29] we use

ν(r) = εr + (1− ε)λ2

(√
1 +

r

λ2
− 1

)
, ∀r ∈ [0,∞) , (12)

with some fixed 0 < ε � 1 and λ > 0. Note, that in [29] the term −1 is not
used. However, since it is a constant, it does not influence the optimization.
Using this term guarantees that ν(0) = 0. Moreover, we denote by ν′ the
derivative of ν with respect to r.

• R(2) is designed to penalize for variations of the second component in time.
Motivated by Y. Meyer’s book [20], we introduce a regularization term, which
is non-local in time. We have seen in Examples 1 and 2 that u may vio-
late L2-smoothness in case of changing illumination conditions. Variations
of Meyer’s G-norm where used in energy functionals for calculating spatial
decompositions of the optical flow [1, 17]. It is a challenge to compute the
G-norm efficiently, and therefore workarounds have been proposed. For in-
stance [24] proposed as an alternative to the G-norm the following realization
for the H−1–norm: For a generalized function u : (0, 1) → R, they defined

‖u‖2H−1 := −
∫ 1

0
u(t)∂−1

tt u(t)dt. Here, we use the following temporal H−1-
norm for regularization:

R(2)(~u(2)) :=

∫
Ω×(0,1)

∣∣∣∣∫ t

0

~u(2)(~x, τ)dτ

∣∣∣∣2d~xdt =

2∑
j=1

∫
Ω×(0,1)

(
û

(2)
j

)2

d~xdt. (13)

To see the analogy with the ‖·‖H−1 -norm from [24] we note that the second

primitive of the optical flow component ~u(2), as defined in Table (1), satisfies

̂̂u(2)

j (~x, 1) = 0, ∂t̂̂u(2)

j (~x, 0) = û
(2)
j (~x, 0) = 0, ∀j = 1, 2 and ~x ∈ Ω. (14)
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Then, by integration by parts it follows that

−
∫ 1

0

̂̂u(2)

j (t)︸ ︷︷ ︸
=∂−1

tt u
(2)
j

u
(2)
j (t) dt =

∫ 1

0

(
û

(2)
j (t)

)2

dt

and therefore

R(2)(~u(2)) =

2∑
j=1

∫
Ω

∥∥∥u(2)
j (~x, ·)

∥∥∥2

H−1
d~x. (15)

Existence of a minimizer of F , defined in (9), in an infinite dimensional functional
analytical setting is a complicated issue. However, for some surrogate model, we
can guarantee well–posedness by using the following lemma from [1]:

Lemma 1 ([1]). Let f ∈ C1(Ω × [0, 1]). We consider t ∈ [0, 1] fixed, and for
f := f(·, t) we define A0 := ∇f(∇f)T . Then 〈~w1, ~w2〉A0

=
∫

Ω
~wT1 A0 ~w2 is an inner

product and |~w|2A0
:= 〈~w, ~w〉A0

=
∫

Ω
~wTA0 ~w is a seminorm on L2(Ω;R2).

Let

~ρ :=
1

|∇f |
(−ftfx,−ftfy)T . (16)

The term is well-defined if |∇f | 6= 0 and if |∇f | = 0, then we might choose an

arbitrary vector in the unit ball. Then A
1/2
0 = 1

|∇f |A0 (note, for |∇f | = 0 this term

is zero), where the root of a matrix is defined via spectral decomposition. Moreover,∥∥∥A1/2
0 ~w − ~ρ

∥∥∥2

L2(Ω;R2)
= ‖∇f · ~w + ft‖2L2(Ω) , ∀~w ∈ L2(Ω;R2). (17)

Let
A := ((A0)TA0 + εId)

1
2 , (18)

where, Id ∈ R2×2 denotes the identity matrix and ε > 0 is a small regularization
parameter. A is uniformly positive definite on Ω. We note that in comparison
with [1], we are not using a smoothed version of A, because we already made the
assumption that A ∈ C0(Ω × [0, 1];R2×2) (because f ∈ C1(Ω × [0, 1])). Using the
notation

~φ = A−
1
2 ~ρ , (19)

we assume

‖∇f · ~w + ft‖L2(Ω) ≈
∥∥∥~w − ~φ∥∥∥

A
. (20)

After choosing a fixed ε > 0 we consider minimization of the surrogate model,
consisting in minimizing the functional

Fs(~u(1), ~u(2)) := Es(~u(1), ~u(2)) +

2∑
i=1

α(i)R(i)(~u(i)),

Es(~u(1), ~u(2)) :=

∫
Ω×(0,1)

∥∥∥(~u(1) + ~u(2))− ~φ
∥∥∥2

A
d~xdt

(21)

over the Bochner-Space

X :=
{
~u(1) ∈W 1,2(Ω× (0, 1);R2) : ~u(1)(·, T ) = 0

}
× L2(Ω× (0, 1);R2).

We are proving that the surrogate model attains a minimizer on X. Note that
W 1,2(Ω × (0, 1);R2) is the space of vector valued, weakly differentiable functions
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with respect to space and time, and also recall that L2((0, 1);L2(Ω;R2)) = L2((0, 1)×
Ω;R2).

Theorem 1. Fs attains a minimizer on X.

Proof. The proof is done by several estimates:

• Because (~0,~0) ∈ X it follows that C := Fs(~0,~0) =
∫ 1

0

∥∥∥~φ∥∥∥2

A
dt <∞.

• Now, let (~u
(1)
n , ~u

(2)
n ) be a minimizing sequence of Fs, then

∫ 1

0

∥∥∥(~u(1)
n + ~u(2)

n )− ~φ
∥∥∥2

A
dt ≤ C,∫ 1

0

∥∥∥∇3~u
(1)
n

∥∥∥2

L2(Ω;R3×2)
dt ≤ 1

ε
R(1)(~u(1)

n ) ≤ C

εα(1)
,∥∥∥∥~̂u(2)

n

∥∥∥∥
L2(Ω×(0,1);R2)

≤ C

α(2)
.

• For the surrogate model ‖·‖A is a norm, which is equivalent to the L2(Ω;R2)-

norm, and thus (~u
(1)
n + ~u

(2)
n ) is uniformly bounded in L2((0, 1);L2(Ω)), and

therefore admits a weakly convergent subsequence with limit ~φ ∈ L2((0, 1);L2(Ω)).
This subsequence, in turn has a subsequence (which is also denoted by ·n, for

the sake of simplicity of notation) such that also (∂t~u
(1)
n ) and (~̂u

(2)

n ) are weakly

convergent in L2(Ω× (0, 1);R2), to some ~µ and ~ψ, respectively.

• Let ~ζ ∈ L2(Ω × (0, 1);R2) be arbitrary, then (~x, t) →
∫ 1

t
~ζ(~x, τ)dτ ∈ L2(Ω ×

(0, 1);R2). Using the weak convergence of the subsequence it follows that

∫
Ω×(0,1)

~̂φ · ~ζ d~xdt =

∫
Ω×(0,1)

~φ(~x, t) ·
∫ 1

t

~ζ(~x, τ)dτd~xdt

= lim
n→∞

∫
Ω×(0,1)

(~u(1)
n + ~u(2)

n )(~x, t) ·
∫ 1

t

~ζ(~x, τ)dτd~xdt

= lim
n→∞

∫
Ω×(0,1)

∫ t

0

(~u(1)
n + ~u(2)

n )(~x, τ)dτ · ~ζ(~x, t)dtd~x

= lim
n→∞

∫
Ω×(0,1)

~̂u
(1)

n · ~ζ dtd~x+

∫
Ω×(0,1)

~ψ · ~ζ dtd~x .

(22)

This means that (~̂u
(1)
n ) converges weakly to ~̂φ−~ψ, and in particular

∥∥∥∥~̂u(1)
n

∥∥∥∥
L2(Ω×(0,1))

is uniformly bounded, let us say by D. The last item shows that that (~u
(1)
n )

converges to ~φ− ∂t ~ψ in a distributional sense.
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• From integration by parts it follows that if ~u
(1)
n (·, T ) ≡ 0 that∫

Ω×(0,1)

∣∣∣~u(1)
n

∣∣∣2 d~xdt

=−
∫

Ω×(0,1)

∂t~u
(1)
n (~x, t) ·

(∫ t

0

~u(1)
n (~x, τ) dτ

)
dtd~x

≤

√√√√∫
Ω×(0,1)

∣∣∣∂t~u(1)
n (~x, t)

∣∣∣2 dtd~x

∫
Ω×(0,1)

∣∣∣∣∫ t

0

~u
(1)
n (~x, τ) dτ

∣∣∣∣2 dtd~x ≤ D
√

C

εα(1)
.

(23)

As a consequence we have ~φ− ∂t ~ψ ∈ L2(Ω× (0, 1);R2).
• The final results follows from the lower semicontinuity of the functionals ~u→∫ 1

0

∥∥∥~u− ~φ∥∥∥2

A
dt and R(i)(~u(i)) for i = 1, 2.

We emphasize that the critical issue in the above proof is the coercivity, which
could be enforced by various other modifications of the functional F as well. An
alternative possibility is to add a small regularization term for the L2-norm of ~u(1)

to the functional F . Since the use of surrogate models has only marginal impact
on the numerical reconstructions we ignore their use in the following.

4.1. Energy functional and minimization. We are determining the optimality
conditions for minimizers of F introduced in (10). Necessary conditions for a mini-
mizer are that the directional derivatives vanish for all 2-dimensional vector-valued
functions ~h(j) : Ω× (0, 1)→ R2, j = 1, 2. To formulate these conditions we use the
simplifying notation:

(E ,F) := (E ,F)(~u(1), ~u(2)), R(i) := R(i)(~u(i)) and res = ∇f · (~u(1) + ~u(2)) + ∂tf .

Therefore the directional derivative of F in direction ~h(j) at ~u = (~u(1), ~u(2)) is given
by:

(∂~h(j)F)~u = lim
s→0

F(~u(1) + sδ1j~h
(1), ~u(2) + sδ2j~h

(2))−F
s

= 0

where δij = 1 for i = j and zero else is the Kronecker symbol. The gradient of the
functional F from (10) can be determined by calculating the directional derivatives
of E and R(i), separately.

• The directional derivative of E in direction ~h(j) is given by

(∂~h(j)E)~u = 2

∫
Ω×(0,1)

res(∇f · ~h(j)) d~xdt. (24)

• The directional derivative of R(1) at ~u(1) in direction ~h(1) is determined as
follows: Let us abbreviate for simplicity of presentation

ν := ν

(∣∣∣∇3u
(1)
1

∣∣∣2 +
∣∣∣∇3u

(1)
2

∣∣∣2) , ν′ := ν′
(∣∣∣∇3u

(1)
1

∣∣∣2 +
∣∣∣∇3u

(1)
2

∣∣∣2) ,
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then the directional derivative of R(1) in direction ~h(1) (which we assume to
have compact support in Ω× (0, 1)) at ~u(1) is given by

(∂~h(1)R(1))~u(1) = lim
s→0

R(1)(~u(1) + s~h(1))−R(1)

s

=− 2

∫
Ω×(0,1)

∇3 ·
(
ν′∇3u

(1)
1

)
h

(1)
1 +∇3 ·

(
ν′∇3u

(1)
2

)
h

(1)
2 d~xdt,

(25)

where integration by parts is used to prove the final identity.
• The directional derivative of R(2) is derived as follows:

(∂~h(2)R(2))~u(2) = lim
s→0

R(2)(~u(2) + s~h(2))−R(2)

s
= 2

2∑
j=1

∫
Ω×(0,1)

û
(2)
j ĥ

(2)
j d~xdt.

(26)

Moreover, it follows by integration by parts of the last line of (26) with respect to
t that

(∂~h(2)R(2))~u(2) = −2

2∑
j=1

∫
Ω×(0,1)

̂̂u(2)

j h
(2)
j d~xdt. (27)

Now, because of (25) and (24) it follows that the minimizer ~u(i), i = 1, 2 has to
satisfy for every j = 1, 2,

∂jf(∇f · (~u(1) + ~u(2)) + ∂tf)− α(1)∇3 ·
(
ν′∇3u

(1)
j

)
= 0 in Ω× (0, 1),

∂~nu
(1)
j = 0 in ∂Ω× (0, 1),

∂tu
(1)
j = 0 in Ω× {0, 1} .

(28)

Since equations (24) and (27) hold for all ~h
(2)
j , it follows that for every j = 1, 2,

∂jf(∇f · (~u(1) + ~u(2)) + ∂tf)− α(2)̂̂u(2)

j = 0 in Ω× (0, 1). (29)

Thus the optimality conditions for a minimizer are (28) and (29). The solution
of Equation (28) has to be understood in a weak sense. The optimality condition
is formal and would be exact if F would be coercive. As we demonstrated above
there are several possibilities of surrogate models, which provide coercivity. The
surrogate model outlined above leading to this optimality condition would require
a Dirichlet boundary condition for ~u(1) at Ω×{1}. If we would indeed complement
F by α3

∥∥~u(1)
∥∥
L2(Ω×(0,1))

, with small α3, then the boundary conditions would in

fact be the natural ones.

5. Numerics. In this section we discuss the numerical minimization of the energy
functional F defined in (10). Our approach is based on solving the optimality
conditions for the minimizer ~u(1), ~u(2) from (28), (29) with a fixed point iteration.

We call the iterates of the fixed point iteration u
(i)
j (~x, t; k), where k = 1, 2, . . . ,K

denotes the iteration number and K is the maximal number of iterations. We
summarize all the iterates of the components of flow functions u

(i)
j in a tensor of

size M ×N × T ×K. In this section we use the notation as reported in Table 2.
For every tensor H = (H(r, s, t)) ∈ RM×N×T (representing all frames of a com-

plete movie) we define the discrete gradient
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f = f(r, s, t) ∈ RM×N×T input sequence

~u(i) = ~u(i)(r, s, t; k) ∈ RM×N×T×K×2 discrete optical flow approximating the

continuous flow ~u(i) at ( r
M−1 ,

s
N−1 ,

t
T−1 )

∂hk finite difference approximation in direction xk

∂ht finite difference approximation in direction t

∆x = 1
M−1 , ∆y = 1

N−1 and ∆t = 1
T−1 Discretization

û
(2)
j (r, s, t; k) = ∆t

∑t
τ=1 u

(2)
j (r, s, τ ; k), j = 1, 2 finite difference approximation of û(·, t)

̂̂u(2)

j (r, s, t; k) = −∆t

∑T
τ=t û

(2)
j (r, s, τ ; k) finite difference approximation of ̂̂u(·, t)

Table 2. Discrete Notation.

∇h3H(r, s, t) = (∂h1H(r, s, t), ∂h2H(r, s, t), ∂ht H(r, s, t))T

for (r, s, t) ∈ {1, ...,M} × {1, ..., N} × {1, ..., T},
where

∂h1H(r, s, t) =
H(r + 1, s, t)−H(r − 1, s, t)

2∆x
if 1 < r < M,

∂h2H(r, s, t) =
H(r, s+ 1, t)−H(r, s− 1, t)

2∆y
if 1 < s < N,

∂ht H(r, s, t) =
H(r, s, t+ 1)−H(r, s, t− 1)

2∆t
if 1 < t < T.

(30)

Let us notice that r, s, t are discrete indices corresponding to the points in space
r∆x, s∆y and in time t∆t of a continuous function H. Moreover, we define the dis-
crete divergence, which is the adjoint of the discrete gradient: Let (H1, H2, H3)T (r, s, t),
then

∇h3 · (H1, H2, H3)T = ∂h1H1 + ∂h2H2 + ∂ht H3. (31)

The realization of the fixed point iteration for solving the discretized equations (28)
and (29) reads as follows:

• Initialization for k = 0: we initialize to 0 ~u(1)(0), ~u(2)(0) ∈ RM×N×K×2. Note,
we leave out all indices denoting space and time positions.

• k → k + 1 and k < K: let ν′(k) := ν′(|∇h3u
(1)
1 (k)|2 + |∇h3u

(2)
1 (k)|2), then

u
(1)
1 (k + 1)− u(1)

1 (k)

∆τ
= ∇h3 ·

(
ν′(k)∇h3u

(1)
1 (k)

)
− ∂h1 f

α(1)

[
∂h1 f

(
u

(1)
1 (k + 1) + u

(2)
1 (k)

)
+ ∂h2 f

(
u

(1)
2 (k) + u

(2)
2 (k)

)
+ ∂ht f

]
,

(32)
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u
(1)
2 (k + 1)− u(1)

2 (k)

∆τ
= ∇h3 · (ν′(k)∇h3u

(1)
2 (k))

− ∂h2 f

α(1)

[
∂h1 f

(
u

(1)
1 (k + 1) + u

(2)
1 (k)

)
+ ∂h2 f

(
u

(1)
2 (k + 1) + u

(2)
2 (k)

)
+ ∂ht f

]
,

(33)

u
(2)
1 (k + 1)− u(2)

1 (k)

∆τ
= ̂̂u(2)

1 (k)

− ∂h1 f

α(2)

[
[∂h1 f

(
u

(1)
1 (k + 1) + u

(2)
1 (k + 1)

)
+∂h2 f

(
u

(1)
2 (k + 1) + u

(2)
2 (k)

)
+ ∂ht f

]
,

(34)

and

u
(2)
2 (k + 1)− u(2)

2 (k)

∆τ
= ̂̂u(2)

2 (k)

− ∂h2 f

α(2)

[
∂h1 f

(
u

(1)
1 (k + 1) + u

(2)
1 (k + 1)

)
+∂h2 f

(
u

(1)
2 (k + 1) + u

(2)
2 (k + 1)

)
+ ∂ht f

]
,

(35)

where ∆τ is the step size iteration parameter, which has been set to 10−4.
In order to improve stability of the algorithm and ensure convergence we use
a semi implicit iteration scheme as proposed in [29]. Indeed, let us notice
that in (32), (33),(34), (35) one of the components of the two flow fields ~u(1),
~u(2) on the right hand side is evaluated for iteration index k + 1. The system
(32), (33), (34), (35) can be solved efficiently using the special structure of
the matrix equation (see [28, 29]). The matrix equation then is a sparse block
tridiagonal matrix.This type of matrices allows for efficient estimation of a
solution through decomposition and parallelization methods [33].

The iterations are stopped when the Euclidean norm of the relative error

|u(i)
j (·, k)− u(i)

j (·, k + 1)|

|u(i)
j (·, k)|

, j = 1, 2

drops below the precision tolerance value tol = 0.05 for at least one of the component
of ~u(1) and one of ~u(2). The typical number of iterations is much below 100.

6. Experiments. In this section we present numerical experiments to demonstrate
the potential of the proposed optical flow decomposition model. In the first two
experiments we use for visualization of the computed flow fields the standard flow
color coding [8]. The flow vectors are represented in color space via the color wheel
illustrated in Figure 3. For the third and fourth experiment we use a black and
white visualization technique: Black means that there is no flow present and the
gray-shade is proportional to the flow magnitude. In order to compare the optical
flow computations quantitatively the intensity values of f have been scaled to the
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range [0, 1]. The used parameters are reported for each experiment separately,

Figure 3. Color Wheel.

except for the discretization parameters ∆x,∆y,∆t, defined in Section 5. In this
work we consider the following four dynamic image sequences:

• The first experiment is performed with the video sequence from [19] (available
at http://of-eval.sourceforge.net/) which consists of forty-six frames
showing a rotating sphere with some overlaid patterns. The analytical results
from Appendix A in 1D suggest that the intensity of the ~u(2) component
increases monotonically with increasing rotational frequency over time. We
verify this hypothesis numerically, now in higher dimensions. We simulate in
particular two, four and eight times the original motion frequency;: In order
to do so, we duplicate the sequence periodically, however consider it to be
recorded in the same time interval (0, 1). The flow visualized in Figure 6 is
the one between the 16th and the 17th frame of every sequence. We study the
behavior of the sphere at different motion frequencies with the same parameter
setting α(1) = 1, α(2) = 1

4 . The numerical results confirm the 1D observation

that for high rotational movement ~u(2) is dominant (cf. Figures 6) and ~u(1) is
always 20% of ~u(2); in particular ~u(1) and ~u(2) cannot be completely separated.

Figure 4. ~u(2) at different frequencies of rotations: 2, 4 and 8×
faster than the original motion frequency. α(1) = 1, α(2) = 1

4 . The

intensity of ~u(2) increases when the frequency of rotation is in-
creased.

• The second experiment concerns the decomposition of the motion in a dynamic
image sequence showing a projection of a cube moving over an oscillating back-
ground. The movie consists of sixty frames and can be viewed on the web-page

http://of-eval.sourceforge.net/
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http://www.csc.univie.ac.at/index.php?page=visualattention.
The background is oscillating in diagonal direction, from the bottom left to
the top right, with a periodicity of four frames. In each frame the oscillation
has a rate of 5% of the frame size. The flow visualized in Figure 6 is the one
between the 20th and the 21st frame of the sequence.

Applying the proposed method with a parameter setting α(1) = 103, α(2) =
103, ∆τ = 10−5, and precision tolerance tol = 0.001, we notice that the
background movement appears almost solely in ~u(2) and the global movement
of the cube appears in ~u(1). In Figure 6 we represent only flow vectors with
magnitude larger than 0.05 and omit in ~u(2) the part in common with ~u(1) for
better visibility.

Figure 5. The dynamic sequence consists of the smooth (trans-
lation like) motion of a cube and an oscillating background. The
oscillation has a periodicity of four frames and takes place along
the diagonal direction from the bottom left to the top right, mov-
ing at a rate of 5% of the frame size in each frame. The proposed
model decomposes the motion, obtaining the global movement of
the cube in ~u(1) (left) and the background movement exclusively in
~u(2) (right).

• In the third experiment the original movie consists of thirty-two frames and
can be viewed together with the decomposition result on the web-page http:

//www.csc.univie.ac.at/index.php?page=visualattention. The flow is
decomposed into two components. The first part shows the movement of a
Ferris wheel and people walking. The second part shows blinking lights and
the reflection of the wheel. The flow visualized in Figure 6 is the one between
the 4th and the 5th frame of the sequence with a parameter setting α(1) = 1,
α(2) = 1

4 . In order to improve the visibility we represent only flow vectors

with magnitude larger than 0.18 and we omit for ~u(2) the part in common
with ~u(1).

• The fourth example is flickering. In a standard flickering experiment, the dif-
ference in human attention is investigated by inclusion of blank images in a
repetitive image sequence. Although, in general, these blank images are not
deliberately recognized, they change the awareness of the test persons. J. K.
O’Regan [22] states that “Change blindness is a phenomenon in which
a very large change in a picture will not be seen by a viewer, if

http://www.csc.univie.ac.at/index.php?page=visualattention
http://www.csc.univie.ac.at/index.php?page=visualattention
http://www.csc.univie.ac.at/index.php?page=visualattention
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Figure 6. ~u(1): Movement of a Ferris wheel and people walking
in the foreground (top left). ~u(2) consists of blinking lights and the
reflections of the wheel (top right). The third image (bottom) is a
reference frame.

the change is accompanied by a visual disturbance that prevents
attention from going to the change location”. They test data from
http://nivea.psycho.univ-paris5.fr, was used for our simulations. The
proposed optical flow decomposition is able to detect regions, which also hu-
mans can recognize, but standard optical flow algorithms fail to: To show this,
the input sequence is composed by four frames consisting of Frame 1, a blank
image, Frame 2 and again an identical blank image (see Figure 8 (top)). This
sequence is then aligned periodically to a movie. We interpret the movie as a
linear interpolation between the frames. We test and compare Horn-Schunck,
Weickert-Schnörr and the proposed algorithm.

Figure 7. Result with Horn-Schunck.

http://nivea.psycho.univ-paris5.fr
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We set the smoothness parameter α(1) to a value of one for all the methods.
Moreover, for our approach we set α(2) = 1. For Horn-Schunck we visualize
the flow field in Figure 7. This flow is the one between the blank frame and the
slightly changed frame, which exceeds a threshold of 3.9. The results obtained
by applying Weickert-Schnörr and the ~u(1) field of our approach, respectively,
are small in magnitude. Therefore, we do not visualize them. This behavior is
coherent with the motivation of the Weickert-Schnörr method to produce an
optical flow that is less sensitive to variations over space and time. Finally, we
visualize in Figure 8 (down right) the ~u(2) flow field for the proposed approach.
For the visualization we omit all vectors with magnitude lower than 0.18. In
order to make transparent the result, we show in Figure 8 (down left) the
difference between the two frames of the sequence containing information (see
Figure 8 (top)). In this experiment, we notice that the ~u(1) component is

Figure 8. The two frames of the flickering sequence containing
information (top), the difference between these two frames (down
left), and the ~u(2) flow field resulting from the proposed approach
(down right). As predicted in Section 3 and Appendix A the ~u(1)

component is negligible, instead ~u(2) detects the change of intensity
across the blank sheet.

negligible, instead ~u(2) detects the areas affected by change of intensities (see
Figure 8 (down right)).

Additional Information. In the following, we show the capacity of our model
to extract different information compared to standard optical flow algorithms. The
current literature focuses on average angular and endpoint error [8] in order to com-
pare optical flow algorithms. Our model extracts information, that is neglected by
standard algorithms. Such difference can be shown through a quantitative com-
parison of models. For this purpose, we use well-known test sequences from the
Middlebury database http://vision.middlebury.edu/flow/, and evaluate the
residual of the optical flow constraint.

http://vision.middlebury.edu/flow/
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Weickert-Schnörr Proposed model
Hamburg Taxi 1374.9 1021
RubberWhale 4459.7 3046.8
Hydrangea 8533.3 7647.2
DogDance 9995.4 8217.6
Walking 8077.5 5944.3

Table 3. Comparison of squared residuals over space and time E
between Weickert-Schnörr and the proposed method.

In order to understand how much information our method is capable to extract
from an entire dynamic sequence, we calculate the residual squared over space and
time: E(~u(1), ~u(2)) as in (10) and compare it with the squared residual over space
and time of the Weickert-Schnörr method [28, 29]. We use the parameter settings
α(1) = 100 (α = α(1) in Weickert-Schnörr) and α(2) = 1

4 , tolerance tol = 0.01, in
order to have a good comparison of the two methods. Again the residual is smaller
for the proposed method as shown in Table 3. The smaller value of the residual are
due to the fact that we are calculating a minimizer from a larger space of optical
flow components. However, with this approach we cannot observe oversmoothing
of the flow.

7. Conclusion. We present a new optical flow model for decomposing the flow
in spatial and temporal components of different scales. A main ingredient of our
work is a new variational formulation of the optical flow equation. Finally, applica-
tions (some of them from psychological experiments) are considered and analyzed
analytically and computationally.
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rience funded by the Wiener Wissenschafts und Technologie Fonds - WWTF. OS
is also supported by the Austrian Science Fund - FWF, Project S11704 with the
national research network, NFN, Geometry and Simulation. The authors would like
to thank U. Ansorge, C. Valuch, S. Buchinger, C. Kirisits, P. Elbau, L. Lang, A.
Beigl, T. Widlak for interesting discussions on the optical flow and J. A. Iglesias for
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Appendix A. Optical flow decomposition in 1D. In order to make transpar-
ent the features of our decomposition we study exemplary the 1D case again. From

regularization theory (see e.g. [23]) we know that the minimizers (u
(1)
~α , u

(2)
~α ), for

~α = (α(1), α(2))→ 0, are converging to a solution of the optical flow equation which
minimizes

R = R(1) + αR(2) for α = lim
~α→0

α(2)

α(1)
> 0 .

Such a solution is called R minimizing solution. Note that by the 1D simplification
the modules u(i), i = 1, 2, are real valued functions.

We calculate the decomposition for the optical flow equation (5), for the specific
test data (6). The regularized solutions approximate theRminimizing solution, and



18 ANIELLO RAFFAELE PATRONE AND OTMAR SCHERZER

thus these calculations can be viewed representative for the properties of the mini-
mizer of the regularization method. For these particular kind of data the solution
of the optical flow equation is given by :

u(x, t) = − f̃(x)

∂xf̃(x)

∂tg(t)

g(t)
= − ∂t(log g)(t)

∂x(log f̃)(x)
. (36)

Let us assume that (log g)(t)− (log g)(0) can be expanded into a Fourier sin-series:

(log g)(t)− (log g)(0) =

∫ t

0

∂t(log g)(τ) dτ =

∞∑
n=1

ĝn sin(nπt). (37)

Moreover, we assume that 1/∂x(log f̃)(x) can be expanded in a cos-series:

1

∂x(log f̃)(x)
=

∞∑
m=0

fm cos(mπx). (38)

Then

− (log g)(t)− (log g)(0)

∂x(log f̃)(x)
= û(x, t) = û(1)(x, t) + û(2)(x, t). (39)

Inserting this identity in the regularization functional R(u(1), u(2)) =
∫

(∂xu
(1))2 +

(∂tu
(1))2 + α

(
û(2)

)2
dxdt , we remove the u(2) dependence, and we get

R(û(1)) :=

∫
(0,1)×(0,1)

(∂xtû
(1))2 + (∂ttû

(1))2 +α

(
(log g)(t)− (log g)(0)

∂x(log f̃)(x)
+ û(1)

)2

dxdt,

where we enforce the following boundary conditions on û(1): From the definition of
û(1) it follows that û(1)(x, 0) = 0. Secondly, we enforce û(1)(x, 1) = 0. In fact, the
assumption is reasonable, because when the series

∑∞
n=0 ĝn is absolutely convergent,

(log g)(t) − (log g)(0) = 0 (cf. (37)), which implies that û(1)(x, 1) + û(2)(x, 1) = 0
(cf. (37)).

By substituting the relation between û(2) and û(1) we reduce the constraint op-
timization problem to an unconstrained optimization problem for û(1), and the
minimizer solves the partial differential equation

∂ttxxû
(1) + ∂ttttû

(1) + α

(
(log g)(t)− (log g)(0)

∂x(log f̃)(x)
+ û(1)

)
= 0 in (0, 1)× (0, 1),

together with the boundary conditions:

∂ttû
(1) = û(1) = 0 on (0, 1)× {0, 1} ,

∂x∂ttû
(1) = 0 on {0, 1} × (0, 1).

(40)

The boundary conditions ∂ttû
(1) == 0 on (0, 1)×{0, 1} , and ∂x∂ttû

(1) = 0 on {0, 1}×
(0, 1) appear as natural boundary conditions, when weak solutions are considered.

Now, we substitute ŵ := ∂ttû
(1), and we get the following system of equations

∂xxŵ + ∂ttŵ = −α
(

(log g)(t)− (log g)(0)

∂x(log f̃)(x)
+ û(1)

)
in (0, 1)× (0, 1),

ŵ = 0 on (0, 1)× {0, 1} ,
∂xŵ = 0 on {0, 1} × (0, 1).

(41)

and

û(1)(x, t) =

∫ t

0

∫ τ

0

ŵ(x, τ̂)dτ̂dτ − t
∫ 1

0

∫ τ

0

ŵ(x, τ̂)dτ̂dτ.
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ŵ can be expanded as follows:

ŵ(x, t) =

∞∑
m,n=0

ŵmn cos(mπx) sin(nπt),

and we expand û(1) in an analogous manner:

û(1)(x, t) =

∞∑
m,n=0

û(1)
mn cos(mπx) sin(nπt) ,

such that

ŵmn = −n2π2û(1)
mn, ∀m,n ∈ N0. (42)

Thus it follows from (41) that

ŵmn(m2 + n2)π2 = α
(
û(1)
mn + fmĝn

)
, ∀m,n ∈ N0. (43)

(42) and (43) imply that

û(1)
mn = − α

α+ π4(m2 + n2)n2
fmĝn, ∀m,n ∈ N0. (44)

Now, consider a specific test example g(t) = exp
{

sin(n0πt)
n0π

}
for some n0 ∈ N.

Then, from (36) it follows that u(x, t) = − cos(n0πt)

∂x(log f̃)(x)
, and correspondingly we have

(log g)(t)− (log g)(0) =
sin(n0πt)

n0π
=

∞∑
n=1

δnn0

n0π
sin(nπt).

In this case it follows from (44) that

û(1)
mn = − α

α+ π4(m2 + n2
0)n2

0

δnn0

n0π
fm.

In the case of flickering data f , u(2) is pronounced (if n0 is large û
(1)
mn ≈ 0) while in

the quasi-static case u(1) is dominant. Moreover, we also see that spatial compo-
nents belonging to Fourier-cos coefficients with large m are more pronounced in the
u(2) component, and the spatial and temporal coefficients always appear in both
components. In particular this means that a threshold has to be set, to assign them
to the first or second module.
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