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ABSTRACT. In this paper we study the attenuated X-ray transform of
2-tensors supported in convex bounded subsets with sufficiently smooth
boundary in the Euclidean plane. We characterize its range and recon-
struct all possible 2-tensors yielding identical X-ray data. The charac-
terization is in terms of a Hilbert-transform associated with A-analytic
maps in the sense of Bukhgeim.

1. INTRODUCTION

This paper concerns the range characterization of the attenuated X-ray
transform of symmetric 2-tensors in the plane. Range characterization of
the non-attenuatedX-ray transform of functions (0-tensors) in the Euclidean
space has been long known [10, 11, 19], whereas in the case of a constant
attenuation some range conditions can be inferred from [17, 1, 2]. For a
varying attenuation the two dimensional case has been particularly interest-
ing with inversion formulas requiring new analytical tools: the theory of A-
analytic maps originally employed in [3], and ideas from inverse scattering
in [24]. Constraints on the range for the two dimensional X-ray transform
of functions were given in [25, 4], and a range characterization based on
Bukhgeim’s theory of A-analytic maps was given in [30].

Inversion of the X-ray transform of higher order tensors has been formu-
lated directly in the setting of Riemmanian manifolds with boundary [32].
The case of 2-tensors appears in the linearization of the boundary rigidity
problem. It is easy to see that injectivity can hold only in some restricted
class: e.g., the class of solenoidal tensors. For two dimensional simple
manifolds with boundary, injectivity with in the solenoidal tensor fields has
been establish fairly recent: in the non-attenuated case for 0- and 1-tensors
we mention the breakthrough result in [29], and in the attenuated case in
[34]; see also [13] for a more general weighted transform. Inversion for the
attenuated X-ray transform for solenoidal tensors of rank two and higher
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can be found in [27], with a range characterization in [28]. In the Euclidean
case we mention an earlier inversion of the attenuated X-ray transform of
solenoidal tensors in [16]; however this work does not address range char-
acterization.

Different from the recent characterization in terms of the scattering rela-
tion in [28], in this paper the range conditions are in terms of the Hilbert-
transform for A-analytic maps introduced in [30, 31]. Our characterization
can be understood as an explicit description of the scattering relation in
[26, 27, 28] particularized to the Euclidean setting. In the sufficiency part
we reconstruct all possible 2-tensors yielding identical X-ray data; see (30)
for the non-attenuated case and (82) for the attenuated case.

For a real symmetric 2-tensor F ∈ L1(R2;R2×2),

F(x) =

(
f11(x) f12(x)
f12(x) f22(x)

)
, x ∈ R2,(1)

and a real valued function a ∈ L1(R2), the a-attenuated X-ray transform
of F is defined by

XaF(x, θ) :=

∫ ∞
−∞
〈F(x+ tθ) θ, θ〉 exp

{
−
∫ ∞
t

a(x+ sθ)ds

}
dt,(2)

where θ is a direction in the unit sphere S1, and 〈·, ·〉 is the scalar product in
R2. For the non attenuated case a ≡ 0 we use the notation XF.

In this paper, we consider F be defined on a strongly convex bounded set
Ω ⊂ R2 with vanishing trace at the boundary Γ; further regularity and the
order of vanishing will be specified in the theorems. In particular, in the
attenuated case we assume that Γ is C2,α, α > 1

2
smooth. We also assume

a > 0 in Ω.
For any (x, θ) ∈ Ω×S1 let τ(x, θ) be length of the chord in the direction

of θ passing through x. Let also consider the incoming (−), respectively
outgoing (+) submanifolds of the unit bundle restricted to the boundary

Γ± := {(x, θ) ∈ Γ× S1 : ±θ · n(x) > 0},(3)

and the variety

Γ0 := {(x, θ) ∈ Γ× S1 : θ · n(x) = 0},(4)

where n(x) denotes outer normal.
The a-attenuated X-ray transform of F is realized as a function on Γ+ by

XaF(x, θ) =

∫ 0

−τ(x,θ)

〈F(x+ tθ) θ, θ〉 e−
∫ 0
t a(x+sθ)ds dt, (x, θ) ∈ Γ+.(5)
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FIGURE 1. Definition of Γ±

We approach the range characterization through its connection with the
transport model as follows: The boundary value problem

θ · ∇u(x, θ) + a(x)u(x, θ) = 〈F(x)θ, θ〉 (x, θ) ∈ Ω× S1,(6)

u|Γ− = 0(7)

has a unique solution in Ω× S1 and

u|Γ+(x, θ) = XaF(x, θ), (x, θ) ∈ Γ+.(8)

TheX-ray transform of 2-tensors occurs in the linearization of the bound-
ary rigidity problem [32]: For ε > 0 small, let

gε(x) := I + εF(x) + o(ε), x ∈ Ω,

be a family of metrics perturbations from the Euclidean, where I is the
identity matrix and F is as in (1). For an arbitrary pair of boundary points
x, y ∈ Γ let dε(x, y) denote their distance in the metric gε. The boundary
rigidity problem asks for the recovery of the metric gε from knowledge of
dε(x, y) for all x, y ∈ Γ . In the linearized case one seeks to recover F(x)
from d

dε

∣∣
ε=0

d2
ε(x, y). Taking into account the length minimizing property of

geodesic one can show that

1

|x− y|
d

dε

∣∣∣∣
ε=0

d2
ε(x, y) =

∫ 0

−|x−y|
〈F(x+ tθ)θ, θ〉dt = XF(x, θ),

where θ :=
x− y
|x− y|

∈ S1.
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2. PRELIMINARIES

In this section we briefly introduce the properties of Bukhgeim’s A-
analytic maps [7] needed later.

For z = x1 + ix2, we consider the Cauchy-Riemann operators

∂ = (∂x1 + i∂x2) /2, ∂ = (∂x1 − i∂x2) /2.(9)

Let l∞(, l1) be the space of bounded (, respectively summable) sequences,
L : l∞ → l∞ be the left shift

L〈u−1, u−2, ...〉 = 〈u−2, u−3, u−4, ...〉.

Definition 2.1. A sequence valued map

z 7→ u(z) := 〈u−1(z), u−2(z), u−3(z), ...〉
is called L-analytic, if u ∈ C(Ω; l∞) ∩ C1(Ω; l∞) and

(10) ∂u(z) + L∂u(z) = 0, z ∈ Ω.

For 0 < α < 1 and k = 1, 2, we recall the Banach spaces in [30]:

(11) l1,k∞ (Γ ) :=

{
u = 〈u−1, u−2, ...〉 : sup

ζ∈Γ

∞∑
j=1

jk|u−j(ζ)| <∞

}
,

(12) Cα(Γ ; l1) :=

u : sup
ξ∈Γ
‖u(ξ)‖l1 + sup

ξ,η∈Γ
ξ 6=η

‖u(ξ)− u(η)‖l1
|ξ − η|α

<∞

 .

By replacing Γ with Ω and l1 with l∞ in (12) we similarly define Cα(Ω; l1),
respectively, Cα(Ω; l∞).

At the heart of the theory of A-analytic maps lies a Cauchy-like integral
formula introduced by Bukhgeim in [7]. The explicit variant (13) appeared
first in Finch [8]. The formula below is restated in terms of L-analytic maps
as in [31].

Theorem 2.1. [31, Theorem 2.1] For some g = 〈g−1, g−2, g−3, ...〉 ∈ l1,1∞ (Γ )∩
Cα(Γ ; l1) define the Bukhgeim-Cauchy operator B acting on g,

Ω 3 z 7→ 〈(Bg)−1(z), (Bg)−2(z), (Bg)−3(z), ...〉,
by

(Bg)−n(z) :=
1

2πi

∞∑
j=0

∫
Γ

g−n−j(ζ)(ζ − z)
j

(ζ − z)j+1
dζ

− 1

2πi

∞∑
j=1

∫
Γ

g−n−j(ζ)(ζ − z)
j−1

(ζ − z)j
dζ, n = 1, 2, 3, ...(13)
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Then Bg ∈ C1,α(Ω; l∞) ∩ C(Ω; l∞) and it is also L-analytic.

For our purposes further regularity in Bg will be required. Such smooth-
ness is obtained by increasing the assumptions on the rate of decay of the
terms in g as explicit below. For 0 < α < 1, let us recall the Banach space
Yα in [30]:

(14) Yα =

g ∈ l1,2∞ (Γ) : sup
ξ,µ∈Γ
ξ 6=µ

∞∑
j=1

j
|g−j(ξ)− g−j(µ)|
|ξ − µ|α

<∞

 .

Proposition 2.1. [31, Proposition 2.1] If g ∈ Yα, α > 1/2, then

Bg ∈ C1,α(Ω; l1) ∩ Cα(Ω; l1) ∩ C2(Ω; l∞).(15)

The Hilbert transform associated with boundary of L-analytic maps is
defined below.

Definition 2.2. For g = 〈g−1, g−2, g−3, ...〉 ∈ l1,1∞ (Γ )∩Cα(Γ ; l1), we define
the Hilbert transformHg componentwise for n ≥ 1 by

(Hg)−n(ξ) =
1

π

∫
Γ

g−n(ζ)

ζ − ξ
dζ

+
1

π

∫
Γ

{
dζ

ζ − ξ
− dζ

ζ − ξ

} ∞∑
j=1

g−n−j(ζ)

(
ζ − ξ
ζ − ξ

)j
, ξ ∈ Γ.(16)

The following result justifies the name of the transform H. For its proof
we refer to [30, Theorem 3.2].

Theorem 2.2. For 0 < α < 1, let g ∈ l1,1∞ (Γ) ∩ Cα(Γ; l1). For g to be
boundary value of an L-analytic function it is necessary and sufficient that

(17) (I + iH)g = 0,

whereH is as in (16).

3. THE NON-ATTENUATED CASE

In this section we assume a ≡ 0. We establish necessary and sufficient
conditions for a sufficiently smooth function on Γ × S1 to be the X-ray
data of some sufficiently smooth real valued symmetric 2-tensor F. For
θ = (cosϕ, sinϕ) ∈ S1, a calculation shows that

〈F(x)θ, θ〉 = f0(x) + f2(x)e2iϕ + f2(x)e−2iϕ,(18)

where

f0(x) =
f11(x) + f22(x)

2
, and f2(x) =

f11(x)− f22(x)

4
+ i

f12(x)

2
.(19)



6 KAMRAN SADIQ, OTMAR SCHERZER, AND ALEXANDRU TAMASAN

The transport equation in (6) becomes

θ · ∇u(x, θ) = f0(x) + f2(x)e2iϕ + f2(x)e−2iϕ, x ∈ Ω.(20)

For z = x1 + ix2 ∈ Ω, we consider the Fourier expansions of u(z, ·) in
the angular variable θ = (cosϕ, sinϕ):

u(z, θ) =
∞∑
−∞

un(z)einϕ.

Since u is real valued its Fourier modes occur in conjugates,

u−n(z) = un(z), n ≥ 0, z ∈ Ω.

With the Cauchy-Riemann operators defined in (9) the advection operator
becomes

θ · ∇ = e−iϕ∂ + eiϕ∂.

Provided appropriate convergence of the series (given by smoothness in the
angular variable) we see that if u solves (20) then its Fourier modes solve
the system

∂u1(z) + ∂u−1(z) = f0(z),(21)

∂u−1(z) + ∂u−3(z) = f2(z),(22)

∂u2n(z) + ∂u2n−2(z) = 0, n ≤ 0,(23)

∂u2n−1(z) + ∂u2n−3(z) = 0, n ≤ −1,(24)

The range characterization is given in terms of the trace

g := u|Γ×S1=

{
XF(x, θ), (x, θ) ∈ Γ+,
0, (x, θ) ∈ Γ− ∪ Γ0.

(25)

More precisely, in terms of its Fourier modes in the angular variables:

g(ζ, θ) =
∞∑
−∞

gn(ζ)einϕ, ζ ∈ Γ.(26)

Since the trace g is also real valued, its Fourier modes will satisfy

g−n(ζ) = gn(ζ), n ≥ 0, ζ ∈ Γ.(27)

From the negative even modes, we built the sequence

geven := 〈g0, g−2, g−4, ...〉.(28)

From the negative odd modes starting from mode−3, we built the sequence

godd := 〈g−3, g−5, g−7, ...〉.(29)

Next we characterize the data g in terms of the Hilbert Transform H in
(16). We will construct simultaneously the right hand side of the transport
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equation (20) and the solution u whose trace matches the boundary data g.
Construction of u is via its Fourier modes. We first construct the negative
modes and then the positive modes are constructed by conjugation. Except
for negative one mode u−1 all non-positive modes are defined by Bukhgeim-
Cauchy integral formula in (13) using boundary data. Other than having the
trace g−1 on the boundary u−1 is unconstrained. It is chosen arbitrarily from
the class of functions

Ψg :=

{
ψ ∈ C1(Ω;C) : ψ|Γ= g−1

}
.(30)

Theorem 3.1 (Range characterization in the non-attenuated case). Let α >
1/2.

(i) Let F ∈ C1,α
0 (Ω;R2×2). For g :=

{
XF(x, θ), (x, θ) ∈ Γ+,
0, (x, θ) ∈ Γ− ∪ Γ0,

consider the corresponding sequences geven as in (28) and godd as in (29).
Then geven,godd ∈ l1,1∞ (Γ) ∩ Cα(Γ; l1) satisfy

[I + iH]geven = 0,(31)

[I + iH]godd = 0,(32)

where the operatorH is the Hilbert transform in (16).
(ii) Let g ∈ Cα (Γ ;C1,α(S1)) ∩ C(Γ ;C2,α(S1)) be real valued with

g|Γ−∪Γ0= 0. If the corresponding sequence geven,godd ∈ Yα satisfies (31)
and (32), then there exists a real valued symmetric 2-tensor F ∈ C(Ω;R2×2),
such that g|Γ+= XF. Moreover for each ψ ∈ Ψg in (30), there is a unique
real valued symmetric 2-tensor Fψ such that g|Γ+= XFψ.

Proof. (i) Necessity
Let F ∈ C1,α

0 (Ω;R2×2). Since F is compactly supported inside Ω, for
any point at the boundary there is a cone of lines which do not meet the
support. Thus g ≡ 0 in the neighborhood of the variety Γ0 which yields g ∈
C1,α(Γ×S1). Moreover, g is the trace on Γ×S1 of a solution u ∈ C1,α(Ω×
S1) of the transport equation (20). By [30, Proposition 4.1] geven,godd ∈
l1,1∞ (Γ) ∩ Cα(Γ; l1).

If u solves (20) then its Fourier modes satisfy (21), (22), (23) and (24).
Since the negative even Fourier modes u2n of u satisfies the system (23) for
n ≤ 0, then

z 7→ ueven(z) := 〈u0(z), u−2(z), u−4(z), u−6(z), · · · 〉
is L-analytic in Ω and the necessity part in Theorem 2.2 yields (31).

The equation (24) for negative odd Fourier modes u2n−1 starting from
mode −3 yield that the sequence valued map

z 7→ uodd(z) := 〈u−3(z), u−5(z), u−7(z), · · · 〉
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is L-analytic in Ω and the necessity part in Theorem 2.2 yields (32).
(ii) Sufficiency
To prove the sufficiency we will construct a real valued symmetric 2-

tensor F in Ω and a real valued function u ∈ C1(Ω×S1)∩C(Ω×S1) such
that u|Γ×S1= g and u solves (20) in Ω. The construction of such u is in
terms of its Fourier modes in the angular variable and it is done in several
steps.

Step 1: The construction of negative even modes u2n for n ≤ 0.
Let g ∈ Cα (Γ ;C1,α(S1))∩C(Γ ;C2,α(S1)) be real valued with g|Γ−∪Γ0=

0. Let the corresponding sequences geven satisfying (31) and godd satisfying
(32). By [30, Proposition 4.1(ii)] geven,godd ∈ Yα. Use the Bukhgeim-
Cauchy Integral formula (13) to construct the negative even Fourier modes:

〈u0(z), u−2(z), u−4(z), u−6(z), ...〉 := Bgeven(z), z ∈ Ω.(33)

By Theorem 2.1, the sequence valued map

z 7→ 〈u0(z), u−2(z), u−4(z), ...〉,
is L-analytic in Ω, thus the equations

∂u−2k + ∂u−2k−2 = 0,(34)

are satisfied for all k ≥ 0. Moreover, the hypothesis (31) and the sufficiency
part of Theorem 2.2 yields that they extend continuously to Γ and

u−2k|Γ = g−2k, k ≥ 0.(35)

Step 2: The construction of positive even modes u2n for n ≥ 1.
All of the positive even Fourier modes are constructed by conjugation:

u2k := u−2k, k ≥ 1.(36)

By conjugating (34) we note that the positive even Fourier modes also sat-
isfy

∂u2k+2 + ∂u2k = 0, k ≥ 0.(37)

Moreover, they extend continuously to Γ and

u2k|Γ = u−2k|Γ = g−2k = g2k, k ≥ 1.(38)

Thus, as a summary, we have shown that

∂u2k + ∂u2k−2 = 0, ∀k ∈ Z,(39)

u2k|Γ= g2k, ∀k ∈ Z.(40)

Step 3: The construction of modes u−1 and u1.
Let ψ ∈ Ψg as in (30). We define

u−1 := ψ, and u1 := ψ.(41)
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Since g is real valued, we have

u1|Γ= g−1 = g1.(42)

Step 4: The construction of negative odd modes u2n−1 for n ≤ −1.
Use the Bukhgeim-Cauchy Integral formula (13) to construct the other

odd negative Fourier modes:

〈u−3(z), u−5(z), · · · 〉 := Bgodd(z), z ∈ Ω.(43)

By Theorem 2.1, the sequence valued map

z 7→ 〈u−3(z), u−5(z), u−7(z), ..., 〉,
is L-analytic in Ω, thus the equations

∂u2k−1 + ∂u2k−3 = 0,(44)

are satisfied for all k ≤ −1. Moreover, the hypothesis (32) and the suffi-
ciency part of Theorem 2.2 yields that they extend continuously to Γ and

u2k−1|Γ = g2k−1, ∀k ≤ −1.(45)

Step 5: The construction of positive odd modes u2n+1 for n ≥ 1.
All of the positive odd Fourier modes are constructed by conjugation:

u2k+3 := u−(2k+3), k ≥ 0.(46)

By conjugating (44) we note that the positive odd Fourier modes also satisfy

∂u2k+3 + ∂u2k+1 = 0, ∀k ≥ 1.(47)

Moreover, they extend continuously to Γ and

u2k+3|Γ = u−(2k+3)|Γ = g−(2k+3) = g2k+3, k ≥ 0.(48)

Step 6: The construction of the tensor field Fψ whose X-ray data is
g.

We define the 2-tensor field

Fψ :=

(
f0 + 2Re f2 2 Im f2

2 Im f2 f0 − 2Re f2

)
,(49)

where

f0 = 2Re(∂ψ), and f2 = ∂ψ + ∂u−3.(50)

In order to show g|Γ+= XFψ with Fψ as in (49), we define the real valued
function u via its Fourier modes

u(z, θ) := u0(z) + ψ(z)e−iϕ + ψ(z)eiϕ(51)

+
∞∑
n=2

u−n(z)e−inϕ +
∞∑
n=2

un(z)einϕ,
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and check that it has the trace g on Γ and satisfies the transport equation
(20).

Since g ∈ Cα (Γ ;C1,α(S1))∩C(Γ ;C2,α(S1)), we use [30, Corollary 4.1]
and [30, Proposition 4.1 (iii)] to conclude that u defined in (51) belongs to
C1,α(Ω × S1) ∩ Cα(Ω × S1). In particular u(·, θ) for θ = (cosϕ, sinϕ)
extends to the boundary and its trace satisfies

u(·, θ)|Γ =

(
u0 + ψe−iϕ + ψeiϕ +

∞∑
n=2

u−ne
−inϕ +

∞∑
n=2

une
inϕ

)∣∣∣∣∣
Γ

= u0|Γ+ψ|Γ e−iϕ + ψ|Γ eiϕ +
∞∑
n=2

u−n|Γ e−inϕ +
∞∑
n=2

un|Γ einϕ

= g0 + g−1e
−iϕ + g1e

iϕ +
∞∑
n=2

g−ne
−inϕ +

∞∑
n=2

gne
inϕ

= g(·, θ),
where in the third equality above we used (40), (45),(48), (42) and definition
of ψ ∈ Ψg in (30).

Since u ∈ C1,α(Ω× S1) ∩Cα(Ω× S1), the following calculation is also
justified:

θ · ∇u = e−iϕ∂u0 + eiϕ∂u0 + +e−2iϕ∂ψ + ∂ψ + ∂ψ + e2iϕ∂ψ

+
∞∑
n=2

∂u−ne
−i(n+1)ϕ +

∞∑
n=2

∂u−ne
−i(n−1)ϕ

+
∞∑
n=2

∂une
i(n−1)ϕ +

∞∑
n=2

∂une
i(n+1)ϕ.

Rearranging the modes in the above equation yields

θ · ∇u = e−2iϕ(∂ψ + ∂u−3) + e2iϕ(∂ψ + ∂u3) + ∂ψ + ∂ψ

+ e−iϕ(∂u0 + ∂u−2) + eiϕ(∂u0 + ∂u2)

+
∞∑
n=1

(∂u−n + ∂u−n−2)e−i(n+1)ϕ +
∞∑
n=1

(∂un+2 + ∂un)ei(n+1)ϕ.

Using (39), (44), and (47) simplifies the above equation

θ · ∇u = e−2iϕ(∂ψ + ∂u−3) + e2iϕ(∂ψ + ∂u3) + ∂ψ + ∂ψ.

Now using (50), we conclude (20).

θ · ∇u = e−2iϕf2 + e2iϕf2 + f0 = 〈Fψθ, θ〉.
�
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As the source is supported inside, there are no incoming fluxes: hence the
trace of a solution u of (20) on Γ− is zero. We give next a range condition
only in terms of g on Γ+, where g := u|Γ×S1 . More precisely, let ũ be the
solution of the boundary value problem

θ · ∇ũ(x, θ) = 〈F(x)θ, θ〉, x ∈ Ω,

ũ(z, θ) = −1

2
g|Γ+(z,−θ), (z, θ) ∈ Γ−.

(52)

Then one can see that

ũ|Γ+=
1

2
g|Γ+ ,(53)

and therefore ũ|Γ×S1 is an odd function of θ. This shows that we can work
with the following odd extension:

g̃(z, θ) :=
g(z, θ)− g(z,−θ)

2
, (z, θ) ∈ (Γ × S1)\Γ0,(54)

and g̃ = 0 on Γ0. Note that g̃ is the trace of ũ on Γ × S1.
The range characterization can be given now in terms of the odd Fourier

modes of g̃, namely in terms of

g̃ := 〈g̃−3, g̃−5, g̃−7, ...〉.(55)

Corollary 3.1. Let α > 1/2.
(i) Let F ∈ C1,α

0 (Ω;R2×2), ũ be the solution of (52) and g̃ as in (55).
Then g̃ ∈ l1,1∞ (Γ) ∩ Cα(Γ; l1) and

[I + iH]g̃ = 0,(56)

where the operatorH is the Hilbert transform in (16).
(ii) Let g ∈ Cα (Γ ;C1,α(S1)) ∩ C(Γ ;C2,α(S1)) be real valued with

g|Γ−∪Γ0= 0. Let g̃ be its odd extension as in (54) and the corresponding
g̃ as in (55). If g̃ satisfies (56), then there exists a real valued symmet-
ric 2-tensor F ∈ C(Ω;R2×2), such that g|Γ+= XF. Moreover for each
ψ ∈ Ψg in (30), there is a unique real valued symmetric 2-tensor Fψ such
that g|Γ+= XFψ.

4. THE ATTENUATED CASE

The results in this section need further regularity on the boundary of the
domain. We assume that Γ isC2,α for α > 1

2
. We also assume an attenuation

a ∈ C2,α(Ω), α > 1/2 with

min
Ω
a > 0.

We establish necessary and sufficient conditions for a sufficiently smooth
function g on Γ × S1 to be the attenuated X-ray data, with attenuation a,
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of some sufficiently smooth real symmetric 2-tensor, i.e. g is the trace on
Γ × S1 of some solution u of

θ · ∇u(x, θ) + a(x)u(x, θ) = 〈F(x)θ, θ〉, (x, θ) ∈ Γ × S1.(57)

Different from the 1-tensor case in [31] (where there is uniqueness), in
the 2-tensor case there is non-uniqueness: see the class of function in (82).

As in [30] we start by the reduction to the non-attenuated case via the
special integrating factor e−h, where h is explicitly defined in terms of a by

h(z, θ) := Da(z, θ)− 1

2
(I − iH)Ra(z · θ⊥, θ⊥),(58)

where θ⊥ is orthogonal to θ, Da(z, θ) =

∫ ∞
0

a(z + tθ)dt is the divergent

beam transform of the attenuation a, Ra(s, θ⊥) =

∫ ∞
−∞

a
(
sθ⊥ + tθ

)
dt is

the Radon transform of the attenuation a, and the classical Hilbert transform

Hh(s) =
1

π

∫ ∞
−∞

h(t)

s− t
dt is taken in the first variable and evaluated at s =

z· θ⊥. The function h was first considered in the work of Natterer [21]; see
also [8], and [6] for elegant arguments that show how h extends from S1

inside the disk as an analytic map.
The lemma 4.1 and lemma 4.2 below were proven in [31] for a vanishing

at the boundary. Under the smoother regularity assumption on Γ, a need
not to vanish at the boundary. This is because the map Ω × S1 3 (z, θ) 7→
τ+(z, θ) is in C2,α(Ω × S1), where τ+ denote the distance from z to the
boundary in the direction +θ.

Lemma 4.1. [31, Lemma 4.1] Assume Ω is C2,α convex domain and a ∈
Cp,α(Ω), p = 1, 2, α > 1/2, and h defined in (58). Then h ∈ Cp,α(Ω× S1)
and the following hold

(i) h satisfies

θ · ∇h(z, θ) = −a(z), (z, θ) ∈ Ω× S1.(59)

(ii) h has vanishing negative Fourier modes yielding the expansions

e−h(z,θ) :=
∞∑
k=0

αk(z)eikϕ, eh(z,θ) :=
∞∑
k=0

βk(z)eikϕ, (z, θ) ∈ Ω× S1,

(60)

with
(iii)

z 7→ 〈α1(z), α2(z), α3(z), ..., 〉 ∈ Cp,α(Ω; l1) ∩ C(Ω; l1),(61)

z 7→ 〈β1(z), β2(z), β3(z), ..., 〉 ∈ Cp,α(Ω; l1) ∩ C(Ω; l1).(62)
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(iv) For any z ∈ Ω

∂β0(z) = 0,(63)

∂β1(z) = −a(z)β0(z),(64)

∂βk+2(z) + ∂βk(z) + a(z)βk+1(z) = 0, k ≥ 0.(65)

(v) For any z ∈ Ω

∂α0(z) = 0,(66)

∂α1(z) = a(z)α0(z),(67)

∂αk+2(z) + ∂αk(z) + a(z)αk+1(z) = 0, k ≥ 0.(68)

(vi) The Fourier modes αk, βk, k ≥ 0 satisfy

α0β0 = 1,
k∑

m=0

αmβk−m = 0, k ≥ 1.(69)

From (59) it is easy to see that u solves (57) if and only if v := e−hu
solves

θ · ∇v(z, θ) = 〈F (z)θ, θ〉e−h(z,θ).(70)

If u(z, θ) =
∑∞

n=−∞ un(z)einϕ solves (57), then its Fourier modes satisfy

∂u1(z) + ∂u−1(z) + a(z)u0(z) = f0(z),(71)

∂u0(z) + ∂u−2(z) + a(z)u−1(z) = 0,(72)

∂u−1(z) + ∂u−3(z) + a(z)u−2(z) = f2(z),(73)

∂un(z) + ∂un−2(z) + a(z)un−1(z) = 0, n ≤ −2,(74)

where f0, f2 as defined in (19).
Also, if v := e−hu =

∑∞
n=−∞ vn(z)einϕ solves (70), then its Fourier

modes satisfy

∂v1(z) + ∂v−1(z) = α0(z)f0(z) + α2(z)f2(z),

∂v0(z) + ∂v−2(z) = α1(z)f2(z),

∂v−1(z) + ∂v−3(z) = α0(z)f2(z),

∂vn(z) + ∂vn−2(z) = 0, n ≤ −2,(75)

where α0, α1 and α2 are the Fourier modes in (60), and f0, f2 as defined in
(19).

The following result shows that the equivalence between (74) and (75) is
intrinsic to negative Fourier modes only.
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Lemma 4.2. [31, Lemma 4.2] Assume a ∈ C1,α(Ω), α > 1/2.
(i) Let v = 〈v−2, v−3, ...〉 ∈ C1(Ω, l1) satisfy (75), and u = 〈u−2, u−3, ...〉

be defined componentwise by the convolution

un :=
∞∑
j=0

βjvn−j, n ≤ −2,(76)

where βj’s are the Fourier modes in (60). Then u solves (74) in Ω.
(ii) Conversely, let u = 〈u−2, u−3, ...〉 ∈ C1(Ω, l1) satisfy (74), and v =

〈v−2, v−3, ...〉 be defined componentwise by the convolution

vn :=
∞∑
j=0

αjun−j, n ≤ −2,(77)

where αj’s are the Fourier modes in (60). Then v solves (75) in Ω.

The operators ∂, ∂ in (9) can be rewritten in terms of the derivative in
tangential direction ∂τ and derivative in normal direction ∂n,

∂n = cos η∂x1 + sin η∂x2 ,

∂τ = − sin η∂x1 + cos η∂x2 ,

where η is the angle made by the normal to the boundary with x1 direction
(Since the boundary Γ is known, η is a known function on the boundary).
In these coordinates

∂ =
e−iη

2
(∂n − i∂τ ), ∂ =

eiη

2
(∂n + i∂τ ).(78)

Next we characterize the attenuated X-ray data g in terms of its Fourier
modes g0, g−1 and the negative index modes γ−2, γ−3, γ−4... of

e−h(ζ,θ)g(ζ, θ) =
∞∑

k=−∞

γk(ζ)eikϕ, ζ ∈ Γ.(79)

To simplify the statement, let

gh := 〈γ−2, γ−3, γ−4...〉,(80)

and from the negative even, respectively, negative odd Fourier modes, we
built the sequences

gevenh = 〈γ−2, γ−4, ...〉, and goddh = 〈γ−3, γ−5, ...〉.(81)

Note that γ−1 is not included in the goddh definition. As before we construct
simultaneously the right hand side of the transport equation (57) together
with the solution u. Construction of u is via its Fourier modes. We first
construct the negative modes and then the positive modes are constructed
by conjugation. Apart from zeroth mode u0 and negative one mode u−1,
all Fourier modes are constructed uniquely from the data gevenh , goddh . The
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mode u0 will be chosen arbitrarily from the class Ψa
g with prescribed trace

and gradient on the boundary Γ defined as

Ψa
g :=

{
ψ ∈ C2(Ω;R) : ψ|Γ= g0,(82)

∂nψ|Γ= −2Re e−iη

∂ ∞∑
j=0

βj(Bgh)−2−j

∣∣∣∣∣
Γ

+ a|Γ g−1

 ,

where B be the Bukhgeim-Cauchy operator in (13), βj’s are the Fourier
modes in (60) and gh in (80). The mode u−1 is define in terms of u0, see
(99).

Recall the Hilbert transformH in (16).

Theorem 4.1 (Range characterization in the attenuated case). Let a ∈ C2,α(Ω),
α > 1/2 with min

Ω
a > 0.

(i) Let F ∈ C1,α
0 (Ω;R2×2). For g :=

{
XaF(x, θ), (x, θ) ∈ Γ+,
0, (x, θ) ∈ Γ− ∪ Γ0,

consider the corresponding sequences gevenh ,goddh as in (81). Then gevenh ,goddh ∈
l1,1∞ (Γ) ∩ Cα(Γ; l1) satisfy

[I + iH]gevenh = 0, [I + iH]goddh = 0, and(83)

∂τg0 = −2 Im e−iη

∂ ∞∑
j=0

βj(Bgh)−2−j

∣∣∣∣∣
Γ

+ a|Γ g−1

 ,(84)

where H is the Hilbert transform in (16), B is the Bukhgeim-Cauchy oper-
ator in (13), βj’s are the Fourier modes in (60) and gh in (80).

(ii) Let g ∈ Cα (Γ ;C1,α(S1)) ∩ C(Γ ;C2,α(S1)) be real valued with
g|Γ−∪Γ0= 0. If the corresponding sequences gevenh ,goddh ∈ Yα satisfying
(83) and (84) then there exists a symmetric 2-tensor F ∈ C(Ω;R2×2), such
that g|Γ+= XaF. Moreover for each ψ ∈ Ψa

g in (82), there is a unique real
valued symmetric 2-tensor Fψ such that g|Γ+= XaFψ.

Proof. (i) Necessity
Let F ∈ C1,α

0 (Ω;R2×2). Since F is compactly supported inside Ω, for
any point at the boundary there is a cone of lines which do not meet the
support. Thus g ≡ 0 in the neighborhood of the variety Γ0 which yields
g ∈ C1,α(Γ × S1). Moreover, g is the trace on Γ × S1 of a solution u ∈
C1,α(Ω× S1). By [30, Proposition 4.1] gevenh ,goddh ∈ l1,1∞ (Γ) ∩ Cα(Γ; l1).

Let v := e−hu =
∑∞

n=−∞ vn(z)einϕ, then the negative Fourier modes
of v satisfy (75). In particular its negative odd subsequence 〈v−3, v−5, ...〉
and negative even subsequence 〈v−2, v−4, ...〉 areL-analytic with traces goddh
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respectively gevenh . The necessity part of Theorem 2.2 yields (83):

[I + iH]goddh = 0, [I + iH]gevenh = 0.

If u solves (57), then its Fourier modes satisfy (71), (72), (73), and (74).
The negative Fourier modes of u and v are related by

un =
∞∑
j=0

βjvn−j, n ≤ 0,(85)

where βj’s are the Fourier modes in (60). The restriction of (72) to the
boundary yields

∂u0|Γ = −∂u−2|Γ−(au−1)|Γ .

Expressing ∂ in the above equation in terms of ∂τ and ∂n as in (78) yields

eiη

2
(∂n + i∂τ )u0|Γ = −∂u−2|Γ−a|Γg−1.

Simplifying the above expression and using ∂τu0|Γ= ∂τg0, yields

∂nu0|Γ+i∂τg0 = −2e−iη (∂u−2|Γ+a|Γg−1) .

The imaginary part of the above equation yields (84). This proves part (i)
of the theorem.

(ii) Sufficiency
To prove the sufficiency we will construct a real valued symmetric 2-

tensor F in Ω and a real valued function u ∈ C1(Ω×S1)∩C(Ω×S1) such
that u|Γ×S1= g and u solves (57) in Ω. The construction of such u is in
terms of its Fourier modes in the angular variable and it is done in several
steps.

Step 1: The construction of negative modes un for n ≤ −2.
Let g ∈ Cα (Γ ;C1,α(S1))∩C(Γ ;C2,α(S1)) be real valued with g|Γ−∪Γ0=

0. Let the corresponding sequences gevenh ,goddh as in (81) satisfying (83) and
(84). By [30, Proposition 4.1(ii)] and [30, Proposition 5.2(iii)] gevenh ,goddh ∈
Yα. Use the Bukhgeim-Cauchy Integral formula (13) to define theL-analytic
maps

veven(z) = 〈v−2(z), v−4(z), ...〉 := Bgevenh (z), z ∈ Ω,(86)

vodd(z) = 〈v−3(z), v−5(z), ...〉 := Bgoddh (z), z ∈ Ω.(87)

By intertwining let also define

v(z) := 〈v−2(z), v−3(z), ...〉, z ∈ Ω.

By Proposition 2.1

veven,vodd,v ∈ C1,α(Ω; l1) ∩ Cα(Ω; l1) ∩ C2(Ω; l∞).(88)
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Moreover, since gevenh ,goddh satisfy the hypothesis (83), by Theorem 2.2 we
have

veven|Γ= gevenh and vodd|Γ= goddh .

In particular

vn|Γ=
∞∑
k=0

(αk|Γ ) gn−k, n ≤ −2.(89)

For each n ≤ −2, we use the convolution formula below to construct

un :=
∞∑
j=0

βjvn−j.(90)

Since a ∈ C2,α(Ω), by (62), the sequence z 7→ 〈β0(z), β1(z), β2(z), ...〉 is
in C2,α(Ω; l1) ∩ Cα(Ω; l1). Since convolution preserves l1, the map is in

z 7→ 〈u−2(z), u−3(z), ...〉 ∈ C1,α(Ω; l1) ∩ Cα(Ω; l1).(91)

Moreover, since v ∈ C2(Ω; l∞) as in (88), we also conclude from convolu-
tion that

z 7→ 〈u−2(z), u−3(z), ...〉 ∈ C2(Ω; l∞).(92)

The property (91) justifies the calculation of traces un|Γ for each n ≤ −2:

un|Γ =
∞∑
j=0

βj|Γ (vn−j|Γ ) .

Using (89) in the above equation gives

un|Γ =
∞∑
j=0

βj|Γ
∞∑
k=0

αk|Γgn−j−k.

A change of index m = j + k, simplifies the above equation

un|Γ =
∞∑
m=0

m∑
k=0

αkβm−kgn−m,

= α0β0gn +
∞∑
m=1

m∑
k=0

αkβm−kgn−m.

Using Lemma 4.1 (vi) yields

un|Γ = gn, n ≤ −2.(93)

From the Lemma 4.2, the constructed un in (90) satisfy

∂un + ∂un−2 + aun−1 = 0, n ≤ −2.(94)

Step 2: The construction of positive modes un for n ≥ 2.
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All of the positive Fourier modes are constructed by conjugation:

un := u−n, n ≥ 2.(95)

Moreover using (93), the traces un|Γ for each n ≥ 2:

un|Γ= u−n|Γ= g−n = gn, n ≥ 2.(96)

By conjugating (94) we note that the positive Fourier modes also satisfy

∂un+2 + ∂un + aun+1 = 0, n ≥ 2.(97)

Step 3: The construction of modes u0, u−1 and u1.
Let ψ ∈ Ψa

g as in (82) and define

u0 := ψ,(98)

and

u−1 :=
−∂ψ − ∂u−2

a
, u1 := u−1.(99)

By the construction u0 ∈ C2(Ω; l∞) and u−1 ∈ C1(Ω; l∞), and

∂u0 + ∂u−2 + au−1 = 0(100)

is satisfied. Furthermore, by conjugating (100) yields

∂u0 + ∂u2 + au1 = 0.(101)

Since ψ ∈ Ψa
g , the trace of u0 satisfies

u0|Γ= g0.(102)

We check next that the trace of u−1 is g−1:

u−1|Γ =
−∂ψ − ∂u−2

a

∣∣∣∣
Γ

= − 1

a

∣∣∣∣
Γ

eiη

2
(∂n + i∂τ )ψ|Γ−

1

a

∣∣∣∣
Γ

∂u−2|Γ

= − 1

2a

∣∣∣∣
Γ

eiη
{
∂nψ|Γ+i∂τψ|Γ+2e−iη∂u−2|Γ

}
= g−1,(103)

where the last equality uses (84) and the condition in class (82).
Step 4: The construction of the tensor field Fψ whose attenuated X-

ray data is g.
We define the 2-tensor

Fψ :=

(
f0 + 2Re f2 2 Im f2

2 Im f2 f0 − 2Re f2

)
,(104)
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where

f0 = −2Re

(
∂ψ + ∂u−2

a

)
+ aψ, and(105)

f2 = −∂
(
∂ψ + ∂u−2

a

)
+ ∂u−3 + au−2.(106)

Note that f2 is well defined as u−2 ∈ C2(Ω; l∞) from (92).
In order to show g|Γ+= XaFψ with Fψ as in (104), we define the real

valued function u via its Fourier modes

u(z, θ) := u0(z) + u−1e
−iϕ + u−1(z)eiϕ(107)

+
∞∑
n=2

u−n(z)e−inϕ +
∞∑
n=2

un(z)einϕ.

We check below that u is well defined, has the trace g on Γ and satisfies the
transport equation (57).

For convenience consider the intertwining sequence

u(z) := 〈u0(z), u−1(z), u−2(z), u−3(z), ...〉, z ∈ Ω.

Since u ∈ C1,α(Ω; l1)∩Cα(Ω; l1), by [30, Proposition 4.1 (iii)] we conclude
that u is well defined by (107) and as a function in C1,α(Ω×S1)∩Cα(Ω×
S1). In particular u(·, θ) for θ = (cosϕ, sinϕ) extends to the boundary and
its trace satisfies

u(·, θ)|Γ =

(
u0 + u−1e

−iϕ + u−1e
iϕ +

∞∑
n=2

u−ne
−inϕ +

∞∑
n=2

une
inϕ

)∣∣∣∣∣
Γ

= u0|Γ+u−1|Γ e−iϕ + u−1|Γ eiϕ +
∞∑
n=2

(u−n|Γ )e−inϕ +
∞∑
n=2

(un|Γ )einϕ

= g0 + g−1e
−iϕ + g1e

iϕ +
∞∑
n=2

g−ne
−inϕ +

∞∑
n=2

gne
inϕ

= g(·, θ),

where is the third equality we have used (93), (96), (102), and (103).
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Since u ∈ C1,α(Ω× S1) ∩Cα(Ω× S1), the following calculation is also
justified:

θ · ∇u+ au = e−iϕ∂u0 + eiϕ∂u0 + e−2iϕ∂u−1 + ∂u1 + ∂u−1 + e2iϕ∂u1

+
∞∑
n=2

∂u−ne
−i(n+1)ϕ +

∞∑
n=2

∂u−ne
−i(n−1)ϕ

+
∞∑
n=2

∂une
i(n−1)ϕ +

∞∑
n=2

∂une
i(n+1)ϕ

+ au0 + au−1e
−iϕ + au1e

iϕ +
∞∑
n=2

au−ne
−inϕ +

∞∑
n=2

aune
inϕ.

Rearranging the modes in the above equation yields

θ · ∇u+ au = e−2iϕ(∂u−1 + ∂u−3 + au−2) + e2iϕ(∂u1 + ∂u3 + au2)

+ e−iϕ(∂u0 + ∂u−2 + au−1) + eiϕ(∂u0 + ∂u2 + au1)

+ ∂u1 + ∂u−1 + au0 +
∞∑
n=2

(∂un+2 + ∂un + aun+1)ei(n+1)ϕ

+
∞∑
n=2

(∂u−n + ∂u−n−2 + au−n−1)e−i(n+1)ϕ.

Using (94), (97), (100) and (101) simplifies the above equation

θ · ∇u+ au = e−2iϕ(∂u−1 + ∂u−3 + au−2) + e2iϕ(∂u1 + ∂u3 + au2)

+ ∂u1 + ∂u−1 + au0.

Now using (105) and (106), we conclude (57)

θ · ∇u+ au = e−2iϕf2 + e2iϕf2 + f0 = 〈Fψθ, θ〉.
�
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