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Abstract

In this paper we study the problem of photoacoustic inversion in a
weakly attenuating medium. We present explicit reconstruction formu-
las in such media and show that the inversion based on such formulas
is moderately ill–posed. Moreover, we present a numerical algorithm
for imaging and demonstrate in numerical experiments the feasibility
of this approach.

1 Introduction

When a probe is excited by a short electromagnetic (EM) pulse, it absorbs
part of the EM-energy, and expands as a reaction, which in turn produces
a pressure wave. In photoacoustic experiments, using measurements of the
pressure wave, the ability of the medium to transfer absorbed EM-energy
into pressure waves is visualized and used for diagnostic purposes. Common
visualizations, see [31], are based on the assumptions that the specimen
can be uniformly illuminated, is acoustically non-attenuating, and that the
sound-speed and compressibility are constant.

In mathematical terms, the photoacoustic imaging problem consists in
calculating the compactly supported absorption density function h : R3 →
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R, appearing as a source term in the wave equation

∂ttp(t,x)−∆p(t,x) = δ′(t)h(x), t ∈ R, x ∈ R3,

p(t,x) = 0, t < 0, x ∈ R3,
(1.1)

from some measurements over time of the pressure p on a two-dimensional
manifold Γ outside of the specimen, that is outside of the support of the
absorption density function. This problem has been studied extensively in
the literature (see e.g. [17, 30, 16], to mention just a few survey articles).

Biological tissue has a non-vanishing viscosity, thus there is thermal con-
sumption of energy. These effects can be described mathematically by at-
tenuation. Common models of such are the thermo-viscous model [12], its
modification [14], Szabo’s power law [26, 25] and a causal modification [13],
Hanyga & Seredy’nska [7], Sushilov & Cobbold [24], Ursin & Toverud [29]
and the Nachman–Smith–Waag model [18]. Photoacoustic imaging in atten-
uating medium then consists in computing the absorption density function
h from measurements of the attenuated pressure pa on a surface containing
the object of interest. The attenuated pressure equation reads as follows

Aκ[pa](t,x)−∆pa(t,x) = δ′(t)h(x), t ∈ R, x ∈ R3,

pa(t,x) = 0, t < 0, x ∈ R3,
(1.2)

where Aκ is the pseudo-differential operator defined in frequency domain
(see Equation 1.4). The formal difference between Equation 1.1 and Equa-
tion 1.2 is that the second time derivative operator ∂tt is replaced by a
pseudo-differential operator Aκ.

The literature on photoacoustics in attenuating media concentrates on
time-reversal and attenuation compensation based on power laws: We men-
tion [3, 9, 10], and the k-wave toolbox implementation [4, 28]. Recently, also
iterative methods [6] and Neumann series methods [21, 1] have been used
for photoacoustic inversion in attenuating in media.

In [5] several attenuation laws from the literature have been cataloged
into two classes, namely weak and strong attenuation laws. Power laws
lead, in general, to severely ill–posed photoacoustic imaging problem, while
mathematically sophisticatedly derived models, like the Nachman-Smith-
Waag model [18], lead to moderately ill–posed problems.

The paper is based on the premise that photoacoustics is moderately ill–
posed, and we therefore concentrate on photoacoustic inversion in weakly
attenuating media, which have not been part of extensive analytical and
numerical studies in the literature. Another goal of this work is to derive
explicit reconstruction formulas for the absorption density function h in
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attenuating media. Previously there have been derived asymptotical expan-
sions in the case of small absorbers [2, 11].

Notation

We use the following notations:

• For s = 0, 1, 2, . . . we denote by S(R × Rs) the Schwartz-space of
complex valued functions and its dual space, the space of tempered
distribution, is denoted by S ′(R×Rs).
We abbreviate S = S(R×R3) and S ′ = S ′(R×R3).

• For φ ∈ S(R) we define the Fourier-transform by

φ̂(ω) =
1√
2π

∞∫
t=−∞

eiωtφ(t) dt,

and the one-dimensional inverse Fourier-transform is given by

ϕ̌(t) =
1√
2π

∞∫
ω=−∞

e−iωtϕ(ω) dω.

• Let ϕ ∈ S(R) and ψ ∈ S(R3). The Fourier-transform F [·] : S ′ → S ′
on the space of tempered distributions is defined by

〈F [u], ϕ⊗ ψ〉S′,S = 〈u, ϕ̌⊗ ψ〉S′,S . (1.3)

Note that for functions u ∈ S we have

〈F [u], ϕ⊗ ψ〉S′,S =

∫
R×R3

u(t,x)ϕ̌(t)ψ(x) dt dx .

We are identifying distributions and functions and we are writing in
the following for all u ∈ S ′

F [u](ω,x) =
1√
2π

∞∫
t=−∞

eiωtu(t,x) dt and

F−1[y](t,x) =
1√
2π

∞∫
ω=−∞

e−iωty(ω,x) dω.
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• We define the attenuation operator Aκ[·] : S ′ → S ′ by

〈Aκ[u], φ⊗ ψ〉S′,S = −
〈
u, κ̂2φ̂⊗ ψ

〉
S′,S

. (1.4)

This means that if u ∈ S(R×R3) then

Aκ[u](t,x) = −F−1[κ2F [u]](t,x), ω ∈ R, x ∈ R3. (1.5)

• I [·] denotes the time integration operator on the space of tempered
distributions and is given by

〈I [u], φ⊗ ψ〉S′,S = −
〈
u, φ′ ⊗ ψ

〉
S′,S , (1.6)

and we write formally for u ∈ S ′

u→ I [u](t,x) =

t∫
−∞

u(τ,x) dτ. (1.7)

• Equation 1.2 and Equation 1.1 (here κ(ω) = ω2) are understood in a
distributional sense, which means that for all φ ∈ S(R) and ψ ∈ S(R3)〈

pa, κ̂2φ̂⊗ ψ
〉
S′,S

+ 〈pa, φ⊗∆xψ〉S′,S

=φ′(0) 〈h, ψ〉S′(R3),S(R3) .

(1.8)

2 Attenuation

Attenuation describes the physical phenomenon that certain frequency com-
ponents of acoustic waves are attenuated more rapidly over time. Mathe-
matically this is encoded in the function κ defining the pseudo-differential
operator Aκ. A physically and mathematically meaningful κ has to satisfy
the following properties (see [5]):

Definition 2.1 We call a non-zero function κ ∈ C∞(R;H), where H =
{z ∈ C : =m z > 0} denotes the upper half complex plane and H its closure
in C, an attenuation coefficient if

1. all the derivatives of κ are polynomially bounded. That is, for every
` ∈ N0 there exist constants κ1 > 0 and N ∈ N such that

|κ(`)(ω)| ≤ κ1(1 + |ω|)N , (2.1)
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2. There exists a holomorphic continuation κ̃ : H→ H of κ on the upper
half plane, that is, κ̃ ∈ C(H;H) with κ̃|R = κ and κ̃ : H → H is
holomorphic, and there exists constants κ̃1 > 0 and Ñ ∈ N such that

|κ̃(z)| ≤ κ̃1(1 + |z|)Ñ for all z ∈ H.

3. κ is symmetric: That is, κ(−ω) = −κ(ω) for all ω ∈ R.

4. There exists some constant c > 0 such that the holomorphic extension
κ̃ of the attenuation coefficient κ satisfies

=m(κ̃(z)− z
c ) ≥ 0 for every z ∈ H.

Remark: The four conditions in Definition 2.1 on κ encode the following
physical properties of the attenuated wave equation (see [5]):

The condition Equation 2.1 in Definition 2.1 ensures that the product κ2u
of κ2 with an arbitrary tempered distribution u ∈ S ′ is again in S ′
and therefore, the operator Aκ : S ′ → S ′ is well-defined on the space
of tempered distributions.

The second condition guarantees that the solution of the attenuated wave
equation is causal.

Condition three ensures that real valued distributions (such as the pressure)
are mapped to real valued distributions. That is pa is real valued if
the absorption density h is real.

The forth condition guarantees that the solution pa ∈ S ′(R × R3) of the
equation Equation 1.2 propagates with finite speed c > 0. That is

supp pa ⊂ {(t, x) ∈ R×R3 : |x| ≤ ct+R}

whenever supph ⊂ BR(0).

In the literature there have been documented two classes of attenuation
models:

Definition 2.2 We call an attenuation coefficient κ ∈ C∞(R;H) (see Defi-
nition 2.1)
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• a weak attenuation coefficient if there exists a constant 0 ≤ k∞ ∈ R
and a bounded function k∗ ∈ C∞(R;C) ∩ L2(R;C) such that

κ(ω) = ω + ik∞ + k∗(ω) for all ω ∈ R. (2.2)

In particular, κ is constantly attenuating, if κ is a weak attenuation
coefficient with k∗ ≡ 0. That is, there exists a constant k∞ ≥ 0 such
that

κ(ω) = ω + ik∞ for all ω ∈ R. (2.3)

• κ is called strong attenuation coefficient if there exist constants κ0 > 0,
β > 0, and ω0 > 0

=mκ(ω) ≥ κ0 |ω|β for all ω ∈ R with |ω| ≥ ω0. (2.4)

For such attenuation coefficients we proved in [5] well-posedness of the
attenuated wave equation:

Lemma 2.3 Let κ be an attenuation coefficient. Then the solution pa of
the equation Equation 1.2 exists and is a real-valued tempered distribution
in R×R3.

Moreover, qa := I [pa] is a tempered distribution and satisfies the equa-
tion

Aκ[qa](t,x)−∆qa(t,x) = δ(t)h(x), t ∈ R, x ∈ R3,

qa(t,x) = 0, t < 0, x ∈ R3,
(2.5)

and in Fourier domain

κ2(ω)F [qa](ω,x) + ∆xF [qa](ω,x) = − 1√
2π
h(x). (2.6)

Proof: The first item has been proven in [5]. The second item is an imme-
diate consequence of the definition of a tempered distribution. �

Remark: Equation 2.5 has to be understood in a distributional sense: That
is qa ∈ S ′ and satisfies for every φ ∈ S(R) and ψ ∈ S(R3) the equation

〈Aκ[qa], φ⊗ ψ〉S′,S − 〈q
a, φ⊗∆xψ〉S′,S = φ(0) 〈h, ψ〉S′(R3),S(R3) . (2.7)

If κ(ω) = ω (that is the case of the standard wave equation) q = qa solves
the following equation in a distributional sense

∂ttq(t,x)−∆xq(t,x) = δ(t)h(x), t ∈ R, x ∈ R3,

q(t,x) = 0, t < 0, x ∈ R3,
(2.8)
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and its Fourier-transform F [q] satisfies the Helmholtz equation

ω2F [q](ω,x) + ∆xF [q](ω,x) = − 1√
2π
h(x), ω ∈ R, x ∈ R3. (2.9)

Again q ∈ S ′(R×R3) and satisfies Equation 2.8 in a distributional sense:

〈q, ∂ttφ⊗ ψ〉S′,S − 〈q, φ⊗∆xψ〉S′,S = φ(0) 〈h, ψ〉S′(R3),S(R3) . (2.10)

The solution of Equation 2.8 can also be written as the solution of the initial
value problem:

∂ttq(t,x)−∆xq(t,x) = 0, t > 0, x ∈ R3,

q(0,x) = 0, x ∈ R3,

∂tq(0,x) = h(x), x ∈ R3.

(2.11)

In the following we derive a functional relation between q and qa, which
is the basis of analytical back-projection formulas in attenuating media.

Theorem 2.4 Let φ ∈ S(R) and define

ν+[φ](τ) :=
1√
2π

∞∫
ω=−∞

e−iκ(ω)τ φ̂(ω) dω for all τ ≥ 0 .

Then there exists a sequence (am)m≥1 of real numbers satisfying
∑

m≥1 am2mj =

(−1)j and a function ϑ ∈ C∞0 (R;R) such that ϑ(τ) = 1 when |τ | < 1 and
ϑ(τ) = 0 when |τ | ≥ 2 such that the function ν : R→ C, defined by

ν(τ) := ν[φ](τ) :=

{
ν+[φ](τ) for all τ ≥ 0,∑∞

m=0 amν+[φ](−2mτ)ϑ(−2mτ) for all τ < 0,
(2.12)

is an element of the Schwartz space S(R).

Proof: 1. Using that for all k ∈ N0

ψk(τ, ω) := ∂kτ e
−iκ(ω)τ = (−i)kκ(ω)

k
e−iκ(ω)τ for all ω, τ ∈ R,

it follows from Definition 2.2 that, uniformly in τ , for all ω ∈ R∣∣∣ψk(τ, ω)φ̂(ω)
∣∣∣ ≤ |κ(ω)|k e−=mκ(ω)τ

∣∣∣φ̂(ω)
∣∣∣ ≤ |κ(ω)|k

∣∣∣φ̂(ω)
∣∣∣ .
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From Equation 2.1 and φ̂ ∈ S(R) (in particular κ ∈ L∞(R;C) and

φ̂ ∈ C(R;C)), ω → |κ(ω)|k
∣∣∣φ̂(ω)

∣∣∣ ∈ L1(R;R). Thus by interchanging

integration and differentiation it follows that for R→∞

dkν+[φ](τ) =
1√
2π

∞∫
ω=−∞

ψk(τ, ω)φ̂(ω) dω for all τ ≥ 0 (2.13)

and that these functions are continuous. Thus ν+[φ] ∈ C∞([0,∞);C).

2. From [22] it follows that ν[φ] defined in Equation 2.12 is in C∞(R;C)
and extends the function ν+[φ] defined on [0,∞).

3. We are proving that ν+[φ] and all its derivative are faster decaying
than polynomials in τ for τ → +∞.

For this purpose we use the stationary phase method summarized in
Theorem A.1:

Let θ ∈ C∞0 (R;R) be a mollifier satisfying θ(ω) = 1 when |ω| < 1 and
θ(ω) = 0 when |ω| ≥ 2. For k ∈ N and R > 0 fixed, we apply the
stationary phase method with

ω → f(ω) = −κ(ω) and ω → gR(ω) := ψk(τ, ω)θ(ω/R).

Below we are verifying the assumptions of the stationary phase method:

• f ∈ C∞(R;C) by Definition 2.1 and gR ∈ C∞0 (R;C), because it is
the product of a C∞(R;C) function and the compactly supported
function ω → θ(ω/R).

• The second property

=m f = =mκ ≥ 0 . (2.14)

is an immediate consequence of the assumption κ ∈ C∞(R;H) in
Definition 2.1.

Thus Equation A.1 can be applied with the functions f = −κ and gR,
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and using Lemma A.2 Equation A.2 it follows that

τ l

∣∣∣∣∣∣
∞∫

ω=−∞

eiτf(ω)gR(ω) dω

∣∣∣∣∣∣
≤C1

l∑
α=0

sup
ω∈R
|dαgR(ω)| (|f ′(ω)|2 + =m f(ω))α/2−l

≤C1

l∑
α=0

sup
ω∈R
|dαgR(ω)|Cα/2−l2 .

(2.15)

Next, we consider the limit R → ∞. Because θ ∈ C∞0 (R;R) and
g ∈ S(R) and

dαgR(ω) =
α∑
β=0

dα−βg(ω)

(
α

β

)
1

Rβ
dβθ(ω),

it follows that

|dαgR(ω)− dαg(ω)| ≤

∣∣∣∣∣∣
α∑
β=1

dα−βg(ω)

(
α

β

)
1

Rβ
dβθ(ω)

∣∣∣∣∣∣ = O(R−1).

and from Equation 2.14 and the assumption τ ≥ 0 it follows∣∣∣∣∣∣
∞∫

ω=−∞

eiτf(ω)gR(ω) dω −
∞∫

ω=−∞

eiτf(ω)g(ω) dω

∣∣∣∣∣∣
≤

∞∫
ω=−∞

e−τ =m f(ω) |gR(ω)− g(ω)| dω ≤
∞∫

ω=−∞

|gR(ω)− g(ω)| dω.

Using the definition of gR it follows that
∞∫

ω=−∞

|gR(ω)− g(ω)| dω ≤
∞∫

ω=−∞

|g(ω)| |1− θ(ω/R)| dω

≤
∫

|ω|≥R

|g(ω)| dω.

Since g ∈ S(R) the last integral tends to 0 for R → ∞ and thus
Equation A.1 holds even for the functions ω → f(ω) = −κ(ω) and
ω → g(ω) = ψk(τ, ω), although they are not satisfying the assumptions
of Theorem A.1. �
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Because (according to Theorem 2.4), for every φ ∈ S(R), ν[φ] ∈ S(R),
the operator from the following definition is well-defined.

Definition 2.5 The attenuation solution operator B [·] : S ′ → S ′ is defined
by

〈B [ρ] , φ⊗ ψ〉S′,S = 〈ρ, ν[φ]⊗ ψ〉S′,S
for all ρ ∈ S ′ and φ ∈ S(R), ψ ∈ S(R3) .

(2.16)

Remark: In a weakly attenuating medium κ(ω) = ω + ik∞ + k∗(ω), and
therefore, for every t, τ ∈ R

k(t, τ) := F−1[ei(·+iκ∞+k∗(·))τ ](t)

= e−k∞τF−1[eik∗(·)τ ](t− τ)

= e−k∞τF−1[1 + (eik∗(·)τ − 1)](t− τ)

=
√

2πe−k∞τδ(t− τ) + e−k∞τF−1[eik∗(·)τ − 1](t− τ).

(2.17)

Because there exists a constant C > 0 such that∣∣∣eik∗(ω)τ − 1
∣∣∣ ≤ C |k∗(ω)τ | for all ω, τ ∈ R,

it follows from Definition 2.2 (stating that k∗ ∈ L2(R;C)) and Plancharel’s
identity that

ω → eik∗(ω)τ − 1 ∈ L2(R;C) and

t→ e−k∞τF−1[eik∗(·)τ − 1](t− τ) ∈ L2(R;C) for all τ ∈ R .

Now, assume that ρ ∈ C0(R × R3;C) ∩ S ′ with support in [0,∞) × R3,
φ ∈ S(R) and ψ ∈ S(R3)

〈ρ, ν[φ]⊗ ψ〉S′,S

=

∫
R3

∞∫
τ=−∞

ρ(τ,x)ν[φ](τ)ψ(x) dτ dx

=
1√
2π

∫
R3

ψ(x)

∞∫
τ=−∞

ρ(τ,x)

∞∫
ω=−∞

eiκ(ω)τ φ̂(ω) dω dτ dx .
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Using Parseval’s identity we get

〈ρ, ν[φ]⊗ ψ〉S′,S

=
1√
2π

∫
R3

∞∫
τ=−∞

ρ(τ,x)ψ(x)

∞∫
t=−∞

k(t, τ)φ(t) dt dτ dx

=

∫
R3

∞∫
t=−∞

ψ(x)φ(t)

 1√
2π

∞∫
τ=−∞

k(t, τ)ρ(τ,x) dτ


︸ ︷︷ ︸

=B[ρ](t,x)

dt dx.

(2.18)

Then for ρ ∈ C0(R × R3;C) ∩ S ′ it follows from Equation 2.18 and Equa-
tion 2.17 that

ek∞tB [ρ] (t,x) = (Id+ T )[ρ](t,x) , (2.19)

where

T [ρ](t,x) =
1√
2π

∞∫
τ=−∞

ek∞(t−τ)F−1[eik∗(ω)τ − 1](t− τ)ρ(τ,x) dτ . (2.20)

Theorem 2.6 Let q = I [p] and qa = I [pa], where p and pa are the so-
lutions of the equations Equation 1.1 and Equation 1.2, respectively. Then

qa = B [q] . (2.21)

Proof: Let φ ∈ S(R) and ψ ∈ S(R3). Then, from Equation 2.21, the defi-
nition of the Fourier-transform Equation 1.3, the definition of B [·] in Equa-
tion 2.16, because ν[φ] ∈ S(R) (see Equation 2.12) and because q solves
Equation 2.8 it follows that

〈Aκ[B [q]], φ⊗ ψ〉S′,S − 〈B [q] , φ⊗∆xψ〉S′,S

=−
〈
B [q] , κ̂2φ̂⊗ ψ

〉
S′,S
− 〈B [q] , φ⊗∆xψ〉S′,S

=−
〈
q, ν

[
κ̂2φ̂

]
⊗ ψ

〉
S′,S
− 〈q, ν[φ]⊗∆xψ〉S′,S

=−
〈
q, ν

[
κ̂2φ̂

]
⊗ ψ

〉
S′,S
− 〈q, ∂ττν[φ]⊗ ψ〉S′,S

+ ν[φ](0) 〈h, ψ〉S′(R3),S(R3)

(2.22)

We are representing every term on the right hand side:
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1. From Theorem 2.4 it follows that

ν[φ](0) =
1√
2π

∞∫
ω=−∞

φ̂(ω) dω =
ˇ̂
φ(0) = φ(0)

and thus

ν[φ](0) 〈h, ψ〉S′(R3),S(R3) =φ(0) 〈h, ψ〉S′(R3),S(R3) .

2. The first term on the right hand side of Equation 2.22 can be repre-
sented as follows:〈
q, ν

[
κ̂2φ̂

]
⊗ ψ

〉
S′,S

=

〈
q,

1√
2π

∞∫
ω=−∞

κ2(ω)e−iκ(ω)·φ̂(ω) dω ⊗ ψ

〉
S′,S

.

3. For the second term we find that

〈q, ∂ττν[φ]⊗ ψ〉S′,S =

〈
q,

1√
2π

∞∫
ω=−∞

∂ττe
−iκ(ω) · φ̂(ω) dω ⊗ ψ

〉
S′,S

=−

〈
q,

1√
2π

∞∫
ω=−∞

κ2(ω)e−iκ(ω)·φ̂(ω) dω ⊗ ψ

〉
S′,S

.

The sum of the first and second term vanishes and thus from Equation 2.22
it follows that

〈Aκ[B [q]], φ⊗ ψ〉S′,S − 〈B [q] , φ⊗∆xψ〉S′,S
=φ(0) 〈h, ψ〉S′(R3),S(R3) ,

which shows that B [q] solves Equation 2.7. Since the solution of this equa-
tion is unique it follows that qa = B [q]. �

3 Reconstruction formulas

In this section we provide explicit reconstruction formulas for the absorp-
tion density h (the right hand side of Equation 1.2) in attenuating me-
dia. The basis of these formulas are exact reconstruction formulas in non-
attenuating media.
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In the case of non-attenuating media the problem of photoacoustic to-
mography consists in determining the absorption density h from measure-
ment data of

m(t, ξ) := p(t, ξ) for all t > 0, ξ ∈ Γ ,

where Γ denotes the measurement surface and p is the solution of Equa-
tion 1.1.

LetW be the operator which maps h to p. The most universal (meaning
applicable for a series of measurement geometries Γ) formula for W−1 [·]
is due to Xu & Wang [32]. Several different formulas of such kind were
presented and analyzed in [17, 19, 15]. The formula of Xu & Wang [32] in
R3 reads as follows:

h(x) =
2

Ω0

∫
ξ∈Γ

p(|ξ − x|, ξ)− |ξ − x|∂p∂t (|ξ − x|, ξ)

|ξ − x|2

(
nξ ·

ξ − x

|ξ − x|

)
ds(Γ)

(3.1)
where Ω0 is 2π for a planar geometry and 4π for cylindrical and spherical
geometries and nξ is the outer normal vector for the measurement surface
Γ.

From Theorem 2.6 we get an explicit reconstruction formula in the case
of attenuating media:

Theorem 3.1 Under the assumption that the universal back-projection can
be applied in the non-attenuating case, we have

h =W−1
[
∂tB−1 [(t, ξ)→ qa(t, ξ)]

]
. (3.2)

In the following we study the attenuation operator B [·] and its inverse
in weakly attenuating media.

From Equation 2.19 it follows

h =W−1
[
∂t(Id+ T )−1[(t, ξ)→ ek∞tqa(t, ξ)]

]
. (3.3)

In particular, in the case of a constantly attenuating medium the kernel of
the integral operator B [·] simplifies to (k∗(ω) = 0)

1√
2π
F−1[eiκ(·)τ ](t) =

1√
2π
e−k∞τF−1[ei·τ ](t) = e−k∞τδ(t− τ).

Thus from Equation 2.18 it follows that

B [q] (t,x) =
1√
2π
e−k∞tq(t,x) . (3.4)
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Thus the operator B [·] is a multiplication operator and the reconstruc-
tion formula Equation 3.3 rewrites to

h =W−1
[
(t, ξ)→ ∂t

(
ek∞tqa(t, ξ)

)]
. (3.5)

Using that q = ek∞tqa, we get explicit formulas for the time derivatives
of q:

∂tq(t, ξ) = ek∞t (k∞q
a(t, ξ) + ∂tq

a(t, ξ)) ,

∂ttq(t, ξ) = ek∞t
(
k2
∞q

a(t, ξ) + 2k∞∂tq
a(t, ξ) + ∂ttq

a(t, ξ)
)
.

Therefore, inserting the representation of the derivatives in Equa-
tion 3.1 we get

q̃a(t, ξ) =∂tq
a(t, ξ)− t∂ttqa(t, ξ) ,

h(x) =
2

Ω0

∫
ξ∈Γ

q̃a(|ξ − x|, ξ)

|ξ − x|2

(
nξ ·

ξ − x

|ξ − x|

)
ds(Γ). (3.6)

4 Numerical experiments

In this section we describe an algorithm for photoacoustic inversion in a
weakly attenuating medium, in which case the attenuation coefficient is
ω → κ(ω) = ω + ik∞ + k∗(ω), with k∗ ∈ L2(R;C) ∩ C∞(R;C).

The numerical inversions and examples will be performed in R2 for the
two-dimensional attenuated wave equation. This is consistent with a dis-
tributional solution of Equation 1.2 in R3 where (x, y, z) → h(x, y) is con-
sidered a distribution in R3, which is independent of the third variable. In
this case pa can be considered a two-dimensional distribution Equation 1.2,
which solves the two-dimensional attenuated wave equation:

Aκ[pa](t, x1, x2)−∆pa(t, x1, x2) = δ′(t)h(x1, x2), t ∈ R, (x1, x2) ∈ R2,

pa(t, x1, x2) = 0, t < 0, (x1, x2) ∈ R2.
(4.1)

The two-dimensional universal back-projection formula from [3], which is
used below, is given by

h(x) = − 4

Ω0

∫
ξ∈Γ

∞∫
t=|ξ−x|

(
(∂t(t

−1p))(t, ξ)√
t2 − |ξ − x|2

dt

)
nξ · (ξ − x) ds(Γ), (4.2)
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where Ω0 is 2π for a line measurement geometry and 4π for a circular mea-
surement geometry, nξ is the outer normal vector for the curve Γ.

We assume that the attenuated photoacoustic pressure pa is measured
on a set of N points on a measurement curve Γ at NT uniformly distributed
time points

ti = i∆T , i = 1, . . . , NT where ∆T =
T

NT
.

In our experiments Γ will either be a circle of radius R, where the N mea-
surement points are radially uniformly distributed,

ξj = R(cos(j∆ξ), sin(j∆ξ)), j = 0, 1, . . . , N − 1 where ∆ξ =
2π

N

or on a segment of length 2l of the x-axis, in which case

ξj = (2j∆x − 1, 0), where ∆x = l/N.

In this case we consider h to be supported in the upper half-space.
The evaluation of the integral operator I [.] is numerically realized as

follows: For every measurement point
{
ξj : j = 0, 1, . . . , N − 1

}
qa(ti, ξj) = ∆T

i∑
n=1

pa(tn, ξj). (4.3)

The relation qa = B [q] from Equation 2.21 is realized numerically as follows:
Because we assume a weakly attenuation medium B [·] (defined in Equa-
tion 2.16) is an integral operator with kernel k defined in Equation 2.17. We
use the Taylor-series expansion of the exponential function τ → eik∗(ω)τ and
get

F−1[eik∗(ω)τ − 1](t) =
∞∑
k=1

τk

k!
F−1[(ik∗(ω))k](t). (4.4)

Inserting Equation 4.4 into Equation 2.20 and taking into account Equa-
tion 2.19 and Equation 2.21 we get for all i = 1, . . . , NT that

qa(ti, ξj)

=e−k∞tiq(ti, ξj) +
1√
2π

∞∫
τ=−∞

e−k∞τ
∞∑
k=1

τk

k!
rk(ti − τ)q(τ, ξj) dτ,

(4.5)

where
s→ rk(s) := F−1[ikkk∗(ω)](s).
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The integral on the right hand side of Equation 4.5 is approximated for
numerical purposes as follows:

∆T√
2π

NT∑
m=1

e−k∞tm
∞∑
k=1

tkm
k!
rk(ti − tm)q(tm, ξj). (4.6)

This expression is represented as a matrix-vector multiplication with vector
~qj = (q(tm, ξj))m=1,...,NT

and matrix with entries

bim =
∆T√

2π
e−k∞tm

∞∑
k=1

tkm
k!
rk(ti − tm) with 1 ≤ i ≤ NT , and 1 ≤ m ≤ NT .

(4.7)
Then it follows from Equation 4.5 that

~qaj = (diag e−k∞ti +B)~qj , (4.8)

which is the discretized version of Equation 2.19. To get numerical values
for the entries of B, the terms rk(ti− tm) have to be numerically calculated.
For k = 1,

r1(t) =
1√
2π

∞∫
ω=−∞

ik∗(ω)e−iωt dω, (4.9)

which can be evaluated by numerical integration for all ti. When k > 1, rk
is a convolution of rk−1 and r1 and thus

rk(t) =
1√
2π

(r1 ∗ rk−1)(t) =
1√
2π

t∫
0

r1(τ)rk−1(t− τ) dτ. (4.10)

Numerically, we approximate the convolution by

rk(ti) ≈
∆T√

2π

i∑
m=1

r1(tm)rk−1(ti − tm).

We summarize the inversion process in a pseudo-code, where we truncate
the Taylor-series Equation 4.4 at the tenth coefficient (the number ten has
been found from numerical simulations):
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Data: The measurements are denoted by P ai,j = pa(ti, ξj) for all
i = 1, . . . , NT and j = 0, . . . , N − 1

Result: Numerical calculation of the absorption density hl = h(xl)
for 1 ≤ i ≤ NT do

ri,1 ← 1√
2π

∞∫
ω=−∞

e−iωti(ik∗(ω)) dω;

end
for 1 ≤ k ≤ 10 do

for 1 ≤ m ≤ n ≤ NT do
(Fk)i,m ← 1√

2π
ri−m,kt

k
me
−k∞tm ;

end
for 1 ≤ i ≤ NT do

ri,k+1 = ∆T√
2π
· (
∑i

m=1 rm,kri−m,k);

end

end

B ← diag(e−k∞t1 , e−k∞t2 , . . . ) + ∆T
∑10

k=1
Fk
k! ;

for 1 ≤ i ≤ NT do
Qai,j ← Qai−1,j + ∆TP

a
i,j ;

end
Q← QaB−1;
for 1 ≤ i ≤ NT do

Pi,j ← Qi,j−Qi−1,j

∆T
;

end
Calculate hl by applying the back-projection operator W−1 [·] on
Pi,j ;

Algorithm 1: Pseudocode for reconstructing the absorption density h.

Numerical experiments

We assume that h is a function with compact support in R2. We calculated
p, the solution of Equation 1.1 using the k-wave toolbox [27]. By integrating
p at the points ξj , j = 0, . . . , N − 1 over time with Equation 4.3 we get
q(ti, ξj) for i = 1, . . . , NT and j = 0, . . . , N − 1. Then we find qa(ti, ξj) by
matrix-vector multiplication Equation 4.8.

In order to avoid inverse crimes we used different discretization points
in space and time for the simulation of the forward data and the inversion.
The forward problem is simulated with NT = 500 and N = 896, while the
inverse problem is solved with NT = 443 and N = 849. The absorption
density function h : R2 → R with support in (−0.8, 0.8)2 is the Shepp-
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Logan phantom [23]. In all numerical experiments the material parameter
k∞ = 0.45.

Circular measurement geometry

In these examples the measurement geometry is a circle with radius R =
1.7 on which there are recorded data on N = 849 uniformly distributed
measurement points. Moreover, the time length is 6 and thus ∆T = 6/NT =
6/443.

We consider a constantly attenuating medium, with attenuation coeffi-
cient κ(ω) = ω+ik∞. Figure 1 shows the ground truth (top left) and the sim-
ulated pressure data pa on Γ over time. Two reconstructions are presented:
The first one is obtained by applying the universal back-projection formula
Equation 4.2 (middle left), while the middle right image shows the recon-
struction obtained with Algorithm 1. The quantitative values of ground
truth and the two reconstructions are plotted on the bottom.

Next we consider the Nachman, Smith and Waag (NSW) [18] attenuation
model:

κ(ω) = ω

√
1− iωτ̃

1− iωτ
= ω +

τ − τ̃
2τ τ̃

i + k∗(ω) (4.11)

where k∗(ω) = O(|ω|−1). Therefore, κ is a weak attenuation coefficient with
k∞ = τ−τ̃

2τ τ̃ . In Figure 2 we present ground truth, simulated measurements
pa, and compare three imaging techniques:

• Applying the universal back-projection formulaW−1 [pa] Equation 4.2
(thus neglecting the attenuation).

• The compensated back-projection formula

W−1
[
(t, ξ) 7→ ∂t

(
ek∞tqa(t, ξ)

)]
, (4.12)

which neglects k∗(ω) but takes into account k∞.

• Reconstruction using Equation 3.2 with the numerical code described
in Algorithm 1.

The parameters of attenuation coefficient in the NSW model are τ̃ = 0.1
and τ = 0.11. For small frequencies the NSW coefficients behaves like a
power law of order 2. However, asymptotically, for large frequencies, it be-
haves like ω + τ−τ̃

2τ τ̃ i. The NSW-coefficient has been plotted in Figure 3. In
order to demonstrate the stability of the algorithm, we also performed re-
constructions from noisy data, where, uniformly and identically distributed
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noise is added with maximal value equal to 20% of the maximal intensity
at each measurement point. The reconstruction results are depicted in the
last image of Figure 1 and Figure 2, respectively.
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Figure 1: Measurements along a circle and constantly attenuating model.
Row 1, Left: Ground truth. Row 1, Right: the simulated pressure data
pa. Rows 2 and 3: Reconstruction by universal back-projection (not taking
into account attenuation), and by Algorithm 1 with noise-free data and 20%
noise. Row 4: Cross section through ground truth and reconstructions.
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Figure 2: Measurements along a circle and NSW model. Row 1, Left:
Ground truth. Row 1, Right: the simulated pressure data pa. Rows 2 and
3: Reconstruction by universal back-projection (not taking into account at-
tenuation), by compensated attenuation Equation 4.12 and by Algorithm 1
with noise-free data and 20% noise. Row 4: Cross section through ground
truth and reconstructions.
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Figure 3: Blue curve corresponds to =mκ(ω) of NSW model. Red curve
corresponds to power law 0.005ω2.

Concerning the stability of our algorithm, we notice that in all our nu-
merical experiments the condition number of the matrix diag e−k∞ti + B
in Equation 4.8 is not too large, and does not exceed 200. Moreover, the
condition number does not increase significantly when NT increases. This
means that the inversion of the matrix diag e−k∞ti +B is quite stable.

Essentially the algorithm consist of the following two parts: In a first
step the operator B−1 [·] is applied to the data, which is followed by the
backprojection. The first part is implemented as a matrix multiplication by
(diag e−k∞ti + B)−1. Numerical simulations show that this matrix multi-
plication is of negligible complexity compared to the backprojection part.
Thus our algorithm has roughly the same complexity as the classical back-
projection for no-attenuating media. The algorithm shown in [6] also has
a similar complexity with ours (see Remark 3.2 in [6]). In our numerical
experiments, the reconstruction process takes about 150 seconds.

For the resolution, from our reconstructions in Figures 1 and 2, we can
see that our algorithm improves the image resolution compared with direct
application of the universal back-projection algorithm and the compensated
attenuation algorithm, as we see in rows 2 and 3 of Figures 1 and 2. Fur-
thermore, compared with [6, 21] our algorithm achieves a similar level of
image quality with a coarser discretization (the size of our figures is 2002

pixels compared to 4002 − 6002 pixels in [6, 21]).

Measurements on a line

The measurement points are N = 849 uniformly distributed on a line seg-
ment with length l = 10.2. The distance of the line to the center of the
phantom is 1.7. The time length is 8 and thus ∆T = 8/443.

We consider a constantly attenuating medium, with attenuation coeffi-
cient κ(ω) = ω + ik∞. Figure 4 shows the ground truth (top left) and the
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simulated pressure data pa on Γ over time. Two reconstructions are pre-
sented: The first one is obtained by applying the universal back-projection
formula Equation 4.2 (middle left) and the middle right image shows the re-
construction obtained with Algorithm 1. The quantitative values of ground
truth and the two reconstructions are plotted on the bottom.

In Figure 5 we present ground truth, simulated measurements pa using
NSW model, and compare three imaging techniques, the universal back-
projection formula neglecting attenuation, the compensated back-projection
formula Equation 4.12, which neglects k∗(ω) but takes into account k∞, and
reconstruction with Algorithm 1. The parameters of the NSW attenuation
coefficient are again τ̃ = 0.1 and τ = 0.11. The reconstruction results from
noisy data are depicted in the last image of Figure 4 and Figure 5, where
uniformly distributed noise is added with a variance of 20% of the maximal
intensity value. Numerical results show that the algorithm is quite stable
even with 20% noise.

23



−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

 

 

true h(x)

B
p
[pa]

Our formula

Figure 4: Measurements along a line and constantly attenuating model.
Row 1, Left: Ground truth. Row 1, Right: the simulated pressure data
pa. Rows 2 and 3: Reconstruction by universal back-projection (not taking
into account attenuation), and by Algorithm 1 with noise-free data and 20%
noise. Row 4: Cross section through ground truth and reconstructions.
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Figure 5: Measurements along a line and NSW model. Row 1, Left: Ground
truth. Row 1, Right: the simulated pressure data pa. Rows 2 and 3: Recon-
struction by universal back-projection (not taking into account attenuation),
by compensated attenuation Equation 4.12 and by Algorithm 1 with noise-
free data and 20% noise. Row 4: Cross section through ground truth and
reconstructions.
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Conclusion

We have presented explicit reconstruction formulas for photoacoustic imag-
ing in acoustically attenuating media, which are based on the universal back-
projection formula. We have presented a numerical algorithm and showed
numerical reconstructions, which were compared with attenuation compen-
sation techniques. The numerical simulations show that the new technique
can produce better visualization in 2D with a similar numerical complexity.
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Then there exists a constant C1 > 0 such that for all l ∈ N and all τ ≥ 0,

τ l

∣∣∣∣∣∣
∞∫

ω=−∞

eiτf(ω)g(ω) dω

∣∣∣∣∣∣
≤C1

l∑
α=0

sup
ω∈R
|dαg(ω)| (|f ′(ω)|2 + =m f(ω))α/2−l.

(A.1)

Lemma A.2 Let κ be an attenuation coefficient (cf. Definition 2.1), then
there exists a constant C2 > 0 such that∣∣κ′(ω)

∣∣2 + =mκ(ω) ≥ C2 . (A.2)

Proof: The fourth assumption of Definition 2.1 ensures that the maximal
speed of propagation c is finite. Then from [5, Proposition 2.9], it follows
that the holomorphic extension κ̃ (cf. Definition 2.1)of κ to the upper half
plane can be represented as

κ̃(z) = Az +B +

∞∫
ν=−∞

1 + zν

ν − z
dσ(ν), z ∈ H, (A.3)

where A = 1
c > 0, B ∈ R are constants, and σ : R → R is a monotonically

increasing function of bounded variation.
From [20, Formula (C9)] we know that if κ̃ satisfies Equation A.3, then

ν → =mκ(ν) = π(1 + ν2)σ′(ν) for all ν ∈ R . (A.4)

Because, by assumption κ ∈ C∞(R;C), and because σ : R→ R is a mono-
tonically increasing function of bounded variation, we conclude from Equa-
tion A.4 that σ′ ∈ C∞(R;R) ∩ L1(R;R). Moreover, for all fixed z ∈ H,

because ν − z 6= 0 for all ν ∈ R, we have ν → 1+ν2

(ν−z)2 is uniformly bounded

and thus the function

ν → 1 + ν2

(ν − z)2
σ′(ν) ∈ L1(R;C) .

Differentiation of Equation A.3 with respect to z and taking into account
that σ′ ∈ C∞(R;R) ∩ L1(R;R) yields

κ̃′(z) = A+

∞∫
ν=−∞

(1 + ν2)

(ν − z)2
σ′(ν) dν, z ∈ H.

30



Let now z = ω + iη and take real parts in the above formula to get

<e κ̃′(ω + iη) = A+

∞∫
ν=−∞

(1 + ν2)
(ν − ω)2 − η2

((ν − ω)2 + η2)2
σ′(ν) dν. (A.5)

We are proving now that there exists a constant Cr > 0 such that

<eκ′(ω) = lim
η→0+

<e κ̃′(ω + iη) ≥ A− 2(1 + Cr)
√

(1 + ω2)σ′(ω). (A.6)

Let
A+ :=

{
ν ∈ R : |ν − ω|2 ≥ (1 + ω2)σ′(ω)

}
,

A− :=
{
ν ∈ R : |ν − ω|2 < (1 + ω2)σ′(ω)

}
,

A0 :=
{
ν̂ ∈ R : |ν̂|2 < (1 + ω2)σ′(ω)

}
.

For ω ∈ R and η > 0 let

ν → ρω,η(ν) := (1 + ν2)
(ν − ω)2 − η2

((ν − ω)2 + η2)2
σ′(ν) for all ω 6= ν ∈ R.

The function ρω,η can be estimated as follows:

ρω,η(ν) =
1 + ν2

(ν − ω)2 + η2

(ν − ω)2 − η2

(ν − ω)2 + η2︸ ︷︷ ︸
≤1

σ′(ν)

Moreover, since ν ∈ A+, we find that

1 + ν2

(ν − ω)2 + η2
≤ 1 + ν2

(ν − ω)2
=

1 + ν2

1 + (ν − ω)2︸ ︷︷ ︸
≤2(1+ω2)

1 + (ν − ω)2

(ν − ω)2︸ ︷︷ ︸
≤1+((1+ω2)σ′(ω))−1

,

where the inequality 1+ν2

1+(ν−ω)2
≤ 2(1 + ω2) is a consequence of the algebraic

identity 2(1+ω2)(1+(ν−ω)2)− (1+ν2) = 2ω2(ν−ω)2 +(ν−2ω)2 +1 > 0.
Therefore with Cω = 2(1 + ω2)(1 + ((1 + ω2)σ′(ω))−1) it follows that

|ρω,η(ν)| ≤ Cωσ′(ν),

and because σ′ ∈ L1(R;R) the latter means that the functions {ρω,η : η > 0}
are uniformly dominated by an L1(R;R) function. Therefore we can apply
the dominated convergence theorem and get

lim
η→0+

∫
A+

ρω,η(ν) dν =

∫
A+

ρω,0(ν) dν ≥ 0. (A.7)
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To estimate
∫
A− ρω,η(ν) dν, we use the Taylor’s expansion of ω → (1 +

(ν̂ + ω)2)σ′(ν̂ + ω) and get

(1+(ν̂+ω)2)σ′(ν̂+ω) = (1+ω2)σ′(ω)+ ν̂
(
(1 + ω2)σ′′(ω) + 2ωσ′(ω)

)
+r(ν̂),

(A.8)
with

|r(ν̂)| ≤ Crν̂2 for all ν̂ ∈ A−.
Using the substitution ν → ν̂ := ν − ω and Equation A.8 we get

lim
η→0+

∫
A−

ρω,η(ν) dν

= lim
η→0+

∫
A0

(1 + (ν̂ + ω)2)σ′(ν̂ + ω)
ν̂2 − η2

(ν̂2 + η2)2
dν̂

= (1 + ω2)σ′(ω) lim
η→0+

∫
A0

ν̂2 − η2

(ν̂2 + η2)2
dν̂

+
(
(1 + ω2)σ′′(ω) + 2ωσ′(ω)

)
lim
η→0+

∫
A0

ν̂
ν̂2 − η2

(ν̂2 + η2)2
dν̂

+ lim
η→0+

∫
A0

r(ν̂)
ν̂2 − η2

(ν̂2 + η2)2
dν̂

(A.9)

Plugging in the integral formulas

a∫
−a

ν2 − η2

(ν2 + η2)2
dν =

−2a

a2 + η2
and

a∫
−a

ν
ν2 − η2

(ν2 + η2)2
dν = 0

into Equation A.9 we get for the first term with a =
√

(1 + ω2)σ′(ω)

(1 + ω2)σ′(ω) lim
η→0+

∫
A0

ν̂2 − η2

(ν̂2 + η2)2
dν̂

= (1 + ω2)σ′(ω) lim
η→0+

−2
√

(1 + ω2)σ′(ω)

(1 + ω2)σ′(ω) + η2
= −2

√
(1 + ω2)σ′(ω),

(A.10)

and the second integral term in Equation A.9 is vanishing, and for the third
term we get∣∣∣∣∣∣

∫
A0

r(ν̂)
ν̂2 − η2

(ν̂2 + η2)2
dν̂

∣∣∣∣∣∣ ≤ Cr
∫
A0

1 dν̂ ≤ 2Cr
√

(1 + ω2)σ′(ω). (A.11)
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Using the estimates Equation A.10 and Equation A.11 in Equation A.9 we
get

lim
η→0+

∫
A−

ρω,η(ν) dν ≥ −2(1 + Cr)
√

(1 + ω2)σ′(ω). (A.12)

Considering the integral Equation A.5 as the sum of the two integrals over
A± and using the estimates Equation A.7 and Equation A.12 we get

lim
η→0+

<e κ̃′(ω + iη) ≥ A− 2(1 + Cr)
√

(1 + ω2)σ′(ω).

Therefore, | <eκ′(ω)| ≥ max(0, A− 2(1 +Cr)
√

(1 + ω2)σ′(ω)) and together
with Equation A.4 it follows that

|κ′(ω)|2 + =mκ(ω)

≥π(1 + ω2)σ′(ω) + | <eκ′(ω)|2

≥π(1 + ω2)σ′(ω) +
(

max
{

0, A− 2(1 + Cr)
√

(1 + ω2)σ′(ω)
})2

≥ πA2

4(1 + Cr)2 + π︸ ︷︷ ︸
:=C2

,

where in the last inequality we estimated the minimum of the quadratic
function ρ→ A2 − 4A(1 + Cr)ρ+ (4(1 + Cr)

2 + π)ρ2. �
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