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Abstract

We consider isogeometric functions and their derivatives. Given a geometry mapping, which

is defined by an n-dimensional NURBS patch in Rd, an isogeometric function is obtained by

composing the inverse of the geometry mapping with a NURBS function in the parameter

domain. Hence an isogeometric function can be represented by a NURBS parametrization

of its graph. We take advantage of the projective representation of the NURBS patch as a

B-spline patch in homogeneous coordinates.

We derive a closed form representation of the graph of a partial derivative of an isoge-

ometric function. The derivative can be interpreted as an isogeometric function of higher

degree and lower smoothness on the same piecewise rational geometry mapping, hence the

space of isogeometric functions is closed under differentiation. We distinguish the two cases

n = d and n < d, with a focus on n = d− 1 in the latter one.

As a first application of the presented formula we derive conditions which guarantee

C 1 and C 2 smoothness for isogeometric functions on several singularly parametrized planar

and volumetric domains as well as on embedded surfaces. It is interesting to note that the

presented conditions not only depend on the general structure of the patch, but on the exact

representation of the interior of the given geometry mapping.

Keywords: isogeometric analysis, isogeometric function, derivative, NURBS, singular

patch, smoothness, embedded manifold

1. Introduction

The aim of this work is to contribute to a better understanding of the properties of

derivatives of the functions that occur in isogeometric analysis. Our starting point is the
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notion of isogeometric functions. It is inspired by the seminal article by Hughes et al. (2005),

which introduced the framework of isogeometric analysis (IgA). An isogeometric function is

the composition of a NURBS function defined on some parameter domain with the inverse of

a NURBS geometry mapping defined on the same parameter domain. Ideally, the geometry

mapping is directly obtained from the NURBS representations in an existing CAD model. In

this case, the numerical simulations can be performed directly based on the exact geometric

representations provided by the CAD framework.

In IgA, the space of isogeometric functions is used to discretize and solve a partial

differential equation. The underlying physical domain is defined by the NURBS geometry

mapping. The numerical simulation uses the isogeometric functions as test/trial functions for

a Galerkin discretization of the variational formulation (see e.g. Hughes et al., 2005; Gomez

et al., 2008; Cottrell et al., 2009). Alternatively, these functions can be used as a basis for

a collocation approach (see Auricchio et al., 2010; Schillinger et al., 2013). Consequently, it

is necessary to find a good representation of the derivatives of the test functions, either for

approximation or for point-wise evaluation. In addition, it may be necessary to establish

smoothness and regularity properties of the spaces of isogeometric functions, which possibly

entail additional constraints, e.g., for singularly parametrized domains.

The properties of derivatives of NURBS patches are well understood. When it comes

to derivatives of isogeometric functions defined on these patches, however, many questions

are still open. An exact representation is hard to obtain, since the derivatives of piecewise

rational functions and their inverse functions are involved.

The approach presented in the paper leads to a closed-form representation of the deriva-

tives of isogeometric functions which can be evaluated in a stable way. Moreover, this

representation is quite helpful for analyzing the Ck smoothness or the Hk regularity of an

isogeometric function. We consider the most general setting, i.e. domains represented by n-

dimensional patches in Rd, for both n = d and n < d, where we especially focus on n = d−1

(such as surface patches in R3). The present paper is an extension of a conference article by

Takacs and Jüttler (2013), which was limited to the case n = d = 2.

An isogeometric function on a physical domain, defined by a NURBS patch, can be

represented as a NURBS patch parametrizing its graph. If the domain is an n-dimensional

patch in Rd, then the graph of an isogeometric function is an n-dimensional patch in Rd+1.

Throughout this paper we will use homogeneous coordinates to simplify the notation. Using

this approach, we develop a closed form representation of the graphs of the partial deriva-

tives of an isogeometric function. The derivatives can again be interpreted as isogeometric

functions of higher degree and lower smoothness defined on the image of the same piecewise

rational geometry mapping.
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Consequently, the space of isogeometric functions on a given domain patch is closed

under differentiation. We derive an exact representation of the derivatives of isogeometric

functions. This may be of interest for symbolic manipulations, for other applications where

an exact evaluation of derivatives is necessary, and for the formulation of regularization

methods for solving inverse problems using the isogeometric approach.

As a first application, we investigate conditions that guarantee smoothness when deal-

ing with patches with singular parametrizations. Related results concerning the smooth-

ness of singular rational Bézier patches were developed e.g. by Bohl and Reif (1997) and

Sederberg et al. (2011). We consider a slightly different framework. First, we keep the

domain parametrization fixed and consider the space of isogeometric functions defined over

this domain parametrization. Second, we investigate not only surfaces, but parameteriza-

tions of general n-dimensional patches in Rd. Our method provides a systematic approach

to derive conditions which characterize smoothness of arbitrary order. We demonstrate

the capabilities of the proposed approach to smoothness analysis by presenting results for

parametrizations of planar and volumetric domains and for surfaces in R3.

Regularly mapped, tensor-product NURBS can describe quadrilateral (n = 2) or hex-

ahedral (n = 3) domains only. When it comes to representing more general domains, a

standard approach is to consider singular patches. Consequently, surface patches such as

the spherical shell presented in Section 6 are used in many applications (see e.g. Kiendl

et al., 2009; Benson et al., 2010). The results concerning the smoothness of isogeometric

functions are related to the results by Takacs and Jüttler (2011, 2012) concerning H1 and

H2 regularity properties on singular patches.

When using singular patches, certain isogeometric basis functions may not be C1- or C2-

smooth, hence some derivatives cannot be evaluated properly. This may affect the stability

and convergence properties of the numerical schemes applied. Contributions to the numer-

ical analysis in IgA include consistency, stability and approximation power of the method

(Bazilevs et al., 2006; Cottrell et al., 2007; Hughes et al., 2010; Echter and Bischoff, 2010).

However, singularly parametrized domains are not covered by these general results and have

to be dealt with differently.

The first strategy that comes to mind when dealing with singular patches is to cut out the

near-singular part of the patch, i.e. not evaluating functions at points where the Jacobian

determinant is close to zero. However, this will lead to a reduced order of convergence in

many situations. Another approach to handle singularities is to define some auxiliary basis

functions locally at the singularity. We suggest to define new basis functions that lie in the

span of the standard basis, i.e. that are smooth linear combinations of the non-smooth basis

functions. We derive conditions on the isogeometric functions that guarantee the desired
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smoothness. These conditions can be used to define new basis functions and thus a smooth

function space for discretization. It turns out that the dimension of this smooth function

space is very sensitive to changes of the geometry mapping.

The remainder of the paper is organized as follows. In Section 2 we introduce the notation

of isogeometric functions on rational patches. We first introduce the homogeneous coordinate

representation of rational n-dimensional patches in Rd. In the second part we introduce

isogeometric functions on such patches. In Section 3 we treat the case of derivatives on

patches with n = d. We then discuss C 1(Ω̄) and C 2(Ω̄) smoothness properties of isogeometric

functions on planar domains Ω in Subsection 4. We denote by C k(Ω̄) the space of functions

where the k-th derivatives are continuous in the interior of the domain Ω and can be extended

continuously to the boundary ∂Ω. In Section 5 we extend the results to n-dimensional

patches in Rd with n < d. We especially focus on surfaces in R3 in Section 6, where we

consider four examples corresponding to two types of model cases. We conclude the paper

with some final remarks in Section 7.

2. Isogeometric functions on rational patches

We introduce rational n-dimensional patches, which are embedded into the Euclidean

space of dimension d and we define isogeometric functions on these patches.

2.1. Rational n-dimensional patches in Rd

Throughout this section we deal with piecewise rational parametrizations of patches

in Rd. In order to keep the notation simple we will adopt the concept of homogeneous

coordinates. This is a common approach when dealing with rational functions or NURBS

(see e.g. Farin, 1999).

Any Cartesian coordinate vector r = [r1, . . . , rd]
T in Rd can be represented in homoge-

neous coordinates by

r̃ = (r̃0, r̃1, . . . , r̃d)
T ∈ R\{0} × Rd,

where ri = r̃i/r̃0 for i ∈ {1, . . . , d}. Hence any two points r and s are identical if and only

if the homogeneous coordinate vectors r̃ and s̃ are linearly dependent. More precisely, a

point with the Cartesian coordinates r corresponds to the equivalence class r̃R of points

in homogeneous coordinates. In the remainder of this paper, homogeneous coordinates are

always denoted with a tilde (r̃) and Cartesian coordinates without it (r).

A piecewise rational patch in Cartesian coordinates

r(u) =

(
r̃1(u)

r̃0(u)
, . . . ,

r̃d(u)

r̃0(u)

)T
for u ∈ B ⊂ Rn
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can be represented by a piecewise polynomial parametrization in homogeneous coordinates,

r̃(u) = (r̃0(u), r̃1(u), . . . , r̃d(u))T for u ∈ B.

The parameter domain B of the patch is the n-dimensional open box

B = (0, 1)n.

We assume that r̃0(u) > 0 for all u ∈ B̄. Here B̄ is the closure of B. The homogeneous

coordinates are piecewise polynomial spline functions, r̃0, r̃1, . . . , r̃d+1 ∈ Sp,s. Here Sp,s is the

space of Cs-smooth tensor-product spline functions of degree p = (p1, . . . , pn) with the inner

knots θνj , ν = 1, . . . , n, where the vector s = (s1, . . . , sn) specifies the order of smoothness

(differentiability) with respect to the parameters u = (u1, . . . , un). Consequently, the knot

vectors take the form

θν = ( 0, . . . , 0︸ ︷︷ ︸
pν+1 times

, . . . , θνj , . . . , θ
ν
j︸ ︷︷ ︸

pν−sν times

, . . . , 1, . . . , 1︸ ︷︷ ︸
pν+1 times

). (1)

We will not consider spline spaces with more general knot vectors in this paper. The bounds

for the degree and smoothness of the derivative patches, which will be derived in the later

sections, can be generalized to more general spline spaces. For details on NURBS and B-

splines and their applications in computer aided geometric design we refer to Farin (1999);

Prautzsch et al. (2002); Hoschek and Lasser (1993).

We recall the tensor-product B-spline representation of r̃ with respect to the tensor-

product B-spline basis {Bi}i∈I of Sp,s,

r̃ : u 7→ (r̃0(u), . . . , r̃d(u))T =
∑
i∈I

c̃iBi(u), (2)

with homogeneous control points c̃i ∈ Rd+1. When using Cartesian coordinates, this is

transformed into

r : u 7→ (r1(u), . . . , rd(u))T =
∑
i∈I

ciRi(u), (3)

with Cartesian control points ci = (c̃i,1/c̃i,0, . . . , c̃i,d/c̃i,0)
T ∈ Rd, weights c̃i,0 and piecewise

rational (NURBS) basis functions

Ri(u) =
c̃i,0Bi(u)

r̃0(u)
, with r̃0(u) =

∑
j∈I

c̃j,0Bj(u). (4)

The (physical) domain Ω ⊂ Rd is given as the image of the geometry mapping r, i.e.

Ω = r(B), where we assume that the mapping r : B → Ω is bijective. In the following

subsection we define isogeometric functions on the domain Ω.
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2.2. Isogeometric functions on rational patches

We consider a bijective NURBS patch r : B → Ω ⊂ Rd as in (3) with r̃ as in (2) such

that r̃j ∈ Sp,s, for 0 ≤ j ≤ d.

Definition 1. Consider an auxiliary spline function r̃d+1 ∈ Sp,s,

r̃d+1(u) =
∑
i∈I

f̃iBi(u).

The function f : Ω = r(B)→ R, which is defined via

f(r(u)) =
r̃d+1(u)

r̃0(u)
= rd+1(u)

is called an isogeometric function on the physical domain Ω. The symbol Vp,s denotes the

space of all isogeometric functions obtained by considering r̃d+1 ∈ Sp,s.

Clearly, due to the nestedness of spline spaces, it is possible to use spline spaces of

higher degree p′ ≥ p and lower smoothness s′ ≤ s with the same inner knots (with suitably

increased knot multiplicities). The space V of all isogeometric functions is obtained by

considering piecewise polynomial functions r̃d+1 of any degree over the given knot sequences.

Strictly speaking, these functions are defined only in the interior of the boxes defined by the

knot sequences, since they need not be continuous.

The graph of an isogeometric function f ∈ Vp,s can be represented by the parametric

surface

f̃(u) = (r̃0(u), r̃1(u), . . . , r̃d(u), r̃d+1(u))T , (5)

which possesses the B-spline representation

f̃(u) =
∑
i∈I

 c̃i

f̃i

Bi(u),

with homogeneous control points (c̃i,0, . . . , c̃i,d, f̃i)
T ∈ Rd+2 for i ∈ I.

If all weights c̃i,0 are non-zero, then an isogeometric function f ∈ Vp,s has a representation

in the basis Ri ◦ r−1 with coefficients f̃i/c̃i,0 where the rational basis functions Ri are given

as in (4), i.e.

f =

(
r̃d+1

r̃0

)
◦ r−1 =

∑
i∈I

f̃i
c̃i,0

(
Ri ◦ r−1

)
.

We present two simple examples to give a geometric interpretation of isogeometric func-

tions. The left part of Figure 1 depicts a bivariate geometry mapping r of a planar domain Ω
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Figure 1: Planar patch r (left), planar curve r (right) and corresponding graph surfaces f .

and the graph surface f of an isogeometric function f defined on Ω. The right part visualizes

an isogeometric function f defined over a planar curve given by r.

In the following sections we derive a closed form representation of the derivatives of

isogeometric functions f ∈ Vp,s and, more generally, f ∈ V . The main results, which will

be presented in Theorem 3 and 5, are valid for NURBS. In the examples in Sections 4 and

6, however, we will restrict ourselves to rational tensor-product Bézier patches. There we

consider Sp,s = Sp,p = Πp, where Πp is the space of polynomials of degree p. The Bernstein

polynomials

Bi(u) =
n∏
j=1

(
pj
ij

)
(1− uj)pj−ijuj ij

for u = (u1, . . . , un) and

i ∈ I = {(i1, . . . , in) : 0 ≤ ij ≤ pj ∀ 1 ≤ j ≤ n}

form a basis of the space Πp. In this context we will omit the index s = p for the or-

der of smoothness and write simply Sp, Vp instead of Sp,p, Vp,p. Clearly, any NURBS

parametrization can be transformed into a piecewise Bézier representation via knot inser-

tion.

3. Derivatives of isogeometric functions for n = d

In this section we assume that the geometry mapping takes the form

r : B ⊂ Rd → Ω ⊂ Rd.
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We derive a representation of the partial derivatives of an isogeometric function f ∈ V with

respect to the coordinates in physical space xi for i ∈ {1, . . . , d}. More precisely, we define

an operator Di, such that Dir̃ represents the graph of ∇if , similar to the representation (5).

Here ∇if = ∂f
∂xi

is the i-th component of the gradient of f .

Note that the graph f of an isogeometric function f is a hypersurface in Rd+1. We recall

the homogeneous representation of the tangent space to a parametrized hypersurface f at a

point f(u) (cf. Ovsienko and Tabachnikov, 2005):

Lemma 2. Let f be a d-dimensional patch in Rd+1, which is given in the form (5) with

n = d. We consider the tangent hyperplane Tu to the manifold at the point f(u), which is

assumed to be regular. The points of this hyperplane satisfy the equation

g̃(u)T x̃ = 0,

where the vector g̃(u) has the entries

g̃j(u) = det(ẽj, f̃(u), ∂1f̃(u), . . . , ∂df̃(u)), j = 0, . . . , d+ 1. (6)

In these formulas, the vectors ẽj are the unit vectors spanning the coordinate axes in

Rd+1, i.e. ẽ0 = (1, 0, . . . , 0)T , ẽ1 = (0, 1, 0, . . . , 0)T , etc., and

∂if̃(u) =
∂ f̃

∂ui
(u)

denotes the partial derivative with respect to the i-th parameter ui.

The proof of this observation results from the fact that a point x̃ belongs to the tangent

hyperplane if and only if its homogeneous coordinates are linearly dependent on f̃ and the

d partial derivatives of the vector f̃ of homogeneous coordinates.

We use this well-known result from projective geometry to derive a representation of the

derivatives of isogeometric functions as rational hypersurface patches. More precisely, given

the graph of an isogeometric function f as a d-dimensional patch in Rd+1, the following

theorem provides a representation of the graph of a partial derivative of f , again as a d-

dimensional patch in Rd+1:

Theorem 3. The graph of the partial derivative ∇if = ∂f
∂xi

of an isogeometric function

f ∈ V, which is given in the form (5) with n = d, can be represented by the parametric

hypersurface

Dif̃ = (r̃0g̃d+1, r̃1g̃d+1, . . . , r̃dg̃d+1,−r̃0g̃i)T . (7)
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Proof. We consider a fixed parameter value u. According to Lemma 2, the tangent hyper-

plane of the hypersurface f̃ at u is

Tu =
{
x̃ ∈ Rd+2 : g̃(u)T x̃ = 0

}
.

Let T1f(x) be the first order Taylor approximation of f at r(u). Inserting (1, x1, . . . , xd, T1f(x))T

into the equation of the tangent plane gives

g̃0(u) +
d∑
j=1

g̃j(u)xj + g̃d+1(u)T1f(x) = 0,

with g̃j as in (6). Solving for T1f(x) leads to

T1f(x) = − g̃0(u)

g̃d+1(u)
−

d∑
j=1

g̃j(u)

g̃d+1(u)
xj

hence
∂T1f

∂xi
(x) = − g̃i(u)

g̃d+1(u)
.

Since T1f(x) is the first order Taylor approximation of f at the point x = r(u),

∂f

∂xi
(r(u)) =

∂T1f

∂xi
(x) = − g̃i(u)

g̃d+1(u)
.

Therefore the graph of the derivative in Cartesian coordinates fulfills(
r̃1(u)

r̃0(u)
, . . . ,

r̃d(u)

r̃0(u)
,
∂f

∂xi
(r(u))

)T
=

(
r̃1(u)

r̃0(u)
, . . . ,

r̃d(u)

r̃0(u)
,− g̃i(u)

g̃d+1(u)

)T
which directly leads to the representation (7) in homogeneous coordinates.

Assume that r is a regular mapping. Then, given an isogeometric function f ∈ Vp,s

corresponding to the spline space Sp,s, the derivative ∇if = ∂f
∂xi

is again an isogeometric

function. It fulfills ∇if ∈ V p̂,ŝ, with p̂ = (d + 2)p − 1 and ŝ = s − 1. The space V p̂,ŝ is

the space of isogeometric functions corresponding to S p̂,ŝ. Note that Sp,s ⊆ S p̂,ŝ ⊂ P and

Vp,s ⊆ V p̂,ŝ ⊂ V (see Definition 1). Hence, we can directly conclude that the space V of all

isogeometric functions on Ω is closed under differentiation.

The bounds on the degree and smoothness are derived from the representation of Theo-

rem 3 and are stated for generic functions on generic geometries. For certain choices of the

function f or of the geometry mapping r, the degree of the derivatives may be decreased

and/or the smoothness may be increased. In the following we use the representation of

the partial derivatives from Theorem 3 to analyze the smoothness properties of isogeomet-

ric functions defined on singular patches. Note that the smoothness may decrease when

singularities are present.
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4. Isogeometric functions on singular patches for n = d

We use Theorem 3 to analyze the order of smoothness of isogeometric functions defined

on patches containing singularities. In the following we assume that a homogeneous repre-

sentation of a rational patch in Bernstein-Bézier form is given. Since any NURBS patch can

be split into a collection of rational patches, we restrict ourselves to rational patches.

We denote with D0 ⊂ B̄ the set of singular points of the geometry mapping r. Recall

that B̄ is the closure of B. Let det∇ur(u) ≥ 0 for all u ∈ B̄ and det∇ur(u) = 0 if and

only if u ∈ D0. Note that the Jacobian determinant det∇ur(u) is a rational function of the

form

det∇ur(u) = (−1)d+1 g̃d+1(u)

(r̃0(u))d+1
,

where the numerator g̃d+1(u) is the function defined in (6). Recall that r̃0(u) > 0 for all

u ∈ B̄. Consequently, the set D0 is the zero set of the multivariate polynomial g̃d+1(u).

We exemplify two types of singular planar patches (types P1 and P2) and three types

of singular volumetric patches (types V1, V2 and V3). Patches of type P1, which were

already studied by Takacs and Jüttler (2013), possess collapsing control points. Patches of

type P2 have singularities caused by parallel tangents at a corner of the parameter domain.

The trivariate patches of type V1 represent four-sided pyramids by collapsing the control

points of one of the faces. The patches of type V2 describe tetrahedral patches by collapsing

two faces to a point and to a curve, respectively. The patch described by type V3 contains

a different kind of singularity. In this case the singularity is caused by two edges being

collinear in the physical domain. The boundary of the patch consists of five quadrilateral

faces and one degenerate triangular face.

We will derive C 1(Ω̄) and C 2(Ω̄) smoothness conditions for isogeometric functions defined

on these model patches. Note that we consider a non-standard notion of C k(Ω̄) smoothness

on the closed domain Ω̄ which is defined below. Usually, C k smoothness is defined on open

domains.

Definition 4. Let Ω ⊂ Rd be an open set. We say that f ∈ C k(Ω̄) if and only if f ∈ Ck(Ω)

and the derivatives of f up to order k can be extended continuously to the boundary ∂Ω

of the domain Ω. We call such a function f a C k smooth function. Here the space Ck(Ω)

consists of all functions that satisfy the standard definition of Ck smoothness on an open

domain Ω.

All presented types of patches are (rational) Bézier patches, which can be seen as re-

strictions of NURBS patches to one of its elements (knot spans). Since the boundary of

the Bézier element may be in the interior of the full NURBS patch, the smoothness of the
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functions at the boundary of the Bézier element is also of interest, and this is reflected by

the definition. In addition, the functions covered by the definition possess certain regularity

properties which may be required in isogeometric analysis, e.g., in order to guarantee the

existence of the integrals needed to derive the discretization.

The approach to derive the smoothness conditions for isogeometric functions on a singular

patch consists of two major steps. First we compute the derivatives up to the desired order,

second we derive C0 continuity conditions for the resulting singular patches.

More precisely, given an isogeometric function with arbitrary coefficients fi (as in Ta-

ble 1), we compute the derivatives according to Theorem 3. Hence all derivatives are given

via a hypersurface representing their graphs. These hypersurfaces are given as homogeneous

patches in Bernstein-Bézier form. Each homogeneous control point of such a patch is either

a basepoint, a point at infinity, or real point in Euclidean space.

The second task consists in the analysis of the continuity of such patches. First one can

identify linear conditions on the coefficients fi such that no points at infinity occur, resulting

in a singular hypersurface consisting of real control points and basepoints only. Depending

on the type of the singularity, one may then be able to cancel out basepoints. Again there

exist linear conditions on the coefficients fi that guarantee C0-continuity for the resulting

singular hypersurfaces. Here we refer to Warren (1990) which deals with the properties of

surfaces containing basepoints. Related results concerning toric patches are presented in

Krasauskas (2002).

See Takacs and Jüttler (2013) for further details on deriving smoothness conditions for

isogeometric functions on planar patches.

Type P1: Planar patch with a collapsing edge (triangle). We exemplify this case by

considering an isogeometric function f δ ∈ V(2,2), which is represented by its graph surface

f̃ δ(u) =
2∑

i1=0

2∑
i2=0

f̃(i1,i2)Bi1,i2(u1, u2) (8)

with the control points given in Table 1, where the basis functions Bi1,i2 are the tensor-

product Bernstein polynomials of degree (2, 2). The singular points form the set D0 =

{(0, u2), 0 ≤ u2 ≤ 1}.
The left part of Figure 2 depicts an example of a patch of type P1. Note that the

position of the inner control point with index (1, 1) depends on the value of the perturbation

parameter δ = (δ1, δ2).
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i1 \ i2 0 1 2

0 (1, 0, 0, f(0,0))
T (1, 0, 0, f(0,1))

T (1, 0, 0, f(0,2))
T

1 (1, 2, 0, f(1,0))
T (1, 1+δ1, 1+δ2, f(1,1))

T (1, 0, 2, f(1,2))
T

2 (1, 4, 0, f(2,0))
T (1, 2, 2, f(2,1))

T (1, 0, 4, f(2,2))
T

i1 \ i2 0 1 2

0 (1, 2, 2, f(0,0))
T (1, 3, 1, f(0,1))

T (1, 4, 0, f(0,2))
T

1 (1, 1, 3, f(1,0))
T (1, 32+δ1,

3
2+δ2, f(1,1))

T (1, 2, 0, f(1,2))
T

2 (1, 0, 4, f(2,0))
T (1, 0, 2, f(2,1))

T (1, 0, 0, f(2,2))
T

Table 1: Control points of a planar patch of type P1 (top) and P2 (bottom)

A

B

C D E

G

A

B

C D E

F

G

H

Figure 2: The grid of control points and the corresponding indices of boundary points for type P1 (left) and

P2 (right)

Using Theorem 3, we conclude that f δ ∈ C 1(Ω̄) if and only if

f(0,0) = f(0,1) = f(0,2) (9)

δ1(f(0,0) − f(1,0)) + δ2(f(0,0) − f(1,2)) + 2f(1,1) − f(1,2) − f(1,0) = 0. (10)

This condition admits the (well-known) geometric interpretation that the Cartesian control

points f(0,0), f(0,1), f(0,2), f(1,0), f(1,1) and f(1,2) must be coplanar to secure C 1(Ω̄) smoothness.

Using again Theorem 3 to compute the graph surfaces of the second partial derivatives

from the first order ones, we conclude that f δ ∈ C 2(Ω̄) if and only if equations (9), (10) and

δ1(f(1,0) − f(2,0)) + δ2(f(1,0) − f(2,1)) + 2f(1,1) − f(1,2) − f(1,0) = 0 (11)

δ1(f(0,0) − f(1,0) + f(1,2) − f(2,1)) + δ2(f(0,0) − f(2,2)) + 4f(1,1) − 2f(1,2) − 2f(1,0) = 0 (12)

are satisfied. Note that the equations (10), (11) and (12) are equivalent if δ1 = δ2 = 0.

The spaces of C 1 and C 2 smooth isogeometric functions obtained from the biquadratic

parametrization have generally the dimensions 6 and 4, respectively. If δ1 = δ2 = 0, however,

12



then both spaces possess the dimension 6. In fact, in this case the space consists of all

quadratic polynomials on the physical domain.

Type P2: Planar patch with collinear edges (triangle). Here we consider an isoge-

ometric function f δ ∈ V(2,2) represented in the form (8) with the control points given in

Table 1. The set D0 of singularities contains only one point, D0 = {(0, 0)}. The right part

of Figure 2 depicts a patch of type P2. Again, the inner control point depends on δ. Similar

to type P1 we conclude that f δ ∈ C 1(Ω̄) if and only if

2f(0,0) = f(0,1) + f(1,0)

f(2,0) − f(0,2) = 2f(1,0) − 2f(0,1). (13)

Moreover, f δ ∈ C 2(Ω̄) if and only if (13) and

4δ2f(0,0) + (4 + 2δ1 − 2δ2)f(0,1) − 2f(0,2) = 4f(1,1) − (1− δ1 − δ2)(f(2,1) + f(1,2)) (14)

(f(0,2) + f(2,0))(δ1 − δ2) = (4δ1 − 6δ2)f(0,1) + 2δ1f(1,0)

+ (δ1 + δ2)(f(1,2) − f(2,1)) (15)

are satisfied. If (δ1, δ2) = (0, 0) then equation (15) can be omitted since both sides vanish.

The spaces of C 1 and C 2 smooth isogeometric functions obtained from the biquadratic

parametrization have generally the dimensions 7 and 5, respectively. If δ1 = δ2 = 0, however,

then the latter space has dimension 6.

Type V1: Volumetric patch with a collapsing face (pyramid). We consider an

isogeometric function f δ ∈ V(2,2,2) represented by

f̃ δ(u1, u2, u3) =
2∑

i1=0

2∑
i2=0

2∑
i3=0

f̃(i1,i2,i3)Bi1,i2,i3(u1, u2, u3) (16)

with tensor-product Bernstein polynomials Bi1,i2,i3 of degree (2, 2, 2) and control points

f̃(i1,i2,i3) = (1, i1,
i1i2
2
, i1i3

2
, f(i1,i2,i3))

T for (i1, i2, i3) 6= (1, 1, 1),

f̃(1,1,1) = (1, 1 + δ1,
1
2

+ δ2,
1
2

+ δ3, f(1,1,1))
T otherwise,

as depicted in Figure 3. Note that the inner control point depends on δ. The set of singular

points is D0 = {(0, u2, u3), 0 ≤ u2, u3 ≤ 1}.
One can show that f δ ∈ C 1(Ω̄) if and only if the coefficients of the isogeometric function

satisfy

f(0,i2,i3) = f(0,0,0) for all 0 ≤ i2, i3 ≤ 2 (17)

13
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Figure 3: Control point grid for type V1. Only indices of selected control points are shown.

and six additional linearly independent equations. We do not write down the equations

explicitly, since this would not give any further insight. Equation (17) leaves one degree

of freedom for the coefficients with index i1 = 0. The six additional equations restrict the

coefficients with i1 = 1. The remaining coefficients remain unrestricted. Summing up, the

dimension of the space of C 1 smooth functions is equal to 1 + 3 + 9 = 13.

Similarly we can characterize C 2(Ω̄) smoothness by (17) and 12 further equations. Gen-

erally, the space of C 2 smooth functions has dimension 7. If δ1 = δ2 = δ3 = 0, the dimension

raises to 10. In this case, the space of C 2 smooth isogeometric functions is described by

equations (17), as well as

f(1,0,1) = 1
2
(f(1,0,0) + f(1,0,2)) f(1,2,1) = f(1,2,0) + 1

2
(f(1,0,2) − f(1,0,0))

f(1,1,0) = 1
2
(f(1,0,0) + f(1,2,0)) f(1,1,2) = f(1,0,2) + 1

2
(f(1,2,0) − f(1,0,0))

f(1,1,1) = 1
2
(f(1,0,2) + f(1,2,0)) f(1,2,2) = f(1,0,2) + f(1,2,0) − f(1,0,0)

and

f(2,1,2) = f(2,0,0) − 2f(2,0,1) + f(2,0,2) − f(2,1,0) + 2f(2,1,1)

f(2,2,1) = f(2,0,0) − f(2,0,1) − 2f(2,1,0) + 2f(2,1,1) + f(2,2,0)

f(2,2,2) = 3f(2,0,0) − 4f(2,0,1) + f(2,0,2) − 4f(2,1,0) + 4f(2,1,1) + f(2,2,0).

This space is equal to the space of quadratic polynomials on the physical domain. If a

perturbation is present, however, this is no longer true and the approximation power is

reduced.
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Figure 4: Control point grid for type V2. Only indices of selected control points are shown.

Type V2: Volumetric patch with two collapsing faces (tetrahedron). We consider

an isogeometric function f δ ∈ V(2,2,2) represented in the form (16) with control points

f̃(i1,i2,i3) = (1, i1,
i1i2
2
, i1i2i3

4
, f(i1,i2,i3))

T for (i1, i2, i3) 6= (1, 1, 1),

f̃(1,1,1) = (1, 1 + δ1,
1
2

+ δ2,
1
4

+ δ3, f(1,1,1))
T otherwise,

as shown in Figure 4. The patch is singular for all points in the set D0 = {(0, u2, u3), 0 ≤
u2, u3 ≤ 1} ∪ {(u1, 0, u3), 0 ≤ u1, u3 ≤ 1}. Again, the inner control point f̃(1,1,1) depends on

δ = (δ1, δ2, δ3).

The conditions for C 1(Ω̄) smoothness lead to 17 independent equations, leading to a space

of dimension 10. If no perturbation is applied, then this space is equal to the space of C 2

smooth functions (which is equal to the space of all quadratic polynomials on the tetrahedron

in this case). Generally, however, the space of C 2 smooth functions has dimension 7 only.

Type V3: Volumetric patch with collinear edges. This example covers a different

class of singularities. The top face of the object is equivalent to the triangular patch P2.

All other faces are non-degenerate quadrilaterals. We consider an isogeometric function

f δ ∈ V(2,2,2) represented in the form (16) with control points

f̃(i1,i2,0) = (1, i1, i2, 0, f(i1,i2,0))
T for 0 ≤ i1, i2 ≤ 2

f̃(i1,0,i3) = (1, i1, 0, i3, f(i1,i2,0))
T for 0 ≤ i1, i3 ≤ 2

f̃(0,i2,i3) = (1, 0, i2, i3, f(0,i2,i3))
T for 0 ≤ i2, i3 ≤ 2

15



A

B

C

D

E
F

Figure 5: Control point grid for type V3. Only indices of selected control points are shown.

and

f̃(1,1,1) = (1, 7
8

+ δ1,
7
8

+ δ2, 1 + δ3, f(1,1,1))
T , f̃(1,1,2) = (1, 3

4
, 3
4
, 2, f(1,1,2))

T ,

f̃(1,2,1) = (1, 3
4
, 7
4
, 1, f(1,2,1))

T , f̃(1,2,2) = (1, 1
2
, 3
2
, 2, f(1,2,2))

T ,

f̃(2,1,1) = (1, 7
4
, 3
4
, 1, f(2,1,1))

T , f̃(2,1,2) = (1, 3
2
, 1
2
, 2, f(2,1,2))

T ,

f̃(2,2,1) = (1, 3
2
, 3
2
, 1, f(2,2,1))

T , f̃(2,2,2) = (1, 1, 1, 2, f(2,2,2))
T

as shown in Figure 5. There is exactly one singular point, D0 = {(1, 1, 1)}, which corresponds

to the control point with index (2, 2, 2). In the unperturbed case, the parametrization

of the domain (i.e., the control points without the last coordinate, which corresponds to

the isogeometric function) have been constructed by applying degree elevation to a tri-

linear patch. The C 1(Ω̄) smoothness of f δ is characterized by four linearly independent

equations, leaving a space of dimension 23. The space of C 2 smooth isogeometric functions

has dimension 18. The basis functions with indices (0, 0, 0), (1, 0, 0), (0, 1, 0) and (0, 0, 1)

are not involved in the nine equations. In this example the dimension of the space of C 2

smooth isogeometric functions is not reduced if the inner control point is perturbed. This,

however, is not true when the perturbation is applied to control points different from f̃(1,1,1).

In all but the last of the presented examples, the dimension of the C 2 smooth subspace of

the isogeometric function space depends on the location of the “free” inner control point.

Using perturbations of other control points lead to similar results.

Hence, the smoothness properties are very sensitive with respect to the choice of the

parametrization. This should be taken into account when dealing with applications that
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need very smooth functions, since using C 2 smooth isogeometric functions will often be too

restrictive. In the vicinity of the singularity, the space spanned by these functions does

not provide a representation of low-degree polynomials in the physical space (see especially

types P1, V1, V2). This indicates the reduction of approximation power.

In concrete applications, one should try to find a parameterization that leads to a high-

dimensional space. We observed that parameterizations obtained by degree elevation of

(bi-/tri-) linear ones are quite useful.

5. Intrinsic derivatives of isogeometric functions on patches with n < d

We extend the result of Section 3 to functions on n-manifolds embedded into Rd, where

n < d. More precisely, we derive a representation of the intrinsic gradient of an isogeometric

function f ∈ V .

We consider an n-dimensional patch r(u) with homogeneous representation

r̃(u) = (r̃0(u), r̃1(u), . . . , r̃d(u))T

embedded into Rd, with n < d, and an isogeometric function f defined on r. Let x0 ∈ Rd

be a point on the patch r. Let F be an extension of f to an open neighborhood Nx0 ⊂ Rd

of x0. The intrinsic gradient ∇rf of f is

∇rf(x0) = Πr (∇xF (x0)) ,

where ∇xF is the gradient of F with respect to x in Nx0 and the operator Πr projects a

vector orthogonally into the tangent space of the patch r at x0 (see e.g. Š́ır et al., 2008).

When considering a surface in the three-dimensional space (i.e. n = 2, d = 3), this projection

takes the form

Πr (∇xF ) = ∇xF −
(
(∇xF )Tn

)
n,

where n is the unit normal vector of r in x0.

The projection of the gradient onto the tangent space does not depend on the extension

F of the function f into the embedding space, but it is fully determined by values of F on

the patch (i.e. ∇rf only depends on f). The intrinsic gradient is therefore well-defined.

We choose a particular extension F of f that allows to obtain the intrinsic gradient

without the projection. The n-dimensional patch r̃(u), with u ∈ Rn, is extended to a d-

dimensional patch in Rd. Consider a basis nn+1(u), . . . ,nd(u) of the normal space at u, i.e.

(∂jr)Tnk = 0 for all j = 1, . . . , n and k = n + 1, . . . , d, where r is the representation of r̃ in
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Cartesian coordinates. Moreover let N = (nn+1, . . . ,nd). We denote by

F(u,u+) =

 r(u)

rd+1(u)

+

 u+N(u)

0


the extended graph of f , with the row vector u+ = (un+1, . . . , ud) and

u+N(u) =
d∑

j=n+1

uj nj(u).

There are several possibilities to obtain a basis of the normal space. In the case d = 3

and n = 2, the normal space is spanned simply by the normal vector ∂1r × ∂2r. For other

values of d and n, however, the choice of the directions of the normal vectors is not unique.

We outline an approach to generate the homogeneous representation of the normal space

directly.

In order to generate a set Ñ of normal vectors ñk, n + 1 ≤ k ≤ d, of low degree, we

consider the hyperplanes

{x̃ : det(r̃, ∂1r̃, . . . , ∂nr̃, q̃n+1, . . . , q̃d−1, x̃) = 0 }

which are spanned by r̃, by the n partial derivatives of r̃ and by d−n− 1 arbitrarily chosen

auxiliary points q̃n+1, . . . , q̃d−1. The coordinates of their normal vectors are the coefficients

of x̃1, . . . , x̃n in the expansion of the determinant. These hyperplanes contain the tangent

space of the patch r̃. Hence their normal vectors are possible choices for the vectors ñk,

with n + 1 ≤ k ≤ d. Applying this construction for (d − n) sets of auxiliary points in

general position leads to a set of (d − n) linearly independent normal vectors of degree

pn ≤ (n+ 1)p− 1.

Rewriting the representation of the graph of the extended function F in homogeneous

coordinates gives

F̃(u,u+) =

 r̃(u)

r̃d+1(u)

+

 u+Ñ(u)

0

 , (18)

where Ñ = (ñn+1, . . . , ñd). The entries ñkj of the vectors ñk are chosen as ñkj = nkj and

ñk0 = 0 for all n+ 1 ≤ k ≤ d and 1 ≤ j ≤ d. The graph of the isogeometric function defined

on the patch r̃ is represented by F̃(u,0) = (r̃0(u), . . . , r̃d+1(u))T = f̃(u). We denote with ẽj

the unit vector that spans the j-th coordinate axis in Rd+1.
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Theorem 5. The graph of the i-th component ∇r,if of the intrinsic gradient is represented

by the parametric surface

Dif̃ = (r̃0g̃d+1, r̃1g̃d+1, . . . , r̃dg̃d+1,−r̃0g̃i)T ,

where

g̃j = det(ẽj, f̃ , ∂1f̃ , . . . , ∂nf̃ , m̃
n+1, . . . , m̃d) with m̃k =

 ñk

0

 .

Proof. Applying Theorem 3 to the extended graph F̃ gives

DiF̃ =
(
F̃0q̃d+1, F̃1q̃d+1, . . . , F̃dq̃d+1,−F̃0q̃i

)T
,

with

q̃j = det(ẽj, F̃, ∂1F̃, . . . , ∂dF̃).

The hypersurface DiF̃ represents the i-th component of the gradient ∇xF . Restricting the

gradient ∇xF to the patch r is equivalent to restricting the parameter value to (u,u+) =

(u,0). Hence,

DiF̃ |{u+=0} = (r̃0g̃d+1, r̃1g̃d+1, . . . , r̃dg̃d+1,−r̃0g̃i)T ,

with

g̃j = q̃j |{u+=0} = det(ẽj, f̃ , ∂1f̃ , . . . , ∂nf̃ , m̃
n+1, . . . , m̃d).

The gradient ∇xF can be decomposed as

∇xF = Πr (∇xF ) + Πn (∇xF ) ,

where Πr and Πn are the orthogonal projections into the tangent space and into the normal

space, respectively. The extended function F is constant in any normal direction. Hence,

the normal component Πn (∇xF ) vanishes and

∇xF = Πr (∇xF ) = ∇rf,

which concludes the proof.

Consider an isogeometric function f ∈ Vp,s. If the homogeneous normal vectors ñj can

be represented as polynomials of degree pn, then the degree of the derivative patches is

bounded by (d− n)pn + (n+ 2)p− 1.

Higher order derivatives of f can be computed recursively. The Hessian of f , as a tensor

in Rd×d can be computed by applying the gradient operator ∇r again to each component of

∇rf .
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i1 \ i2 0 1 2

0 (1, 0, 0, 1, f(0,0))
T 1√

2
(1, 0, 0, 1, f(0,1))

T (1, 0, 0, 1, f(0,2))
T

1 1√
2
(1, 1, 0, 1, f(1,0))

T 1
2 (1, 1, 1, 1, f(1,1))

T 1√
2
(1, 0, 1, 1, f(1,2))

T

2 (1, 1, 0, 0, f(2,0))
T 1√

2
(1, 1, 1, 0, f(2,1))

T (1, 0, 1, 0, f(2,2))
T .

Table 2: Control points of a rational patch of type S1 representing an octant of the sphere

6. Isogeometric functions on singular surfaces in R3

When considering a surface in R3, the normal space in u is spanned by the normal vector

n(u) = ∂1r(u)× ∂2r(u). In homogeneous coordinates this leads to

m̃ = −



0

det(ẽ1, r̃, ∂1r̃, ∂2r̃)

det(ẽ2, r̃, ∂1r̃, ∂2r̃)

det(ẽ3, r̃, ∂1r̃, ∂2r̃)

0


.

Hence the degree of the normal vector is bounded by pn = 3p−1, leading to pn + 4p−1 =

7p − 2 as a bound on the degree of the gradient patches. We analyze the smoothness

of isogeometric functions on several singular surface patches which are embedded in the

three-dimensional space R3.

Patches of type S1 contain a singularity caused by an edge collapsing to a point in

physical space (similar to P1). Patches of type S2 possess parallel tangents at the corner

points (similar to P2).

The first example from type S1 is an octant of the unit sphere (cf. Piegl and Tiller, 1995),

while the second one is a polynomial approximation of the same patch.

Type S1: Surface patch with collapsing edge. We consider an isogeometric function

f represented by its graph surface as in (8) with the control points given in Table 2. Using

Theorem 5, we conclude that f ∈ C 1(Ω̄) if and only if

f(0,0) = f(0,1) = f(0,2)

f(1,2) − f(1,1) + f(1,0) − f(0,0) = 0. (19)

Similar to the results for type P1, the equation (19) expresses the condition that the points

f(0,0), f(0,1), f(0,2), f(1,0), f(1,1) and f(1,2) are contained in a 2-plane in R4.
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Figure 6: Two surface patches with singularities of type S2

When considering C 2(Ω̄) smoothness, we obtain a more restrictive result. We apply

Theorem 5 to each component of the intrinsic gradient. The isogeometric function satisfies

f ∈ C 2(Ω̄) if and only if equation (19) and

f(2,1) − f(1,1) + f(2,0) − f(1,0) = 0

f(2,2) − f(2,0) + f(1,0) − f(1,2) = 0. (20)

Consequently, the space of C 2 smooth isogeometric functions of this type has dimension 4.

Now we modify the previous patch by setting the denominator to 1, i.e., we omit the

factors in front of the homogeneous coordinate vectors in Table 2. This gives a polynomial

approximation to the octant of the sphere. Similar to the previous example, f ∈ C 1(Ω̄) if

and only if equation (19) is satisfied. The conditions

f(0,0) = f(0,1) = f(0,2) = f(1,0) = f(1,1) = f(1,2)

f(2,0) + f(2,1) = 2f(0,0)

f(2,2) = f(2,0) (21)

for C 2(Ω̄) smoothness, however, are now far more restrictive and leave only 2 degrees of

freedom. This is due to the lack of smoothness of the surface itself at the singularity.

Type S2: Surface patch with collinear edges. Finally we consider the two surface

patches shown in Figure 6 with the control points listed in Table 3. The boundary of the

first patch is a circle, and the boundary of the second one is a smooth curve.

The space of C 1 smooth isogeometric functions of the degree (2, 2) has dimension 4 for

the first patch, but only 1 for the second one. Both patches admit only constant C 2 smooth

isogeometric functions.
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i1 \ i2 0 1 2

0 (1,−1,−1, 0, f(0,0))
T 1√

2
(1, 0,−2, 0, f(0,1))

T (1, 1,−1, 0, f(0,2))
T

1 1√
2
(1,−2, 0, 0, f(1,0))

T 2(1, 0, 0, 2, f(1,1))
T 1√

2
(1, 2, 0, 0, f(1,2))

T

2 (1,−1, 1, 0, f(2,0))
T 1√

2
(1, 0, 2, 0, f(2,1))

T (1, 1, 1, 0, f(2,2))
T

i1 \ i2 0 1 2

0 (1,−1,−1, 0, f(0,0))
T 1√

2
(1, 0,−2,−1, f(0,1))

T (1, 1,−1, 0, f(0,2))
T

1 1√
2
(1,−2, 0, 1, f(1,0))

T (1, 0, 0, 0, f(1,1))
T 1√

2
(1, 2, 0, 1, f(1,2))

T

2 (1,−1, 1, 0, f(2,0))
T 1√

2
(1, 0, 2,−1, f(2,1))

T (1, 1, 1, 0, f(2,2))
T

Table 3: Control points of the two patches shown in Fig. 6

For these examples, perturbations of the control points change the surfaces themselves.

In the second example, the conditions do not depend on the position and the weight of the

control point with index (1, 1). Comparing the two surfaces of type S1 leads to the conclusion

that even minor changes of a surface can reduce the dimension of smooth function spaces

dramatically. This has to be taken into account when dealing with singular patches in

isogeometric analysis, where it is crucial to have sufficient degrees of freedom locally in

order to maintain sufficient approximation power.

7. Conclusion

We derived a closed form representation of the derivatives of an isogeometric function

using homogeneous coordinates. We took advantage of the fact that the graph of an iso-

geometric function defined on an n-dimensional NURBS patch in Rd can be interpreted as

an n-dimensional patch in Rd+1. The graphs of the partial derivatives of an isogeomet-

ric function are again given as NURBS patches, which are defined with respect to the same

NURBS geometry mapping. Hence the space of isogeometric functions is closed with respect

to differentiation.

We used the representation of the derivatives to obtain smoothness conditions for iso-

geometric functions on patches containing singularities. The method provides a systematic

approach to derive smoothness conditions of arbitrary order. The presented analysis of var-

ious models indicates that the smoothness conditions depend heavily on perturbations of

the geometry mapping. The results developed here are related to the H1 and H2 regularity

results from Takacs and Jüttler (2011, 2012).

Future work will be devoted to isogeometric vector fields. Consider a vector field that

is defined on a surface r in space, i.e. n = 2 and d = 3, and assume that the vector field
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is tangential to the surface. Hence the vector field is orthogonal to the surface normal

nr. To represent such a vector field one may define a general vector-valued isogeometric

function V ∈ R3 on the surface patch and enforce the orthogonality condition weakly via

‖VTnr‖ ≈ 0. This ansatz can then be used to compute a vector field fulfilling certain

properties, such as interpolating given data. In that case a regularization of the vector field

may be necessary. Using the approach proposed in this paper, a regularization functional

based on the covariant derivatives of the vector field can be constructed. We refer to Kirisits

et al. (2013), where a similar approach was employed to approximate the optical flow of an

image on a moving surface.

More generally, we plan to use the results presented in this paper to formulate reg-

ularization methods based on coefficient norms for the derivatives. Since all norms on

finite-dimensional spaces are equivalent, the H1 or H2 semi-norm on an isogeometric func-

tion space of given degree can be replaced by suitable coefficient norms obtained from the

closed-form representations of the derivatives. These norms should be quite useful for reg-

ularization in the context of inverse problems, e.g., for applications in image processing on

manifolds (cf. Dong, 2014).

Auricchio, F., Da Veiga, L. B., Hughes, T. J. R., Reali, A. and Sangalli, G. (2010), ‘Isogeometric collocation

methods’, Mathematical Models and Methods in Applied Sciences 20(11), 2075–2107.

Bazilevs, Y., da Veiga, L. B., Cottrell, J. A., Hughes, T. J. R. and Sangalli, G. (2006), ‘Isogeometric analysis:

approximation, stability and error estimates for h-refined meshes’, Mathematical Models and Methods in

Applied Sciences 16(7), 1031 – 1090.

Benson, D. J., Bazilevs, Y., Hsu, M. C. and Hughes, T. J. R. (2010), ‘Isogeometric shell analysis: The

Reissner-Mindlin shell’, Computer Methods in Applied Mechanics and Engineering 199(5-8), 276 – 289.
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