Clemens Kirisits

Clemens Kirisits

Senior Scientist


Phone: +43 1 4277 55784

Published Papers

2024

S. Biberger, C. Kirisits, Ch. Wallinger, D. J. Buckton and O. Scherzer Motion-based temporal interpolations of power Doppler ultrasoundIn N. Bottenus and Ch. Boehm, editors, Medical Imaging 2024: Ultrasonic Imaging and Tomography, 12932:129321C, 2024 BibTeX | funding )
C. Kirisits, N. Naujoks, O. Scherzer and H. Yang Diffraction tomography for incident Herglotz waves Inverse Problems, 40(11):115007, 2024 BibTeX | funding | PDF )
F. Parzer, C. Kirisits and O. Scherzer Uncertainty Quantification for Scale-Space Blob Detection Journal of Mathematical Imaging and Vision, 66:697–717, 2024 BibTeX | funding | PDF )

2022

F. Faucher, C. Kirisits, M. Quellmalz, O. Scherzer and E. Setterqvist Diffraction Tomography, Fourier Reconstruction, and Full Waveform InversionIn Handbook of Mathematical Models and Algorithms in Computer Vision and Imaging, 2022 BibTeX | funding | PDF )
O. Scherzer, C. Kirisits and E. Sherina Optical Flow On Manifolds and For ElastographyIn M. Ben-Chen, A. Chambolle, M. Rumpf and P. Schröder, editors, Mathematical Imaging and Surface Processing, (2022/38)17–19. Oberwolfach Reports, 2022 BibTeX | PDF )

2021

C. Kirisits, M. Quellmalz, M. Ritsch-Marte, O. Scherzer, E. Setterqvist and G. Steidl Fourier reconstruction for diffraction tomography of an object rotated into arbitrary orientations Inverse Problems, 37(11):115002, 2021 BibTeX | funding | PDF )

2020

O. Scherzer, C. Kirisits, M. Quellmalz, M. Ritsch-Marte, E. Setterqvist and G. Steidl Reconstruction formulae for diffraction tomography with optical tweezersIn L. Borcea, T. Hohage and B. Kaltenbacher, editors, Computational Inverse Problems for Partial Differential Equations (hybrid meeting), (39/2020)32–34. Oberwolfach Reports, 2020 BibTeX | PDF )

2019

C. Kirisits, O. Scherzer and E. Setterqvist Preservation of Piecewise Constancy under TV Regularization with Rectilinear AnisotropyIn J. Lellmann, M. Burger and J. Modersitzki, editors, Scale Space and Variational Methods in Computer Vision. SSVM 2019. Lecture Notes in Computer Science, 11603:510–521. Springer, 2019 BibTeX | PDF )
PDF(published version; © 2019 Society for Industrial and Applied Mathematics)
C. Kirisits, O. Scherzer and E. Setterqvist Invariant $varphi$-Minimal Sets and Total Variation Denoising on Graphs SIAM Journal on Imaging Sciences, 12(4):1643-1668, 2019 BibTeX | funding | PDF )
PDF(published version; © 2019 Society for Industrial and Applied Mathematics)

2018

C. Kirisits and O. Scherzer A Range Condition for Polyconvex Variational Regularization Numerical Functional Analysis and Optimization, 39(10):1064-1076, 2018 BibTeX | funding | PDF )

2017

PDF(author's post print; this is an author-created, un-copyedited version of an article accepted for publication/published in Inverse Problems. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at 10.1088/1361-6420/aa7a1e)
C. Kirisits and O. Scherzer Convergence rates for regularization functionals with polyconvex integrands Inverse Problems, 33(8):085008, August, 2017 BibTeX | funding | PDF )
PDF(author's post print; this is an author-created, un-copyedited version of an article accepted for publication/published in Inverse Problems. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at 10.1088/1361-6420/aa7a1e)

2015

PDF(published version; © 2015 Society for Industrial and Applied Mathematics)
M. Bauer, M. Grasmair and C. Kirisits Optical Flow on Moving Manifolds SIAM Journal on Imaging Sciences, 8(1):484–512, April, 2015 BibTeX | funding | PDF )
PDF(published version; © 2015 Society for Industrial and Applied Mathematics)
PDF(author's post print; the final publication is available at Springer via http://dx.doi.org/10.1007/s10851-014-0513-4)
C. Kirisits, L. F. Lang and O. Scherzer Optical Flow on Evolving Surfaces with Space and Time Regularisation Journal of Mathematical Imaging and Vision, 52(1):55–70, May, 2015 BibTeX | funding | PDF )
PDF(author's post print; the final publication is available at Springer via http://dx.doi.org/10.1007/s10851-014-0513-4)
PDF(author's post print; this is an Accepted Manuscript of an article published by Taylor & Francis in Applicable Analysis in 2015 available online)
C. Kirisits, C. Pöschl, E. Resmerita and O. Scherzer Finite-dimensional approximation of convex regularization via hexagonal pixel grids Applicable Analysis, 94(3):612–636, January, 2015 BibTeX | funding | PDF )
PDF(author's post print; this is an Accepted Manuscript of an article published by Taylor & Francis in Applicable Analysis in 2015 available online)

2014

PDF(author's post print; the final publication is available at Springer via http://dx.doi.org/10.1007/s13137-013-0055-8)
C. Kirisits, L. F. Lang and O. Scherzer Decomposition of optical flow on the sphere GEM - International Journal on Geomathematics, 5(1):117–141, April, 2014 BibTeX | funding | PDF )
PDF(author's post print; the final publication is available at Springer via http://dx.doi.org/10.1007/s13137-013-0055-8)

2013

C. Kirisits, L. F. Lang and O. Scherzer Optical Flow on Evolving Surfaces with an Application to the Analysis of 4D Microscopy DataIn A. Kuijper, K. Bredies, T. Pock and H. Bischof, editors, SSVM'13: Proceedings of the fourth International Conference on Scale Space and Variational Methods in Computer Vision, 7893:246–257. Springer-Verlag, 2013 BibTeX | funding )

2012

O. Scherzer and C. Kirisits Convex Variational Regularization Methods for Inverse ProblemsIn P. Bühlmann, T. Cai, A. Munk and B. Yu, editors, Frontiers in Nonparametric Statistics, 14:43–45. EMS Publishing House, 2012 BibTeX )

Contact

Computational Science Center
Faculty of Mathematics
University of Vienna

Oskar-Morgenstern-Platz 1
1090 Wien
T: +43-1-4277-55771