Talk: "Sensitivity analysis for identification of voids under Navier's boundary conditions in linear elasticity"

We kindly invite you to the talk "Sensitivity analysis for identification of voids under Navier's boundary conditions in linear elasticity" by Bochra Mejri. Wednesday, Jan. 27th, 15:00 Vienna Time.

Online at: https://meet.csc.univie.ac.at/b/axe-phh-y2a

This talk is concerned with a geometric inverse problem related to the two-dimensional linear elasticity system. Thereby, voids under Navier’s boundary conditions are reconstructed from the knowledge of partially over-determined boundary data. The proposed approach is based on the so-called energy-like error functional combined with the topological sensitivity method. The topological derivative of the energy-like misfit functional is computed through the topological-shape sensitivity method. Firstly, the shape derivative of the corresponding misfit function is presented. Then, an explicit solution of the fundamental boundary-value problem in the infinite plane with a circular hole is calculated by the Muskhelishvili formulae. Finally, the asymptotic expansion of the topological gradient is derived explicitly with respect to the nucleation of a void. Numerical tests are performed in order to point out the efficiency of the developed approach.

Contact

Computational Science Center
Faculty of Mathematics
University of Vienna

Oskar-Morgenstern-Platz 1
1090 Wien
T: +43-1-4277-55771